AN OUTLINE
OF
HOW MANIFOLDS RELATE TO ALGEBRAIC K-THEORY

Friedhelm Waldhausen

Consider manifolds without boundary. Allow taking product with Rk .
What is left? Certainly the homotopy type and the tangent bundle. But
by an old theorem of Barry Mazur this is all that is left; and that is
even true with parameters. In other words,

Thm. The forgetful map

space of (stable) manifolds ——s space of tangential spaces

(a suitable simplicial set) (another simplicial set)
is a homotopy equivalence.

(It goes without saying here, as they say, that we want our 'mani-

folds' and 'spaces' to have the homotopy types of finite CW complexes.)

We can reduce this to a simpler, but equivalent, statement by getting

rid of the tangent bundles.

Equ. assertion. The map

space of framed (stable) manifolds ——» space of spaces

is a homotopy equivalence.

Mazur's theorem is strictly a result about non-compact manifolds.

CAT

Namely define C~ 7 (X) as the homotopy fibre, at X , of the forgetful

map

space of compact framed stable manifolds -—— space of spaces



where CAT 1is one of DIFF, PL, TOP and where stabilization is given
by product with [O,]]k (plus rounding of corners in the DIFF case).

Then CCAT(X) # % (in general). In fact, its loop space is given

by,

Exercise. Q CCAT(X) ~ (stable) CAT pseudo-isotopy space of X

(if X 1is a CAT manifold).

(Hints. Use immersion theory and general position; cf. lemma 5.2 of [W2]
for a related argument.)

One knows that CPL(X) - CTOP(X) (cf. [H2]) whereas the same is

DIFF

not true with C (X) 1instead (in fact, as Hatcher has phrased it, the

latter is so named because it is different). Specifically, CPL(*) o~ %

(by the Alexander trick), but already CDIFF

(x) 1is highly non-trivial.
For example, there is an infinite cyclic summand in each of its homotopy
groups in dimensions 4, 8, 12, ... . It is related to the summand which
Borel has found, one dimension higher up, in the algebraic K-theory of
the ring of natural integers.

This relation to algebraic K-theory, how does it come about?

To relate a manifold gadget, such as CCAT(X) , to a non-manifold gadget

PL

one must at some point get rid of the manifolds. For C 7“(X) this can

be achieved by the following result,

Thm. Let X be a finite polyhedron. Then CPL(X) is homotopy equi-

valent (naturally, in X ) to the simplicial category with

- objects: (locally trivial families of) finite polyhedra containing

X as a deformation retract,

- morphisms: maps whose point inverses are contractible.

Remarks. 1. The theorem is very typical of the game: After a lot of
effort, the only thing one has learned in the end is that two rather

complicated definitions lead to the same thing, up to homotopy.

2. The theorem has variants, technical and otherwise; for example the
finite polyhedra in its statement may be replaced by finite simplicial

sets.

This theorem is more or less the same as the parametrized h—cobor-—

dism theorem of Hatcher [HI]. The proof given by Hatcher is not quite



satisfactory. There is another proof [W5], it goes roughly as follows.
For each compact polyhedron Y one considers the pairs (M,p) where M
is a compact PL manifold of some fixed dimension n , and p: M- Y is a
map having contractible point inverses. Let S(Y,n) denote the 'space'
of these pairs (a suitable simplicial set), and let S(Y) = lim.S(Y,n)

(stabilize by allowing M to be replaced by Mx[0,1] ). One shows,

(i) 1if S(Y) 1is contractible for all Y then the theorem follows.
This is more or less formal: one applies a fibration criterion in the

spirit of Quillen's theorem B [Q1].

(ii) S(Y) 1is contractible indeed. This is proved by a sort of
induction on Y (the idea being to cut up Y into simpler pieces); the
argument is based on a trick devised by Hatcher in the context of proving

a theorem on 3-manifolds: the method of 'general position in patches' [H3].

As to algebraic K-theory now, let us begin by considering the Euler
characteristic. It may be defined as an element of a certain universally
defined group, namely the class group given in terms of generators and

relations as follows,

- generators [Y] , where Y runs through the pointed spaces

(of finite type)

- relations of two kinds
(1) 1if Y] - Y2 is a cofibration , then [Y2] = [Y]] + [Y2/Y1]
(2) if Y =¥ is a weak homotopy equivalence, then [Y] = [Y'].

Obviously this definition of class group makes sense as soon as you have
a category with notions of cofibration and weak equivalence. If moreover
these notions have the usual familiar properties, and if you like to play
with definitions, you will be able to write down a bisimplicial set in
which these notions play a role, and which has the class group as its

fundamental group, cf. [W1], [w3].

Def. The algebraic K—theory of that category (with cof. and w. eq.) is
given by the loop space of (the geometric realization of) that bisimpl-

icial set.

In particular, given a space X there is associated to it its

K-theory A(X) via a model category for an equivariant homotopy theory,

attached to X , of spaces of finite type. In making this precise, one




needs to make choices, viz.
space: topological space or simplicial set,
finite: finite on the nose or finite up to homotopy,
equivariant: spaces over X or spaces with an action of QX .
Thm. All these choices don't matter (if they are made right). In add-

ition, A(X) can also be expressed by the 'plus' construction of Quillen,

using matrices over the 'ring up to homotopy' Q(QX+) (cf. below).

The relation between K-theory and PL pseudo-isotopy theory is now
PLixy of cPl(x)

(this is to get rid of the dimension shift with respect to algebraic

given as follows. One introduces a connected de-loop Wh

K-theory).

Thm. There is a map AX) - WhPL(X) whose fibre is a homology theory
(that is, as a functor of X it satisfies the excision axiom and, of

course, the homotopy axiom).

The proof of this result, along with the aforementioned foundational
material on K-theory, makes up the content of the rather long paper [W3].
The proof has nothing to do with manifolds: it uses the non-manifold

translation of CPL(X) , and hence WhPL(X) , described above.

There is nothing wrong with manifolds, however, and one can in fact
write down manifold models for all the spaces involved, and natural maps
between them, to represent the whole fibration of the theorem [W2].
(There is just one thing which is not clear from the manifold point of
view, namely that one of the terms in the fibration happens to be a
homology theory. 1In other words, the detour through non-manifolds is
only required here to recognize a homology theory when one sees one!)
The manifold models are essentially independent of the category of
definition (their construction, that is, not necessarily of course the
homotopy types that they represent). So one can use the natural forgetful
map to compare categories. Smoothing theory now tells us that, in the
situation at hand, the difference between DIFF and PL is itself only
a homology theory. It thus results from the theorem that its analogue
for smooth manifolds is also valid; that is [W2], there is a fibration,
natural in X ,

h(X) —s A(X) — WhPTEF (x)




where X+ h(X) 1is a homology theory. Now comes,
Ist surprise. That fibration splits.

Reason. Functors can be stabilized, FS(X) = lim anibre(F(SnAX+)*F(*))
Now it is known, as a consequence of Morlet's disjunction lemma [H2], that

(WhDIFF)S(X) ~ ¥

So one gets a diagram of fibrations

h(X) —— A(X) —— whPTFF (x)

«| | |

S —= AS(x) —— @S (x)

where the arrow h(X) - hS(X) is a homotopy equivalence since stabiliz-

ation doesn't change a homology theory and where, of course, hS(X) - AS(X)

is a homotopy equivalence since (WhDIFF)S(X) is contractible. Thus there
is a splitting A(X) =~ AS(X) X WhDIFF(X) . Next comes,
2nd surprise. AS(X) in turn splits as Q(X+) x ? .

Reason. By using an explicit description of AS(*) in terms of smooth
manifolds one can check [W2] that the usual map BI_ - Qs® factors

through AS(*) 5 the argument in the general case is similar.

Putting the two surprises together one obtains a double splitting

DIFF

A(X) = Q(X,) x Wh (X) x u(x) .

The mysterious third factor has informally become known as the 'mystery
homology theory'. Accordingly the next result might then be called the

theorem of the vanishing mystery homology,
Thm. p(X) =~ * |

An account of it may be found in [W4]. Rationally, that vanishing
can be deduced [W1] from a vanishing in group homology, namely the

rational vanishing of the kernel of the trace map
Hy( GL(Z), M(Z) ) —— Hu( GL(Z), Z )

This was established by Lz-cohomology methods by Borel and by Farrell and

Hsiang; more recently, Goodwillie has succeeded in giving an algebraic




proof. Conversely it is now possible to turn the situation around and
to use topology to compute the homology of the adjoint representation,

including torsion. This goes as follows.

Given a ring R and a bimodule A over it, one can define a sort
of particularly primitive K-theory, the so-called stable K-theory KS(R,A)
(cf. [W6]). It is an elementary fact [W6], [K1] that this 'computes' the
homology of the adjoint representation in the sense that there is a

spectral sequence
S
H(CLR), m KR, ) =» H . (GLR), M(4) )

where the homology on the left is ordinary (i.e. untwisted). Moreover,
as Bbkstedt has pointed out, the spectral sequence will collapse in
certain interesting cases, for example if R = Z (this is due to the
presence of a product structure). One is thus led to try and compute

stable K-theory.

Now suppose that k 1is a ground ring over which R 1is an algebra.
Then one can define the Hochschild homology Hk(R,A) and one can con-

struct a natural transformation
K5 (R,4) ——> H_(R,A)

It turns out that this natural transformation will be happy to become an

equivalence as soon as one is prepared to give it a chance.

'Giving it a chance' means that one should not attempt to do some-
thing which, from a broader perspective perhaps, is openly unreasonable;
for example, to try to take k = Z here. Indeed, if the algebraic
K-theory of spaces is looked at from the algebraic K-theory of rings
point of view, one is forced to look at 'rings' which are a little unusual
to the taste of many (e.g. A(%) = K(R) where R 1is the 'ring up to
homotopy' Qs® ). Such 'rings' are not algebras over Z , in general, so

that HZ(R,A) is not even defined.

One is thus led to fry and take k = QSO . Not surprisingly, this
leads one into constructions which are technically rather involved (for
example, it would be easy to mimick the usual definition of Hochschild
homology to obtain a simplicial object in the homotopy category; but that
is not enough, of course). Granting that all of this makes sense,
unravelling of the definitions shows that, for this k , the statement

" u(*x) =~ * " is equivalent to the statement that the map




Ks(k,k) —_— Hk(k,k) ~ k

is an equivalence. To proceed from this special case to the general case
one has to use, among other things, a decomposition theorem for the

K-theory of 'rings' which are free products, of sorts.

The 'topological Hochschild homology' Hk(R,A) , k = Q8° , has been
computed by Marcel Bdkstedt in the case A =R =2 [Bl1]. The argument
is difficult, but the result is easy enough to state. The homotopy groups

of Hk(Z,Z) , k = Qs® , are the cyclic groups

Z,0,0,2/2,0,2/3,0,2/4,0,2/5, ....

We see that we have a problem about ordinary rings here (for example
the ring Z ); namely the problem of how to compute the stable K-theory
and hence the homology of the adjoint representation. But to solve the
problem we must first consider it in the rather extended framework of

'rings up to homotopy'.

One wonders if perhaps a similar thing is true with regard to the

problem of computing algebraic K-theory.

To conclude, here are a few remarks on the notion of ring up to
homotopy. It is doubtful if there is one technical choice which is
equally well suited for everything that one wants to do with it. There
happens to exist a simple notion which suffices for many purposes [Gl1].
Namely let a quote—abelian group denote a functor from spaces to spaces
which preserves connectivity and satisfies approximate excision. This
may be regarded as another 'coordinate-free' way of specifying a (connec-
ted) homology theory, by stabilization, and hence a spectrum; that ex-
cision is asked only approximately here has the reason that (1) this is
good enough, and (2) it allows one to keep functors such as the identity
functor. By definition then a quote-ring is just a quote-abelian group
together with a monad structure in the sense of category theory; and to

define K-theory, say, is just a matter of writing it down [GI].

From a naive point of view, a 'ring up to homotopy' is nothiﬁg but
a topological space R together with structure maps add: RXR » R , mult ,
and so on, so that the ring axioms are satisfied up to homotopy. In this
situation one can, for example, define the 'space of homotopy invertible

matrices' as the pullback in the diagram




CL(R) —— 5 M(R)

l 1

GL(TrOR) —_— M(WOR)

It is a multiplicative H-space by means of matrix multiplication. But it
is plausible, on the other hand, that one needs more information to ensure
the existence (or even functorial existence) of a classifying space for

this H-space. Here is a neat example of a bad failure.

The determinant map éi(QSO) —_— éi](QSO) = G 1s an H-map, and a
retraction. Suppose it could be de-looped. Then the de-looped map would
extend to the 'plus' construction (since BG has abelian fundamental
group). That is, it would induce a map A(*) - BG , and this map would

be left inverse, more or less, to the (doubtlessly existing) map in the

other direction, BG - A(x) . It would therefore follow that the latter
map is injective on homotopy groups. But this is not true as one sees by
using the splitting A(x) o~ QSO X WhDIFF(*) together with the following

facts,

DIFF

(i) the composite map BO - BG - A(*) - Wh (*) 1is trivial [w2],

(ii) the composite map BG - A(x) - QS° 1is non-trivial only at the

prime 2 (and here just barely so, being 'multiplication by n ') [B2].
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