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1 Introduction

The Cryst package, previously known asCrystGAP, provides functions for the computation with affine crystallo-
graphic groups, in particular space groups. For the definition of the standard crystallographic notions we refer to the
International Tables [Hah95], in particular the chapter byWondratschek [Won95], and to the introductory chapter in
[BBNWZ78]. The principal algorithms used in this package are described in [EGN97].

The present version forGAP 4 has been considerably reworked from an earlier version forGAP 3.4.4. Most of
the porting toGAP 4 has been done by Franz Gähler. Besides affine crystallographic groups acting from the right,
also affine crystallographic groups acting from the left arenow fully supported. Many algorithms have been added,
extended, or improved in other ways.

Our warmest thanks go the Max Neunhöffer, whose extensive testing of theGAP 4 version ofCryst in connection
with XGAP uncovered several bugs and led to many performance improvements.

Cryst is implemented in theGAP 4 language, and runs on any system supportingGAP 4. However, certain commands
may require that other GAP packages such asCARAT or XGAP are installed. In particular, the routines in Section 2.8
are likely to requireCARAT, and the function WyckoffGraph (see 2.7.9) requiresXGAP. Both CARAT andXGAP
are available only under Unix.

TheCryst package is loaded with the command

gap> LoadPackage( "cryst" );

true

Cryst has been developed by

Bettina Eick
Fachbereich Mathematik und Informatik
Technische Universität Braunschweig
Pockelsstr. 14, D-38106 Braunschweig, Germany
e-mail:b.eick@tu-bs.de

Franz Gähler
Fakultät für Mathematik, Universität Bielefeld
Postfach 10 01 31, D-33501 Bielefeld, Germany
e-mail:gaehler@math.uni-bielefeld.de

Werner Nickel
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2
Affine

crystallographic
groups

An affine crystallographic groupG is a subgroup of the group of all Euclidean motions ofd-dimensional space, with
the property that its subgroupT of all pure translations is a discrete normal subgroup of finite index. If the rank of the
translation subgroupT is d, G is called a space group. The quotientG/T is called the point group ofG.

In this package, affine crystallographic groups are represented as groups of augmented matrices of dimensiond + 1.
Most functions assume a group of rational matrices, but somemay also work with cyclotomic matrix groups. In
particular, it is possible to compute the translation basisof an affine crystallographic group given in a cyclotomic rep-
resentation, and to pass to a rational representation by conjugating with that basis. Further functionality for cyclotomic
crystallographic groups is currently not guaranteed.

Augmented matrices can take one of two forms. Matrices of theform

[ M 0 ]

[ t 1 ]

act from the right on row vectors(x, 1). Such a matrix is said to be an affine matrix acting on the right. Since inGAP
all groups act from the right, this is the preferred representation of an affine transformation.

The second representation of affine transformations is by augmented matrices of the form

[ M t ]

[ 0 1 ]

which act from the left on column vectors(x, 1). Such matrices are said to be affine matrices acting on the left. This
is the representation usually adopted by crystallographers.

Cryst supports affine crystallographic groups in both representations. Every affine crystallographic group is con-
structed in one of these two representations.

Affine crystallographic groups in different representations should never be mixed, however. It is recommended to
adopt one of the two representations, and then to stick to that decision. In order to facilitate this, there is a global vari-
ableCrystGroupDefaultAction, whose value is eitherRightAction or LeftAction. The initial value isRigh-
tAction, but this can be changed with

1 ◮ SetCrystGroupDefaultAction( action ) F

whereaction must be eitherRightAction or LeftAction. Constructor functions without explicit representation
qualifier then will construct an affine crystallographic group in the representation specified byCrystGroupDefault-

Action.
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2.1 Construction

1 ◮ AffineCrystGroupOnRight( gens ) F
◮ AffineCrystGroupOnRight( genlist ) F
◮ AffineCrystGroupOnRight( genlist, identity ) F

returns the matrix group generated bygensor genlist, which must be affine matrices acting on the right, as affine
crystallographic group acting on the right. An already existing groupS of affine matrices acting on the right can be
converted to an affine crystallographic group acting on the right with

2 ◮ AsAffineCrystGroupOnRight( S ) F

The property

3 ◮ IsAffineCrystGroupOnRight( S ) P

is true exactly for those groups which have been constructed in the above two ways.

4 ◮ AffineCrystGroupOnLeft( gens ) F
◮ AffineCrystGroupOnLeft( genlist ) F
◮ AffineCrystGroupOnLeft( genlist, identity ) F

returns the matrix group generated bygensor genlist, which must be affine matrices acting on the left, as affine
crystallographic group acting on the left. An already existing groupS of affine matrices acting on the left can be
converted to an affine crystallographic group acting on the left with

5 ◮ AsAffineCrystGroupOnLeft( S ) F

The property

6 ◮ IsAffineCrystGroupOnLeft( S ) P

is true exactly for those groups which have been constructed in the above two ways.

It is recommended to adopt one representation for affine crystallographic groups, and then to stick to it. To facilitate
this, routines are provided which assume a default representation.

7 ◮ AffineCrystGroup( gens ) F
◮ AffineCrystGroup( genlist ) F
◮ AffineCrystGroup( genlist, identity ) F

callsAffineCrystGroupOnRightor AffineCrystGroupOnLeftwith the same arguments, depending on the value
of CrystGroupDefaultAction.

8 ◮ AsAffineCrystGroup( S ) F

callsAsAffineCrystGroupOnRight or AsAffineCrystGroupOnLeft with the same argument, depending on the
value ofCrystGroupDefaultAction.

9 ◮ IsAffineCrystGroup( S ) F

callsIsAffineCrystGroupOnRight or IsAffineCrystGroupOnLeft with the same argument, depending on the
value ofCrystGroupDefaultAction.

10◮ TransposedMatrixGroup( S ) A

returns the transpose of the affine crystallographic groupS. If S is acting on the right, its transpose is acting on the
left, and vice versa.
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2.2 Point group

The point groupP of an affine crystallographic groupS is the quotientS/T, whereT is the normal subgroup of all pure
translations.P is isomorphic to the group generated by the linear parts of all affine matrices contained inS. In Cryst
this latter group is identified with the point group ofS.

1 ◮ PointGroup( S ) A

returns the point group ofS.

2 ◮ IsPointGroup( P ) P

returnstrue if and only if P has been constructed as the point group of an affine crystallographic groupS.

3 ◮ AffineCrystGroupOfPointGroup( P ) A

returns the affine crystallographic groupS, from whichP has been constructed.

4 ◮ PointHomomorphism( S ) A

returns a homomorphism from the affine crystallographic group to its point group.

5 ◮ IsPointHomomorphism( H ) P

returnstrue if and only if H has been constructed as thePointHomomorphism of an affine crystallographic group.

2.3 Translation lattice

The vectors by which the pure translations in an affine crystallographic group translate form a discrete lattice,L, called
the translation lattice ofS.

1 ◮ TranslationBasis( S ) A

returns a basis of the translation lattice ofS. The basis returned is unique for the translation lattice.

2 ◮ InternalBasis( S ) A

returns a basis used internally for many computations. It consists of the translation basisB of S, extended by further
standard basis vectors ifB has not full rank.

If a generating setB of the translation lattice ofS is known from somewhere, this knowledge can be added toSwith

3 ◮ AddTranslationBasis( S, B ) F

This function must do further work, so thatSetTranslationBasis cannot be used for this purpose. If doubts arise
about the correctness of the translation basis that has beenadded by hand, one can check the correctness of the stored
value with

4 ◮ CheckTranslationBasis( S ) F

An affine crystallographic groupSacting ond-dimensional Euclidean space is called aspace groupif its translation
lattice has rankd.

5 ◮ IsSpaceGroup( S ) P

tests if the affine crystallographic groupS is a space group.

Since many computations are done internally in theInternalBasis of S, we say thatS is in standard form if the
InternalBasis is the standard basis of Euclidean row space or column space,respectively. This means that the
translation lattice is generated by the firstk standard basis vectors, wherek is the rank of the translation lattice.

6 ◮ IsStandardAffineCrystGroup( S ) P

checks ifS is in standard form.
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7 ◮ IsStandardSpaceGroup( S ) P

checks ifS is a space group in standard form.

8 ◮ StandardAffineCrystGroup( S ) F

returns a conjugate ofSwhich is in standard form.

If an space group is a semi-direct product of its point group with its translation subgroup,S is said to be symmorphic.

9 ◮ IsSymmorphicSpaceGroup( S ) P

checks if the space groupS is symmorphic.

2.4 Special methods

In the representation by augmented matrices, affine crystallographic groups are infinite matrix groups. Their infinity
is relatively trivial in the sense that they have an abelian normal subgroup of finite index. Nevertheless, for many
operations special methods have to be installed that avoid to attempt algorithms that never finish. These methods all
make essential use of the exactness of the sequence of homomorphism0 -> T -> S -> P -> 1, whereT is the
translation subgroup ofS, andP its point group.

All operations for general groups that make sense for affine crystallographic groups should work also in that case. In
particular, there should be no restrictions for finiteAffineCrystGroups. For infinite groups, some restrictions apply,
however. For instance, algorithms from the orbit-stabilizer family can work only if the orbits generated are finite. Note,
however, thatNormalizer,Centralizer andRepresentativeAction in anAffineCrystGroupwork even if the
corresponding orbit is infinite.

Some methods installed for affine crystallographic groups have a special behavior.

1 ◮ \^( S, conj )

If S is anAffineCrystGroupOnRight, the groupconj * S * conjˆ-1is returned.conjmust be an affine matrix acting
on the right. IfS is anAffineCrystGroupOnLeft, the groupconjˆ-1 * S * conjis returned.conj must be an affine
matrix acting on the left.

2 ◮ IsomorphismFpGroup( P ) A

returns an isomorphism from thePointGroupP to an isomorphicFpGroup F. If P is solvable,F is given in a power-
commutator presentation.

3 ◮ IsomorphismFpGroup( S ) A

returns an isomorphism from theAffineCrystGroup S to an isomorphicFpGroup F. If S is solvable,F is given in
a power-commutator presentation. The presentation ofF is an extension of the presentation of the point groupP of S
used inIsomorphismFpGroup( P ).

If the package polycyclic is installed,Cryst automatically loads it, and then provides special methods for Isomor-
phismPcpGroup.

4 ◮ IsomorphismPcpGroup( P ) A

with P a solvablePointGroup, returns an isomorphism fromP to an isomorphicPcpGroup pcp. For details about
PcpGroups, we refer to the documentation of the package polycyclic.

5 ◮ IsomorphismPcpGroup( S ) A

with Sa solvableAffineCrystGroup (i.e., one with a solvablePointGroup), returns an isomorphism fromS to an
isomorphicPcpGroup pcp. The presentation ofpcp is an extension of the presentation of the point groupP of Sused
in IsomorphismPcpGroup( P ).
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2.5 Maximal subgroups

Since anAffineCrystGroup has infinitely many maximal subgroups in general, in the computation of maximal
subgroups it must be further specified which maximal subgroups are desired. Recall that a maximal subgroup of an
AffineCrystGroup is either latticeequal or classequal. A latticeequal subgroup has the same translation lattice as the
parent, while a classequal subgroup has the same point groupas the parent. In the classequal case a maximal subgroup
always has prime-power index, whereas in the latticeequal case this is so only in dimensions up to 3.

1 ◮ MaximalSubgroupClassReps( S, flags ) O

returns a list of conjugacy class representatives of maximal subgroups of theAffineCrystGroupS.

2 ◮ ConjugacyClassesMaximalSubgroups( S, flags ) O

returns a list of conjugacy classes of maximal subgroups of theAffineCrystGroupS.

In these two functions, the argumentflagsspecifies which maximal subgroups are computed.flagsis a record which
may have the following components:

flags.primes := [p1 .. pr]

only maximal subgroups of p-power index for the given primesp are computed

flags.latticeequal := true

only latticeequal maximal subgroups are computed

flags.classequal := true

only classequal maximal subgroups are computed

flags.latticeequal andflags.classequalmust not both be bound andtrue. flags.primesmay be omitted
only if flags.latticeequal is bound andtrue.

gap> S := SpaceGroupIT(3,222);

SpaceGroupOnRightIT(3,222,’2’)

gap> L := MaximalSubgroupClassReps( S, rec( primes := [3,5] ) );

[ <matrix group with 7 generators>, <matrix group with 8 generators>,

<matrix group with 8 generators> ]

gap> List( L, IndexInParent );

[ 3, 27, 125 ]

gap> L := MaximalSubgroupClassReps( S,

> rec( classequal := true, primes := [3,5] ) );

[ <matrix group with 8 generators>, <matrix group with 8 generators> ]

gap> List( L, IndexInParent );

[ 27, 125 ]

gap> L := MaximalSubgroupClassReps( S,

> rec( latticeequal := true, primes := [3,5] ) );

[ <matrix group with 7 generators> ]

gap> List( L, IndexInParent );

[ 3 ]

gap> L := MaximalSubgroupClassReps( S, rec( latticeequal := true ) );

[ <matrix group with 7 generators>, <matrix group with 7 generators>,

<matrix group with 7 generators>, <matrix group with 7 generators>,

<matrix group with 6 generators> ]

gap> List( L, IndexInParent );

[ 2, 2, 2, 3, 4 ]
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2.6 Space groups with a given point group

1 ◮ SpaceGroupsByPointGroupOnRight( P ) O
◮ SpaceGroupsByPointGroupOnRight( P, norm ) O
◮ SpaceGroupsByPointGroupOnRight( P, norm, orbsflag ) O

whereP is any finite subgroup ofGL(d,Z), returns a list of all space groups (acting on the right) withpoint groupP,
up to conjugacy in the full translation group of Euclidean space. All these space groups are returned asAffineCryst-

GroupOnRight in standard representation. If a second argument is present, which must be a list of elements of the
normalizer ofP in GL(d,Z), only space groups inequivalent under conjugation with these elements are returned. If
these normalizer elements, together withP, generate the full normalizer ofP in GL(d,Z), then exactly one repre-
sentative of each space group type is obtained. If the third argumentorbsflag, which must befalse or true, is also
present andtrue, all space groups up to conjugacy in the full translation group are returned, but these space groups
are collected into orbits under the conjugation action withelements fromnorm.

gap> P := Group([ [ [ -1, 0 ], [ 0, -1 ] ], [ [ -1, 0 ], [ 0, 1 ] ] ]);

Group([ [ [ -1, 0 ], [ 0, -1 ] ], [ [ -1, 0 ], [ 0, 1 ] ] ])

gap> norm := GeneratorsOfGroup( NormalizerInGLnZ( P ) );

[ [ [ -1, 0 ], [ 0, -1 ] ], [ [ -1, 0 ], [ 0, 1 ] ], [ [ -1, 0 ], [ 0, -1 ] ],

[ [ 1, 0 ], [ 0, -1 ] ], [ [ 0, 1 ], [ 1, 0 ] ] ]

gap> SpaceGroupsByPointGroupOnRight( P );

[ <matrix group with 4 generators>, <matrix group with 4 generators>,

<matrix group with 4 generators>, <matrix group with 4 generators> ]

gap> SpaceGroupsByPointGroupOnRight( P, norm );

[ <matrix group with 4 generators>, <matrix group with 4 generators>,

<matrix group with 4 generators> ]

gap> SpaceGroupsByPointGroupOnRight( P, norm, true );

[ [ <matrix group with 4 generators> ],

[ <matrix group with 4 generators>, <matrix group with 4 generators> ],

[ <matrix group with 4 generators> ] ]

2 ◮ SpaceGroupTypesByPointGroupOnRight( P ) O
◮ SpaceGroupTypesByPointGroupOnRight( P, orbsflag ) O

returns a list of space group type representatives (acting on the right) of the point groupP. As in the case ofSpace-
GroupsByPointGroupOnRight, if the boolean argumentorbsflagis present andtrue, not only space group type
representatives, but all space groups up to conjugacy in thefull translation group are returned. These are then col-
lected into lists of space groups of the same space group type.

gap> SpaceGroupTypesByPointGroupOnRight( P );

[ <matrix group with 4 generators>, <matrix group with 4 generators>,

<matrix group with 4 generators> ]

gap> SpaceGroupTypesByPointGroupOnRight( P, true );

[ [ <matrix group with 4 generators> ],

[ <matrix group with 4 generators>, <matrix group with 4 generators> ],

[ <matrix group with 4 generators> ] ]

3 ◮ SpaceGroupsByPointGroupOnLeft( P ) O
◮ SpaceGroupsByPointGroupOnLeft( P, norm ) O
◮ SpaceGroupsByPointGroupOnLeft( P, norm, orbsflag ) O

works the same way asSpaceGroupsByPointGroupOnRight, except that the space groups acting from the left are
returned.
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4 ◮ SpaceGroupTypesByPointGroupOnLeft( P ) O
◮ SpaceGroupTypesByPointGroupOnLeft( P, orbsflag ) O

works the same way asSpaceGroupTypesByPointGroupOnRight, except that the space groups acting from the left
are returned.

5 ◮ SpaceGroupsByPointGroup( P ) O
◮ SpaceGroupsByPointGroup( P, norm ) O
◮ SpaceGroupsByPointGroup( P, norm, orbsflag ) O

callsSpaceGroupByPointGroupOnRightorSpaceGroupByPointGroupOnLeftwith the same arguments, depend-
ing on the value ofCrystGroupDefaultAction.

6 ◮ SpaceGroupTypesByPointGroupOnLeft( P ) O
◮ SpaceGroupTypesByPointGroupOnLeft( P, orbsflag ) O

calls eitherSpaceGroupTypesByPointGroupOnRightor SpaceGroupTypesByPointGroupOnLeftwith the same
arguments, depending on the variableCrystGroupDefaultAction.

2.7 Wyckoff positions

A Wyckoff position of a space groupSis an equivalence class of points in Euclidean space, havingstabilizers which are
conjugate subgroups ofS. Apart from a subset of lower dimension, which contains points with even bigger stabilizers,
a Wyckoff position consists of anS-orbit of some affine subspaceA. In Cryst, a Wyckoff positionW is specified by
such a representative affine subspace.

1 ◮ WyckoffPositions( S ) A

returns the list of Wyckoff positions of the space groupS.

gap> S := SpaceGroupIT(2,14);

SpaceGroupOnRightIT(2,14,’1’)

gap> W := WyckoffPositions(S);

[ < Wyckoff position, point group 3, translation := [ 0, 0 ],

basis := [ ] >

, < Wyckoff position, point group 3, translation := [ 2/3, 1/3 ],

basis := [ ] >

, < Wyckoff position, point group 3, translation := [ 1/3, 2/3 ],

basis := [ ] >

, < Wyckoff position, point group 2, translation := [ 0, 0 ],

basis := [ [ 1, -1 ] ] >

, < Wyckoff position, point group 1, translation := [ 0, 0 ],

basis := [ [ 1, 0 ], [ 0, 1 ] ] >

]

In the previous example,S has three kinds of special points (the basis is empty), whoserepresentatives all have a
stabilizer with the same point group (with label 1), one kindof special line (the basis has length 1), and the general
position.

2 ◮ WyckoffPositionsByStabilizer( S, sub ) O

whereS is a space group andsuba subgroup of the point group or a list of such subgroups, determines only the
Wyckoff positions whose representatives have a stabilizerwith a point group equal to the subgroupsubor contained
in the listsub, respectively.
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gap> sub := Group([ [ [ 0, -1 ], [ -1, 0 ] ] ]);

Group([ [ [ 0, -1 ], [ -1, 0 ] ] ])

gap> IsSubgroup( PointGroup( S ), sub );

true

gap> WyckoffPositionsByStabilizer( S, sub );

[ < Wyckoff position, point group 1, translation := [ 0, 0 ],

basis := [ [ 1, -1 ] ] >

]

3 ◮ IsWyckoffPosition( obj ) R

checks whetherobj is a Wyckoff position.

gap> ForAll( W, IsWyckoffPosition );

true

4 ◮ WyckoffBasis( W ) O

returns a basis of the representative affine subspace of the Wyckoff positionW.

gap> WyckoffBasis( W[4] );

[ [ 1, -1 ] ]

5 ◮ WyckoffTranslation( W ) O

returns a point of the representative affine subspace of the Wyckoff positionW.

gap> WyckoffTranslation( W[3] );

[ 1/3, 2/3 ]

6 ◮ WyckoffSpaceGroup( W ) O

returns the space group of whichW is a Wyckoff position.

gap> WyckoffSpaceGroup( W[1] );

SpaceGroupOnRightIT(2,14,’1’)

7 ◮ WyckoffStabilizer( W ) O

returns the stabilizer of the (generic) points in the representative affine subspace of the Wyckoff positionW. This
stabilizer is a subgroup of the space group ofW, and thus anAffineCrystGroup.

gap> stab := WyckoffStabilizer( W[4] );

Group([ [ [ 0, -1, 0 ], [ -1, 0, 0 ], [ 0, 0, 1 ] ] ])

gap> IsAffineCrystGroupOnRight( stab );

true

8 ◮ WyckoffOrbit( W ) O

determines the orbit of the representative affine subspaceA of the Wyckoff positionW under the space groupS of
W (modulo lattice translations). The affine subspaces in thisorbit are then converted into a list of Wyckoff positions,
which is returned. The Wyckoff positions in this list are just different representations ofW. Their WyckoffBasis
andWyckoffTranslation are chosen such that the induced parametrizations of their representative subspaces are
mapped onto each other under the space group operation.
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gap> orb := WyckoffOrbit( W[4] );

[ < Wyckoff position, point group 2, translation := [ 0, 0 ],

basis := [ [ 1, -1 ] ] >

, < Wyckoff position, point group 2, translation := [ 0, 0 ],

basis := [ [ 1, 2 ] ] >

, < Wyckoff position, point group 2, translation := [ 0, 0 ],

basis := [ [ -2, -1 ] ] >

]

gap> Set(orb);

[ < Wyckoff position, point group 2, translation := [ 0, 0 ],

basis := [ [ 1, -1 ] ] >

]

9 ◮ WyckoffGraph( W [, def ] ) O
◮ WyckoffGraph( S [, def ] ) O

displays the incidence relations of a set of Wyckoff positions graphically. This function is available only underXGAP.
In the first form,W is a list of Wyckoff positions, which must belong to the same space group. In the second form,S
is a space group; in this case, the function is applied to the complete list of Wyckoff positions ofS. In both forms, a
second argument,def, is possible, which is a record with optional componentstitle, width andheight, specifying
the title, width and height of the graphic sheet on which the graph will be displayed.

Each vertex of the graph represents a Wyckoff position. Vertices are arranged in horizontal layers, determined by the
dimensions of the Wyckoff position and the sizes of its stabilizer. For each layer, the list[ d, s ] is displayed at
the right border of the graphic sheet. The vertical positions of the layers are ordered according to the dimension of
the Wyckoff position (primary criterion, smaller dimension above) and the size of the stabilizer (secondary criterion,
bigger stabilizer above). Two Wyckoff positions are connected if the closure of the lower one contains the upper
one. Two Wyckoff positions are connected by a line only if there is no Wyckoff position in between. The connection
line is labelled with the number of affine subspaces contained in the lower Wyckoff position that contain a fixed
representative affine subspace of the upper Wyckoff position. For instance, if the lower Wyckoff position consists of a
space group orbit of lines (and thus the upper one of an orbit of points), the label of the connection line is the number
of lines in the orbit which cross a fixed representative pointof the upper Wyckoff position.

The initial layout of the graph is not always optimal. In particular, several connection lines can be drawn on top of
each other, so that it is not easy to see who is connected with whom. With the left mouse button, the graph can be
rearranged, however. Just drag each vertex to a more suitable place. Note, however, that a vertex can not leave its
layer. For more details, please consult theXGAP manual.

By right-clicking on a vertex, a popup menu with informationon the Wyckoff position of that vertex appears. It
informs on the size of theWyckoffStabilizer, the dimension of the Wyckoff position, the length of theWyckof-

fOrbit (modulo lattice translations), the translation and basis of a representative affine subspace, the isomorphims
type of theWyckoffStabilizer, and the ConjugacyClassInfo of the point groupP of the WyckoffStabilizer.
The ConjugacyClassInfo lists for each conjugacy class of elements ofP the number of that class, the order, trace and
determinant of its elements, and the size of the class. This information is useful to identify the geometric operation
of the stabilizer. The isomorphism type and ConjugacyClassInfo may not be displayed initially. It this case, they can
be obtained by left-clicking on them, or by left-clicking onthe button labelledall. Unfortunately, the popup window
cannot be resized automatically, and since the ConjugacyClassInfo needs several lines for the display, the information
may be hidden behind the border of the window. You will have touse the slider of the popup window to make it
visible, or resize the window with the help of your window manager. Alternatively, you can right-click again on the
same vertex, in which case a new popup window of sufficient size appears.
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2.8 Normalizers

At present, most of the functions in this section require that theGAP packageCARAT is installed (and compiled).
Otherwise, they are available only for space groups from thecrystallographic groups catalogue or the International
Tables (section 2.11).

1 ◮ NormalizerPointGroupInGLnZ( P ) A

returns the normalizer of thePointGroup P in the group of all unimodular transformations of the lattice spanned
by theInternalBasis B of the AffineCrystGroup S of P. If S is in standard representation, this is the same
asNormalizer( GL(dim,Integers), P ), otherwise it isNormalizer( GL(dim,Integers), P^(B^-1) )^B.
This notion probably makes sense only ifS is a space group. Note thatP must have elements with integer entries
(which is the case ifS is a space group).

2 ◮ CentralizerPointGroupInGLnZ( P ) A

returns the centralizer of thePointGroup P in the group of all unimodular transformations of the lattice spanned
by theInternalBasis B of theAffineCrystGroup S of P. If S is in standard representation, this is the same as
Centralizer( GL(dim,Integers), P ), otherwise it isCentralizer( GL(dim,Integers), P^(B^-1) )^B.
This notion probably makes sense only ifS is a space group. Note thatP must have elements with integer entries
(which is the case ifS is a space group).

3 ◮ TranslationNormalizer( S ) F

returns the normalizer of the space groupS in the full translation group. At present, this function is implemented only
for space groups, not for generalAffineCrystGroups. The translation normalizerTN of Smay contain a continuous
subgroupC. A basis of the space of such continuous translations is bound in TN!.continuousTranslations. Since
this subgroup is not finitely generated, it isnot contained in the group generated byGeneratorsOfGroup( TN ).
Properly speaking, the translation normalizer is the span of TN andC together.

4 ◮ AffineNormalizer( S ) F

returns the affine normalizer of the space groupS. The affine normalizerAF contains the translation normalizer as
a subgroup. Similarly as withTranslationNormalizer, the subgroupC of continuous translations, which is not
finitely generated, is not part of the group that is returned.However, a basis of the space of continuous translations is
bound in the componentAF!.continuousTranslations.

5 ◮ AffineInequivalentSubgroups( S, sub ) F

takes as input a space groupSand list of subgroups ofS, and returns a sublist of affine inequivalent subgroups. Note
that the affine normalizer ofSmust be discrete in the current implementation. If it is not,fail is returned.

For two space groupsS1andS2of the same dimension (and acting from the same side),

6 ◮ ConjugatorSpaceGroups( S1, S2 ) F

returns an affine matrixmsuch thatS1^m = S2, of fail if no such matrix exists, i.e., if the two space groups are not
equivalent. This function requires that theGAP packageCARAT is installed (and compiled).

2.9 Color groups

A color groupC is a group whose elements are colored in the following way. The elements having the same color as
the identity elementOne(C) form a subgroupH of finite indexn. H is called theColorSubgroup of C. Elements of
C have the same color if and only if they are in the same right coset of H in C. The labelling of the colors, which
runs from 1 ton, is determined by a fixed labelling of the right cosets ofH. The list of right cosets ofH is stored in
the attributeColorCosetList. The color of the elements of a coset corresponds to the position of the coset in that
list. Elements ofH by definition have color 1, i.e., the coset with representativeOne(C) is always the first element of
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theColorCosetList of C. Color groups which have a parent inherit their coloring from that parent, including the
labelling of the colors. As with other groups, color groups having no parent are their own parent.

Right multiplication by a fixed elementg of C induces a permutationp(g)of the colors of the parent ofC. This defines
a natural homomorphism ofC into the symmetric group of degreen. The image of this homomorphism is called the
ColorPermGroup of C, and the homomorphism to it is called theColorHomomorphism of C.

1 ◮ ColorGroup( G, H ) F

constructs a colored copy ofG, with color subgroupH (which should have finite index inG). Color groups constructed
in this way are always their own parent. It is not possible to set their parent attribute to a different value.

Groups which may be colored include, in particular,AffineCrystGroups, but coloring of any finite group should
work as well.

2 ◮ IsColorGroup( G ) P

checks whetherG is a color group.

3 ◮ ColorSubgroup( G ) A

returns the color subgroup ofG.

4 ◮ ColorCosetList( G ) A

returns the color labelling cosets ofG.

5 ◮ ColorOfElement( G, elem ) F

returns the color of an element ofG.

6 ◮ ColorPermGroup( G ) A

returns the ColorPermGroup ofG, which is the permutation group induced byG acting on the colors of the parent of
G.

7 ◮ ColorHomomorphism( G ) A

returns the homomomorphism fromG to itsColorPermGroup.

8 ◮ Subgroup( C, elems) O

whereC is a color group, returns the colored subgroupU of C generated byelems. The parent ofU is set to the parent
of C, from which the coloring ofU is inherited.

gap> G := Group( (1,2,3), (2,3,4) );

Group([ (1,2,3), (2,3,4) ])

gap> H := Group( (1,2,3) );

Group([ (1,2,3) ])

gap> C := ColorGroup( G, H );

Group([ (1,2,3), (2,3,4) ])

gap> ColorSubgroup( C ) = H;

true

gap> ColorCosetList( C );

[ RightCoset(Group( [ (1,2,3) ] ),()), RightCoset(Group( [ (1,2,3) ] ),(1,2)

(3,4)), RightCoset(Group( [ (1,2,3) ] ),(1,3)(2,4)),

RightCoset(Group( [ (1,2,3) ] ),(1,4)(2,3)) ]

gap> List( last, x -> ColorOfElement( C, Representative(x) ) );

[ 1, 2, 3, 4 ]

gap> U := Subgroup( C, [(1,3)(2,4)] );

Group([ (1,3)(2,4) ])
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gap> IsColorGroup( U );

true

gap> ColorSubgroup( U );

Group(())

gap> ColorCosetList( U );

[ RightCoset(Group( () ),()), RightCoset(Group( () ),(1,3)(2,4)) ]

gap> List( last, x -> ColorOfElement( U, Representative(x) ) );

[ 1, 3 ]

2.10 Colored AffineCrystGroups

If C is a coloredAffineCrystGroupwhoseColorSubgroup is lattice-equal (translationengleich) withC, thePoint-
Group of C can consistently be colored. In that case,

1 ◮ PointGroup( C ) A

returns a colored point group. Otherwise, thePointGroup of C is an ordinary, uncolored group.

gap> S := SpaceGroupIT( 2, 10 );

SpaceGroupOnRightIT(2,10,’1’)

gap> m := MaximalSubgroupClassReps( S, rec( primes := [2] ) );

[ <matrix group with 4 generators>, <matrix group with 3 generators>,

<matrix group with 4 generators> ]

gap> List( last, x -> TranslationBasis(x) = TranslationBasis(S) );

[ false, true, false ]

gap> C := ColorGroup( S, m[1] );; IsColorGroup( PointGroup( C ) );

false

gap> C := ColorGroup( S, m[2] );; IsColorGroup( PointGroup( C ) );

true

Two colorings of aspace groupSareequivalent if the two ColorSubgroups are conjugate in the affine normalizer
of S. For instance, a list of inequivalent index-2ColorSubgroups of Scan be obtained with the following code:

gap> sub := MaximalSubgroupClassReps( S, rec( primes := [2] ) );

[ <matrix group with 4 generators>, <matrix group with 3 generators>,

<matrix group with 4 generators> ]

gap> sub := Filtered( sub, s -> IndexInParent( s ) = 2 );

[ <matrix group with 4 generators>, <matrix group with 3 generators>,

<matrix group with 4 generators> ]

gap> sub := AffineInequivalentSubgroups( S, sub );

[ <matrix group of size infinity with 4 generators>,

<matrix group of size infinity with 3 generators> ]

Note thatAffineInequivalentSubgroups requires theGAP packageCARAT to be installed. Otherwise, this func-
tion is supported only forAffineCrystGroups constructed from the crystallographic groups catalog.
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2.11 International Tables

For the user’s convenience, a table with the 17 plane groups and the 230 space groups is included inCryst. These
groups are given in exactly the same settings (i.e., choicesof basis and origin) as in the International Tables. Space
groups with a centered lattice are therefore given in the non-primitive basis crystallographers are used to. This is in
contrast to the crystallographic groups catalogue, where always a primitive basis is used.

For some of the 3D space groups, two different settings are available. The possible settings are labelled with the
characters’1’, ’2’,’b’,’c’,’h’ and’r’. If only one setting is available, it is labelled’1’. For some space groups
there exists a point with higher symmetry than the origin of the’1’ setting. In such cases, a second setting’2’ is
available, which has this high symmetry point as origin. This second setting’2’ then is the default setting. Space
groups which have a unique axis can have this axis inb direction (setting’b’) or c direction (setting’c’). ’b’ is the
default setting. Rhombohedral space groups are given in a hexagonal basis (setting’h’) and in a rhombohedral basis
(setting’r’). ’h’ is the default setting.

1 ◮ SpaceGroupSettingsIT( dim, nr ) F

returns a string, whose characters label the available settings of the space group with numbernr and dimensiondim.

2 ◮ SpaceGroupOnRightIT( dim, nr ) F
◮ SpaceGroupOnRightIT( dim, nr, setting ) F

returns space group numbernr in dimensiondim in the representation acting on the right. In the third argument, the
desired setting can be specified. Otherwise, the space groupis returned in the default setting for that space group.

3 ◮ SpaceGroupOnLeftIT( dim, nr ) F
◮ SpaceGroupOnLeftIT( dim, nr, setting ) F

returns space group numbernr in dimensiondim in the representation acting on the left. In the third argument, the
desired setting can be specified. Otherwise, the space groupis returned in the default setting for that space group.

4 ◮ SpaceGroupIT( dim, nr ) F
◮ SpaceGroupIT( dim, nr, setting ) F

returns eitherSpaceGroupOnRightIT or SpaceGroupOnLeftIT with the same arguments, depending on the value
of CrystGroupDefaultAction.

gap> SpaceGroupSettingsIT( 3, 146 );

"hr"

gap> SpaceGroupOnRightIT( 3, 146 );

SpaceGroupOnRightIT(3,146,’h’)

gap> SpaceGroupOnRightIT( 3, 146, ’r’ );

SpaceGroupOnRightIT(3,146,’r’)
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