Präsenzübungen zur Vorlesung Mathematik für Naturwissenschaften II

Blatt 2

Aufgabe 1

Zeigen Sie, dass die Maximum-Norm $\|\cdot\|_{\infty}$ tatsächlich eine Normfunktion auf dem \mathbb{R}^d ist.

Aufgabe 2

Skizzieren Sie den Ball $B_1(0)$ vom Radius 1 um den Nullpunkt bezüglich der Norm $\|\cdot\|_1$ auf dem \mathbb{R}^2 . Wie sehen diese Bälle bezüglich anderer Normen aus?

Aufgabe 3

Sei $(V, \|\cdot\|)$ ein normierter Vektorraum. Zeigen Sie, dass für alle $x, y \in V$ gilt

$$||x - y|| \ge \Big| ||x|| - ||y|| \Big|.$$

Hinweis. Verwenden Sie die Dreiecksungleichung.

Aufgabe 4

Sei C([a,b]) der reelle Vektorraum der stetigen Funktionen $f:[a,b]\to\mathbb{R}$. Zeigen Sie, dass die Supremumsnorm

$$||f||_{\infty} = \sup_{x \in [a,b]} |f(x)|$$

tatsächlich eine Normfunktion auf C([a,b]) ist. Zeigen Sie weiter, dass auch durch

$$||f||_1 = \int_a^b |f(x)| dx$$

eine Normfunktion auf C([a, b]) definiert ist. Zeigen Sie außerdem, dass es eine Konstante K > 0 gibt, sodass für alle $f \in C([a, b])$ gilt

$$||f||_1 \le K||f||_{\infty}.$$

Zeigen Sie, dass die beiden Normen nicht äquivalent sind.

Hinweis. Zur Nicht-Äquivalenz: Geben Sie eine Folge $(f_n)_{n\in\mathbb{N}}$ in C([0,1]) an, die bezüglich der Integral-Norm, nicht aber bezüglich der Supremumsnorm gegen die Nullfunktion konvergiert.