Übungen zur Vorlesung Mathematik für Naturwissenschaften II Blatt 10

Aufgabe 1 Die Matrix $A = \frac{1}{3}\begin{pmatrix} 2 & -1 & 2 \\ 2 & 2 & -1 \\ -1 & 2 & 2 \end{pmatrix}$ ist eine Matrix mit konstanten Zeilensummen und hat daher den Eigenvektor $u_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$.

- a) Berechnen Sie alle Eigenwerte von A, ohne das charakteristische Polynom zu bestimmen.
- b) Sei $\langle x,y\rangle:=x^Ty$ das Standardskalarprodukt auf \mathbb{R}^n . Zeigen Sie, dass $\langle Sx,Sy\rangle=\langle x,y\rangle$ für alle $x,y\in\mathbb{R}^n$ gilt, falls S orthogonal ist. Gilt $\langle Ax,Ay\rangle=\langle x,y\rangle$ auch für die oben angegebene Matrix A?
- c) Interpretieren Sie A geometrisch. Hinweis: Welche Rolle spielt u_1 , was passiert mit Vektoren orthogonal zu u_1 , was bedeutet b).

$$(2+2+2$$
 Punkte)

Aufgabe 2

Gilt $xA = \lambda x$ für $x \in \mathbb{C}^n \setminus \{0\}$, so heißt x linksseitiger Eigenvektor zum Eigenwert λ . Zeigen Sie:

- a) Ist x Eigenvektor von A, so ist x^T linksseitiger Eigenvektor von A^T zum selben Eigenwert.
- b) Finden Sie eine Bedingung für die Eigenwerte einer reellen orthogonalen Matrix A. Hinweis: Betrachten Sie $\bar{x}^T A^T A x$, beachten Sie $\bar{x}^T x > 0$, falls $x \neq 0$, und verwenden Sie Aufgabe 1c) vom Präsenzübungsblatt 8.

(1 + 2 Punkte)

Aufgabe 3 Finden Sie eine duale Basis zur Basis $\left\{ \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} -2 \\ -1 \\ 0 \end{pmatrix}, \begin{pmatrix} 4 \\ -2 \\ -1 \end{pmatrix} \right\}$

(2 Punkte)

Aufgabe 4

Sei V ein unitärer Vektorraum, und x_1, \ldots, x_k paarweise orthogonale Vektoren, alle $x_i \neq 0$. Zeigen Sie:

- a) x_1, \ldots, x_k sind linear unabhängig. Hinweis: Bilden Sie geeignete innere Produkte.
- b) $y = x \sum_{i=1}^{k} \frac{\langle x_i, x \rangle}{\langle x_i, x_i \rangle} x_i$ ist orthogonal auf allen x_j .
- c) Es gilt $x \sum_{i=1}^{k} \frac{\langle x_i, x \rangle}{\langle x_i, x_i \rangle} x_i = 0$ genau dann, wenn x und x_1, \dots, x_k linear abhängig sind.

(1+1+2 Punkte)

Abgabe bis Freitag, 14.6.2019, 12.00 Uhr, in den Postfächern der Tutoren im Kopierraum V3-128