Übungen zur Vorlesung Mathematik für Naturwissenschaften I

Blatt 9 (Weihnachtsblatt)

Aufgabe 1

Sei $M \neq \emptyset$ eine nach unten bechränkte Teilmenge von \mathbb{R} . Eine größte untere Schranke $M_{min} \in \mathbb{R}$ von M existiert (Satz in Vorlesungen). Konstruieren Sie eine Folge $(a_n)_{n \in \mathbb{N}}$ in M (d.h. $a_n \in M$ für alle n), die gegen M_{min} konvergiert. Ist M_{min} immer ein Element von M?

Hinweis. M_{min} ist untere Schranke von M, aber für kein $\varepsilon > 0$ ist $M_{min} + \varepsilon$ eine untere Schranke von M. Betrachten Sie $\varepsilon = 1/n$.

(4 Punkte)

Aufgabe 2

Zeigen Sie, dass der Quotient $\frac{f}{g}$ zweier stetiger Funktionen $f,g\colon D\to\mathbb{R}$ eine stetige Funktion auf dem Definitionsbereich $D'=\{x\in D\mid g(x)\neq 0\}$ ist.

Zeigen Sie von der Definition, dass

- (a) für jede $c \in \mathbb{R}$, f(x) = c stetig auf \mathbb{R} ist.
- (b) g(x) = x stetig auf \mathbb{R} ist.

Zeigen Sie, dass die Funktion $h: [a, b] \to \mathbb{R}$ mit h(x) = 1/x für jede 0 < a < b stetig ist. Was passiert, wenn a negativ und b positiv ist?

$$(4 + 1 + 1 + 2 \text{ Punkte})$$

Aufgabe 3

Zeigen Sie die Stetigkeit der Exponentialfunktion im Nullpunkt 0, indem Sie vorab die Ungleichung

$$|\exp(x) - 1| \le 2|x|$$

mittels der Identität $2 = \sum_{n=0}^{\infty} (1/2)^n$ für $|x| \le 1$ beweisen. Zeigen Sie auch, wie nun aus der Funktionalgleichung die Stetigkeit in jedem Punkt $a \in \mathbb{R}$ folgt.

(4 Punkte)

Abgabe bis Freitag, 14.12.2018, 10.00 Uhr, in den Postfächern der Tutoren im Kopierraum V3-128