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Cluster model of decagonal tilings
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A relaxed version of Gummelt's covering rules for the aperiodic decagon is considered, which produces
certain random-tiling-type structures. These structures are precisely characterized, along with their relation-
ships to various other random-tiling ensembles. The relaxed covering rule has a natural realization in terms of
a vertex cluster in the Penrose pentagon tiling. Using Monte Carlo simulations, it is shown that the structures
obtained by maximizing the density of this cluster are the same as those produced by the corresponding
covering rules. The entropy density of the covering ensemble is determined using the entropic sampling
algorithm. If the model is extended by an additional coupling between neighboring clusters, perfectly ordered
structures are obtained, such as those produced by Gummelt's perfect covering rules.
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I. INTRODUCTION duced by entropy maximization, as is the case for other ran-
dom tilings*?

Many quasicrystals are completely covered by overlap- In this paper, we will concentrate on cluster models for
ping copies of a single clusteFig. 1). Two overlapping decagonal structures. Gummelt's aperiodic decAgono-
clusters must agree in the overlap region, which restricts th¥ides a striking example how perfect quasiperiodic order can
possible relative positions and orientations of neighboring?€ obtained by a simple cluster covering principle. This ex-
clusters. Cluster overlaps therefore create order, in favorab@Mple has been so convincing that many researchers tried to
cases even perfect quasiperiodic order. map their experlme_ntal structures to the Gummelt decagon,

This observation can be used to formulate several varianfgV€n though the fit in the overlap was often not perfsee,

of an ordering principle for quasicrystaffor a review, see €., Refs. _11 and }3and the overlapping constraints not
Ref. 3: A perfect quasicrystal can be obtained by requiringexacuy equivalent. However, many experimental decagonal

either that a given cluster completely covers the structure, Oguasmrystal structures are not _perfectly quasiperiodic, an_d It
Is therefore interesting to consider also overlap rules which

that the cluster has maximal density in the structure, or that i re less restrictive than the perfect rules of Gummelt, and

covers the structure with maximal density. With such order- .1 4o not enforce perfectly ordered, but ratteipertil
ing principles, perfect quasiperiodic order could be obtaine andom-tiling structures ’

5 ” , _
for decagonat® octagonaf, and dodecagonaliilings and " ype analysis of such relaxed overlap rules and their cor-
quasicrystals. Assuming that such a cluster is an energeipsponding structures will be the main topic of this pafer.
cally preferred atomic configuration, the maximization of the| gec. 11, two different relaxed versions of Gummelt's over-

cluster density minimizes the free energy. With this hypoth-jap rules are discussed, and the structures which they pro-
esis, the covering approach might serve as a simple thermo-

dynamic mechanism for the formation of quasicrystals. The
covering approach can be regarded as a particularly simple
realization of energy based matching rules, where only the
most important local configuratior{the clustershave to be
preferred energeticalf/not all allowed local configurations.
As a variant, it has also been suggeStedpenalize the worst
local configurations, instead of preferring the best ones,
which provides another way to simplify the matching rule
approach.

The same ordering principles can also be used to produce
supertile random-tiling structures, which are locally ordered
but show disorder on larger scales. These structures are ob-
tained whenever the chosen cluster is not selective enough
and hence allows too many different overldfis happens,
in particular, if the cluster is too small to restrict the number
of different overlapg? or if it is too symmetric. In this re-
spect, it is interesting to note thasymmetricclusters seem FIG. 1. High-resolution transmission electron microscopy image
to be preferred by the electronic structure in decagonabf decagonal Al-Ni-Cdcourtesy of Ritsch and Beeli, compare Ref.
quasicrystals! Whereas supertile random tilings are locally 1). The superimposed tiling has been reconstructed by an automated
ordered for energetic reasons, their long-range order is prgrocedurgRef. 2.
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FIG. 2. Gummelt decagofa), representative A and B overlap
(b), and allowed overlap zon€s).

FIG. 3. Perfect PPT, superimposed on the corresponding Gum-

melt decagon covering.
duce are precisely characterized, along with their relation-

ships to various other random-tiling ensembles.overlaps with neighboring decagons in four possible direc-
Subsequently, in Sec. lll we introduce a vertex cluster in theions and bigger B overlaps with neighboring decagons in
Penrose pentagon tilin@PPT) whose structure imposes the two possible directionfFig. 2(c)]. The coloring in the over-
previously discussed overlap constraints in a natural way. llap region has an orientation, which must be respected. All
is shown by Monte CarldMC) simulations that the struc- possible overlaps are therefoogiented As a relaxation of
tures with maximal density of this cluster are the same ashe perfect rule, Gummett al'>® have proposed to aban-
those produced by the corresponding overlap rules. In Sedlon this orientation constraint, and to retain only toaori-
IV, we determine the entropy density of the set of states wittented overlap zoneas shown in Fig. @). This overlap rule
maximal cluster density, using the entropic sampling algowill be referred to as the fully relaxed rule.
rithm. An additional coupling between neighboring clusters There is a natural intermediate rule between the perfect
is introduced in Sec. V, and it is shown that this coupling isand the fully relaxed rule. In this variant, which will be
capable of ordering the random-tilings to perfectly orderedcalled therelaxed rule the orientation condition is aban-
structures. doned only for the small A overlaps, but is retained for the
larger B overlaps. This kind of overlap rule can be motivated
Il COVERINGS FOR PERFECT AND RANDOM PENROSE _physicajly as follows: The large B ovgrlaps result in gstrong
PENTAGON TILINGS interaction between the two overlapping clusters, which must
be in its ground state, whereas the small A overlaps only lead

It is well known that each covering of the plane by Gum-to a weak interaction with a small energy difference between
melt's aperiodic decagdirig. 2(@)] is equivalent to a perfect differently oriented A overlaps. This intermediate rule and
Penrose tilind’ if the covering has the following property: the resulting structures will be the main topic of this paper.
Whenever two decagons overlap, their colorings agree in the Gummeltet al>® have shown that each covering satis-
entire overlap region. It turns out that Gummelt's rule per-fying the fully relaxed rule has the property that its cluster
mits only two different types of overlaps, which are shown incenters form the vertex set of a random PPT. It has the ad-
Fig. 2(b): the smaller A and the larger B overlaps. Further-ditional property that all the spiky tilegstars, ships, and
more, due to the coloring, there are only certain overlagrhombi; shaded in gray in Fig.)4re completely surrounded
zones for allowed overlaps with neighboring decagons: fouby pentagons(in the following, when we use the term “ran-
for A and two for B overlapgFig. 2(c)]. This altogether is dom PPT,” we always mean one satisfying this extra condi-
what we will call theperfect rule(in order to distinguish it tion; more general ones do not play any role heBach a
from other variants being discussed later random PPT is equivalent to a random hexagon-boat-star

The decagon centers of suctparfect coveringorm the  (HBS) tiling (gray lines in Fig. 4 Since coverings satisfying
vertex set of goerfect PPT(Fig. 3). Conversely, each PPT the more restrictive relaxed rule also satisfy the fully relaxed
can be obtained from exactly one covering satisfying therule, their cluster centers form the vertex set of a random
Gummelt overlap rules. We therefore have a local one-to-on®PT, too. Conversely, it is easy to see that every random PPT
correspondence between PPT's and Gummelt coverings. Asan arise both from relaxed and from fully relaxed coverings.
the Gummelt decagon represents a cluster in the correspontihe only difference between relaxed and fully relaxed cov-
ing quasicrystal, we will often use the term cluster for theerings is the number of coverings associated with a given
covering decagon. random PPT.

In order to allow for partially disordered coverings, Gum-  To see this, we note that the orientation of a cluster on a
melt et al>® have proposed to relax the overlap rules tovertex in a PPT is completely fixed by the presence of four A
some extent. To understand the type of relaxation, recall thaieighbors or two B neighbolsigs. 5 and 6)-6(d)], as in
if the perfect rules are obeyed, a decagon may have small these cases the four A- or the two B-overlap zones, respec-
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FIG. 5. The orientation of a decagon on a vertex in a PPT is
fixed in the case of four A or two B neighbofteft). The only
vertices with a choice for the decagon orientation are the obtuse

FIG. 4. Random PPT with all the spiky tiléshaded in gray ~ rhombus corners, which have three A neighbors and one B neighbor
surrounded by pentagons. This tiling is equivalent to a random HBSright).
tiling (gray lineg, whose tile edges connect the centers of neigh-
boring pentagons. are the obtuse corners of the rhombi, which have three A

neighbors and one B neighbf¥igs. 5 and €&)]. Therefore,
tively, are completely saturated. A neighbors are separated byvo cluster orientations are possible for each obtuse rhombus
an edge of a tile or a long diagonal across a ship or stacorner. For the fully relaxed rule, where no orientation con-
whereas B neighbors are separated by a short diagonal ofditions for the overlaps have to be obeyed, we thus have
rhombus, ship, or star. The only vertices whose cluster orialtogether four choices per rhombus for the cluster orienta-
entation is not fixed by their local environment in the tiling tions.

FIG. 6. Orientation of a decagon on a vertex
in the PPT, depending on the local environment.
The orientations are given by an arrow, as defined
in the upper right corner.
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rules for “double” arrows(drawn in black in Fig. . Such
random Penrose rhombus tilings are also called four-level
random-tilings>'” When the edges with a double arrow are
simply wiped out, we obtain the random HBS tilings, which
are also known as two-level tilingé.The relationship be-

TN
’ "‘!""‘\.""\&' tween four-level and tW(_)-!e_veI random-tilings is not one to
LAYy EErsEmiSaE

evezyse! e 2y B N et
;\04 2580

ha " \ "“’ discussed abovfFig. 6(e)]. Since rhombi in the PPT and
.‘ .~ ‘."~. ‘!.’ hexagons in the HBS tiling are in one-to-one correspondence
X A' Y ‘." P~ " ” coverings and four-level random tilings, related to a given
’ :‘\> "‘ - P random PPT, is the same. Apart from the extra multiplicities,
"‘ ' rose double-arrow matching rulégnoring single arrows
‘ - ‘ whereas the Gummelt covering rule is equivalent to the full
V vV <> Penrose matching rules.
Ill. CLUSTER DENSITY MAXIMIZATION

v

‘ (Fig. 4), this implies that the multiplicity of relaxed cluster
~ .’i‘ {’." the relaxed covering rule is therefore equivalent to the Pen-

FIG. 7. Relationship between four-levéhin black lines and
two-level random-tilinggthick gray lines. The matching rules for In the preceding section, we have considecktster cov-
the “double” arrows (here drawn in blackare still obeyed. Since €rings where our clusters have simply been decagons with
the matching rules for the “single” arrowghere drawn in white  certain overlap rules. Another variant of an ordering prin-
are no longer maintained, each hexagon of the two-level or randoraiple for quasicrystals based on a cluster picture iscthster
HBS tiling can be subdivided in two different ways, as shown in thedensity maximizatiair>® which we will consider in the fol-
bottom right corner. lowing.

The relaxed overlap rule discussed above allows for a

However, for the relaxed overlap rule we have to obey thevery natural realization in terms of eertex clusterin the
orientation condition for the B overlaps. It is easily shown PPT. This vertex cluster is shown in Fig. 8. We have to point
that this condition is always satisfied for B overlaps acrosout that the tile edges are drawn only as a guide to the eye;
ships and stars. In order to fulfill the orientation condition forthey are not part of the cluster, only the vertex set counts. It
B overlaps across rhombi, too, the orientations of the clusteris easy to see that the vertex set of the cluster cannot enforce
on opposite obtuse rhombus corners cannot be chosen indise orientation of the small A overlaps of the Gummelt deca-
pendently. If for one of the corners an orientation is chosengon, whereas the orientation of the B overlaps is intrinsically
the orientation of the other is already fixed, i.e., the conditionenforced. The A overlap consists of a rhombus or a rhombic
is satisfied only for two of the four possible combinationsarea inside a ship or star without orientation, and the B over-
mentioned above. lap is formed essentially of a hexagon-shaped area with an

In the same way, one can quantify the relationship beinterior vertex in asymmetric position which yields an orien-
tween the cluster coverings and certain variants of randortation (Fig. 8).
Penrose rhombus tilings. The random HBS tilings arise from With this cluster, we can build a statistical model for the
random Penrose rhombus tilings still satisfying the matchingluster density maximization. We consider the set of all ran-

FIG. 8. Vertex cluster, superimposed on the
Gummelt decagoftop left), and representative A
and B overlapgtop middle and right This clus-
ter enforces the relaxed overlap rules. The bottom
row shows examples of tile configurations for the
vertex cluster.
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FIG. 9. Flip moves for the MC simulation. The fliga—9 are
allowed, whereas movél) is forbidden since it would produce a
new kind of tile (the zigzag-shaped configuration at the bottom

dom PPT's(we still require that spiky tiles are completely
surrounded by pentagonand assign to each tiling a statis-
tical weight which is simply the number of vertex clusters it
c_ontalns. With a suitable MC algorithm, it is the,n p05_3|ble 0 fG 11 Relationship between the flip configurations in the PPT
find _the subensemblg of those. random PPT’s which haV?olack), as shown in Fig. 9, and the corresponding local tile con-
maximal cluster density. For this purpose, we need a MGigrations in the random Penrose rhombus tilifigay), which

dynamics which is ergodic in the ensemble of all randomyere used in Ref. 17. The flip move is explicitly shown in the
PPT's. By repeated flips it is then possible to turn any ranyotiom right corner.

dom PPT into any other.

We have foundsee Sec. IYthat the flip moves shown i_n This is illustrated in Fig. 11. Note that the other type of

st of a h th an interi . hich . Snexagon flip plays no role, because it leaves the HBS tiling,
foqs'f ora .exago’l:\Tvr\gll an interior ver egV\; Ic (r:1an IUMP3nd thus the PPT invariant. As it is known that hexagon flips
0 IS “mirrorimage. - 1niS move corresponas 1o a change in .o ergodic for the four-level Penrose tiling, this correspon-

the orient.ation of the hexagon by 180°. The vert?ces of _th%ence adds further confidence that the PPT flips are indeed
hexagon itself are not affected, but the adjacent tile Conf'guérgodic t0o

rations are changed depending on the local environment. In With this MC scheme, the states of maximal cluster den-

Fig. 9@), e.g., the adjacent ship and rhombus are exchangegity can be determined by simulated annealing, using as en-

or in Fig. 9b), a star and a rhombus are transformed into tWoergy the negative of the number of clusters, thus mimicking

ships, etc. These flips preserve the property that the spiky,eyoia| cohesion energy of the clusters. Then the energetic

Ellgs are _always snﬂrrounded by pentagons. There are .Sonb‘?ound state, reached at low temperatures, is the ensemble of
flip configurations” where the local environment prohibits

9(d), where the flip would introduce a new kind of tilsee The basic MC move is as followsi) Choose a vertex ran-

also Ref. 18 In all our simulations, such flips were forbid- 4o iy 1f it can be flipped, calculate the energy change
den. For the sake of completeness, it is explicitly shown in, £ (which is the negative of the change in the number of
Fig. 10 how a new cluster can be created by a single flip. clusters and flip it with probability

The flips used for the PPT are in direct correspondence

with hexagon flips in the associated four-level Penrose tiling.
e PAE for AE>0

1 otherwise.

p= ()

This algorithm fulfills the condition of detailed balance.

It turns out that the states of maximal cluster density are
supertile random PPTswhose tiles have an edge length
times that of the small tile§where r=(1+5)/2 is the
golden numbgr An example of such a supertiling is shown

FIG. 10. Creation of a new cluster by a single flip, which lowers in Fig. 12. It cannot be a perfect tiling, since it is still pos-
the total energy. sible to move clusters in the ground state without changing
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FIG. 13. In the supertile random PPT, each rhombus is counted
twice because of the two possible cluster orientations on the obtuse
corners(left). This is in one-to-one correspondence with the hexa-
gons in the four-level random-tilingight).
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. . A . .. . state, i.e., the state of maximal cluster density, consists of
.,4.”(.,4.“.,‘.‘.\.,4.} supertile random PPT’'s with an extra weight of two per
. \/ .. . \/ . . \/ rhombus, because for each rhombus there are two choices of

a cluster configuration with the same number of clusters, as

FIG. 12. Structure with maximal cluster density. The clustershown in Fig. 13see also Fig. @)]. At infinite temperature,

centers form the vertices of a supertile random Ry lines. on the other hand, we have the full random RRfTthe level

of the small tile$, where each rhombus is counted only once.
their number. This is due to the fact that the relaxed rule and With the entropic sampling algorith?1;?° we can deter-
hence our vertex cluster does not enforce the orientation ohine the entropy of the system as a function of energy. In
the A overlaps. this method, the Boltzmann probability #E of the Me-

In view of the results of the preceding section, this is oftropolis algorithm is replaced by the facter ¥, where
course not too surprising. The cluster centers sit on the velS(E) is the microcanonical entropy function. Since this fac-
tices of the supertiling, covering all vertices of the smalltor is just the inverse of the numbe(E) of states with
tiles. Since the vertex cluster is smaller than the GummelenergyE, according to
decagon, it does not cover the whole area, but only the ver-

tices; there remain small pentagons uncovered, which sit at S(E)=Ing(E) 2

the center of the supertile pentagons. This does not affect the

overlap constraints, however. (in units ofkg), we obtain a uniform energy distribution
Our results therefore imply that there is a one-to-one cor-

respondence betweaecagon coverings satisfying the re- P(E)xg(E)e B =1, 3

laxed ruleand structures wittmaximal density of the vertex

cluster (Figs. 3 and 12, respectivelyAlthough these two \which corresponds to a random walk through the energy
ordering principles are very similar, they are conceptuallyspace of the system.
slightly different and have to be distinguished. However, the exact entropy functi@{E) is not knowna
Supertile random-tiling ensembles as a result of clustepriori, hence it has to be determined iteratively, starting with
maximization were found already in Ref. 8. Maximizing star 5 rough estimate &(E). This estimate can be obtained by a
decagon clusters in a rhombus tiling leads to an ensemble @t run using as “entropy functior8(E)=0, which yields
HBS-type supertile tiling8® That ensemble contains also a4, estimate for the degeneragfE) of the different energies
other structures, however, which is not the case for our clusyq thys, via Eq(2), an estimate for the real entropy func-
ter. In particular, it should be noted that if the tile stoichiom-{jon - Another possibility to get a good estimate is to take

etry of the pentagons and spiky tiles admits a HBS supertilgqyantage of the extensive nature of entropy by scaling the
tiling, then the state of maximal cluster density is always Bentropy function of a smaller system to a larger one.

HBS supertile tiling. A phase separation as discussed in Ref. Subsequently, the entropy function is optimized by an it-

9 is not possible. The only files that could be separated argrative procedure. Analogous to the Metropolis algorithm,
the thin rhombi, but if there are enough pentagons, it is alyye choose for the flip probabilities

ways advantageous to surround the rhombi with pentagons.
The ensemble obtained by maximizing our vertex cluster is
therefore a strict subensemble of the one obtained by maxi-
mizing the star decagon in random rhombus tiliRgs.

e 25 for AS>0

1 otherwise,

p= 4

whereAS=S(E+AE)—S(E) is the change in entropy due
V. ENTROPY DENSITY to the considered MC mowevith energy chang@dE). This
With our cluster model, it is also possible to measure thechoice ofp likewise fulfills the condition of detailed balance.
entropy density of the ensemble of structures with maximallhe iteration scheme is then as follows.
cluster density and thus the entropy density of tbkexed (i) Run a MC simulation based on E() in order to
cluster covering ensemblin the preceding section, we have obtain an energy histograf(E).
introduced an energy model which assigns a cohesion energy (i) Use the measured histogram to correct the entropy
to each cluster in the structure. In this model, the groundunction according to the update rule
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FIG. 14. Representative example of the microcanonical entropy UN

as a function of the energy of the system.
FIG. 15. Finite-size scaling of the entropy density of the relaxed

S(E)+INH(E) for H(E)#0 clustt_ar co_verings, wheﬂd_i§ the number of vertices;;l;ne appligd fit
S(E)«— ) function is of the (empirica) form o(N)=a+be “". In this
S(E) for H(E)=0. graph, the line Ifo(N)—a]=In b—c/N is shown. The error bars are

smaller than the plot symbols.

(iii) Continue at(i) until the energy histogram is suffi-
ciently uniform. scale where the supertile edgeshich separate A-overlap

An example of such an entropy function is shown in Fig.neighbors in the cluster moddiave unit length, we obtain a
14. As this method does not yield absolute entropy valuesyalue of
we can only measure entropy differences, in particular, the
difference S between the ground state and the infinite- 70/kg=0.253-0.001 ®)
temperature staté.e., the maximum of the entropy func- for the entropy density of the relaxed coveringis can be
tion). The entropies at zeroSf) and infinite temperature compared with the value which Tang and Jdrawve obtained
(S.) are both entropies of random PPT'’s, once with a two-by Metropolis-type MC simulations for the entropy density
fold degeneracy for each rhomb(Big. 13 and once with- of the four-level random-tiling’ In Sec. Il, we have seen
out. To compare these two entropy values, the latter one hakat four-level random-tilings are in one-to-one correspon-
to be corrected by adding an extra double counting of thelence with relaxed cluster coveringee also Fig. 13 If the
rhombi, which yields for each rhombus a factor of 2 in thedifferent length scales of the two tilings are taken into ac-
degeneracy.. or an additive contribution of In2 in the en- count by a simple geometric conversion, the value of Tang
tropy S.., respectively. Moreover, the two random-tilings are and Jaricturns into
at different length scales, since the supertile edgesrare
times larger than the small tile edges, which has to be taken oo/kg=0.255£0.001, 9
into account due to the extensive nature of entropy. Ther
fore, we have the following relation between the two entrop
densitiesoy and o, :

;‘Which is compatible with our result.

V. COUPLING BETWEEN CLUSTERS

oo=0.+puin2, (6) The only difference between thgerfectand therelaxed
overlap rule is that the latter doemt require oriented A
where py, is the measured rhombus density in the infinite-gyerlaps(whereas the orientation of the B overlaps has to be
temperature state. If we write,,= oo+ o, we end up with obeyed. Since not all relaxed coverings are perfect, there
an equation for the ground-state entropy density in  must be A overlaps which doot obey the orientation con-
which all other quantities can be measured: dition of the perfect rule. A closer analysis shdw¥ that
there is actually only one kind of disoriented A overlap. All A
. overlaps which can occur in relaxed coverings or supertile
- (o+ppin2). (7  random PPT’s, respectively, are shown in Fig. 16. For the
=1 disoriented A overlap not permitted by the perfect riitey.
16(d)], the two clusters have antiparallel orientations.

The ground-state entropy density has been determined in To order the(supertile random-tiling structures to perfect
this way for several periodic approximants. By finite-sizetilings, we introduce a coupling between neighboring clus-
scaling, the values can then be extrapolated to infinite systemers in such a way that overlaps which are not permitted by
size. For this purpose, the entropy density, as a function athe perfect rule are energetically penalized. We expect such a
system size\, is fitted to a function of théempirica) form  coupling to be weak, because these kinds of defects can be
a-+be N which proves to work very wellFig. 15. At a  detected only at larger scales. However, at low temperatures

Oo=
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(b)

rows. The forbidden A overlaps, corresponding to tile edges with
antiparallel arrows at their ends, are marked.

simulations. For this purpose, we consider only the suben-

semble of states with maximal cluster density. In other

words, we run our simulations at the level of the supertiling.

If we represent a cluster in the supertile PPT by its center and

its orientation(given by an arroy, we can describe the cov-

ering in a much more compact way, as shown in Fig. 17.

FIG. 16. Possible A overlaps in supertile random PPT's or re-Such a setup keeps the number of clusters constant, so that

laxed coverings(a—0 obey the perfect rule. Onlyd) is a disori-  we cannot leave the states of maximal cluster density, which
ented overlap. simplifies the simulation considerably.

As flip moves we can still use those of Fig. 9, except that
this coupling might still be able to order the supertile we now have to adjust the cluster orientations of several
random-tiling ground state of the relaxed cluster covering tovertices in the flip configuration. We have to do this in a way
a perfectly quasiperiodic structure. consistent with the vertex configuration in the underlying

This suggests a scenario with two energy or temperaturgling, which actually determines the cluster orientations
scales. The presence of each vertex cluster lowers the coh@=ig. 18. The first type of flip consists of two simultaneous
sion energy by a large amount, so that structures with maxiflips in the underlying tiling. We have to point out that for a
mal cluster density are strongly favored, even at relativelyhexagon-type flip configuration such as the one in Fig. 18
high temperatures. The equilibrium structures at these tenbottom lef) the cluster orientations on the obtuse corners of
peratures are therefore relaxed cluster coverings. Additionthe adjacent rhombus have to be as shown. Otherwise, the
ally, there is a small coupling between neighboring clustersflip is not allowed, since then the cluster orientations would
which can order the supertile random-tiling to a perfect tilingbe inconsistent with the ship-shaped vertex configuration af-
at low temperatures. ter the flip.

We have verified the feasibility of this approach by MC  Additionally, we have to introduce a new type of flip

(a) @ @@
@ @ \
© (d)
FIG. 17. Supertiling with cluster orientations indicated by ar-

same as the one used before. Additionally, we
also have the rhombus flipight) which does not
change the vertex structure of the supertiling. For
both flip types, the cluster orientations have to be
adjusted consistently with the underlying struc-
ture.

FIG. 18. Basic flips in the underlying tiling
(top) and effective moves on the level of the su-
pertiling (bottom). The hexagon fligleft) is the
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\ §¢5 /_D\ASE )ZA/ > A A
AE =+1 AE =+1
AE =0 AE =0

which only changes the cluster orientations on the obtus¢he cluster covering principle and the principle of cluster
corners of a rhombus, but keeps the tiling itself fixed. Such alensity maximization. A relaxed version of the covering
move corresponds to a single flip in the underlying tiling. Inrules for Gummelt’s aperiodic decagon has been considered,
comparison with the flip moves in a Penrose rhombuswhich produces as ground state a supertile random PPT. It
tiling,*>" the hexagon flip corresponds @-type and the has been shown that this relaxed overlap rule has a very
rhombus flip toQ-type configurationé! natural realization in terms of a vertex cluster in the PPT.
This MC dynamics can change the number of defects, as The feasibility of our model has been tested by MC simu-
demonstrated in Fig. 19. Again, we have used a Metropoliskations. In particular, we have verified that the relaxed cluster
type MC schemé’!® now with the number of defects as coverings coincide with the states of maximal cluster density.
energy. We have seen in our simulations that the coupling ofhe entropy density measured in the random covering en-
the clusters, which penalizes the defects, is indeed capable sémble is found to agree with the entropy density obtained
ordering the random-tilings to perfectly quasiperiodic struc-by Tang and Jaritor the equivalent random four-level tiling.
tures. In other words, the ground state, reached by simulatedoreover, we have shown that a coupling between neighbor-
annealing, is a perfect PPT, whereas the high-temperatuiag clusters can order the random-tiling-type ground states to
state is a supertile random tiling or relaxed cluster coveringa perfectly quasiperiodic structure.
In this respect, “high” temperature means high compared to Models of this kind can be very suitable for the explana-
the cluster coupling, but still low compared to the energytion of experimentally observed decagonal quasicrystals, as
required to break up clusters. the latter are often not perfectly quasiperiodic, but more of a
We have to mention that the ground state is not always @andom-tiling naturé® Random PPT’s, and the closely re-
perfect PPT. Perfectness is determined by lifting the verticetated HBS tilings, are often observed in high-resolution elec-
to hyperspace; if the projections of the vertices onto the pertron microscopy image€Fig. 1, compare Figs. 3 and 122
pendicular space are all inside the acceptance region, the The most striking resemblance, however, is with a three-
tiling is perfect, otherwise it is not. Since we use periodicdimensional atomic cluster found by Roth and Heftégy a
approximants of PPT’s in our simulations, the minimal num-
ber of defects is always larger than z&fdhese defects can ® ®
be shifted without changing the energy. In this process, a PN R
vertex can leave the acceptance region in the perpendicule
space. Thus, the tilings with minimal number of defects are
not necessarily perfect. . , 3
With the model of coupled clusters, it is also possible to il n Lo
measure the entropy density of the relaxed covering en- . ;
semble. In this case, the ground state is ordered and has ze@\ o
entropy(at least in the thermodynamic limitand the high-
temperature state is the one whose entropy we are intereste
in. We therefore only need to measure the difference betweel
the entropies of the high-temperature state and the groun:
state, and extrapolate these values to infinite system size. |
turns out, however, that the finite-size scaling for this model . -
does not work as well as for the model with a supertile A 5
random-tiling in the ground state as considered in Sec. IV.
The results are therefore less precise, but nevertheless coi.

sistent. FIG. 20. Atomic cluster found by Roth and Henl@yef. 23 in
a molecular-dynamics simulation. White atoms are-a0, black
VI. DISCUSSION AND CONCLUSION atoms az= %, and dotted atoms at= %,% (in units of the period in
z-direction. The area of our vertex cluster is shaded in gray. At the
In this paper, we have discussed different ordering princenter of a stafmarked with a box we would have expected a
ciples for quasicrystals based on the cluster picture, namelyifferent atomic configuratioisee text

FIG. 19. Creation(top) and shift of defects
(bottom) by single flips of the two types: hexagon
flip (left) and rhombus fligright).
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molecular-dynamics simulation of binary decagonal Frankmagnitude of these jumps is sméibout 1 A) compared to
Kasper-type quasicrystald=ig. 20, whose lateral overlap the scale of the clustefsbout 20 A).
constraints are almost the same as those of our two- All our simulations have been in two dimensions. It is
dimensional vertex cluster. The only discrepancy is at thevell known that, for finite-range interactions, quasicrystal
center of a star, where for full equivalence we would havestructures in two dimensions cannot be stable at any positive
expected a single atom at=0 in the Roth-Henley cluster, temperaturé® At nonzero temperatures, they are always in a
not two atoms az=7%,3. random-tiling state, the “phase transition” from the ordered
The vertex set of our cluster can be realized by several tilphase to the random-tiling state being at zero temperature.
configurations in the PPTFig. 8). This might possibly be However, in three dimensions the critical temperature is ex-
related to the results of an Al-Co-Ni structure analysis bypected to be positive. For this purpose, one can consider as
Cervellino, Haibach, and SteurérThey observed that there three-dimensional system a stacking of our two-dimensional
is a perfectly quasiperiodic long-range order of the centers ofodels with a suitable coupling between neighboring layers.
atomic clusters, but the interior structure of the clusterssuch layeredtiling models have already been studied by
themselves is disordered. This means that the local atomieong and Steinharéft,but are possible also in theluster
interactions cannot enforce local order, but there exists @overingsetting. As expected for three-dimensional systems,
long-range order. The proposed mechanism for long-rangghe phase transition from ordered to random-tiling-type
ordering is the electronic long-range term of free electronsstructures is at finite temperature. The results of these studies

These long-wavelength electrons “see” only a simpler,will be presented in a separate paf]er.
“smeared out” version of the complex cluster structure.

As we have seen in Sec. V, the shift of a flipping cluster
center is large, whereas the corresponding two vertex moves
in the underlying tiling are smal(Fig. 18. In the atomic We would like to thank Petra Gummelt for useful discus-
simulations of Al-Co-Ni done by Honal and Welbeffythe  sions on the relationships between the different relaxed cov-
flip of a cluster corresponds to jumps of only four atoms. Theerings and random-tiling ensembles.
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