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Cluster model of decagonal tilings
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A relaxed version of Gummelt’s covering rules for the aperiodic decagon is considered, which produces
certain random-tiling-type structures. These structures are precisely characterized, along with their relation-
ships to various other random-tiling ensembles. The relaxed covering rule has a natural realization in terms of
a vertex cluster in the Penrose pentagon tiling. Using Monte Carlo simulations, it is shown that the structures
obtained by maximizing the density of this cluster are the same as those produced by the corresponding
covering rules. The entropy density of the covering ensemble is determined using the entropic sampling
algorithm. If the model is extended by an additional coupling between neighboring clusters, perfectly ordered
structures are obtained, such as those produced by Gummelt’s perfect covering rules.
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I. INTRODUCTION

Many quasicrystals are completely covered by overl
ping copies of a single cluster~Fig. 1!. Two overlapping
clusters must agree in the overlap region, which restricts
possible relative positions and orientations of neighbor
clusters. Cluster overlaps therefore create order, in favor
cases even perfect quasiperiodic order.

This observation can be used to formulate several vari
of an ordering principle for quasicrystals~for a review, see
Ref. 3!: A perfect quasicrystal can be obtained by requiri
either that a given cluster completely covers the structure
that the cluster has maximal density in the structure, or th
covers the structure with maximal density. With such ord
ing principles, perfect quasiperiodic order could be obtain
for decagonal,4,5 octagonal,6 and dodecagonal7 tilings and
quasicrystals. Assuming that such a cluster is an energ
cally preferred atomic configuration, the maximization of t
cluster density minimizes the free energy. With this hypo
esis, the covering approach might serve as a simple ther
dynamic mechanism for the formation of quasicrystals. T
covering approach can be regarded as a particularly sim
realization of energy based matching rules, where only
most important local configurations~the clusters! have to be
preferred energetically,8 not all allowed local configurations
As a variant, it has also been suggested9 to penalize the wors
local configurations, instead of preferring the best on
which provides another way to simplify the matching ru
approach.

The same ordering principles can also be used to prod
supertile random-tiling structures, which are locally order
but show disorder on larger scales. These structures are
tained whenever the chosen cluster is not selective eno
and hence allows too many different overlaps.3 This happens,
in particular, if the cluster is too small to restrict the numb
of different overlaps,10 or if it is too symmetric. In this re-
spect, it is interesting to note thatasymmetricclusters seem
to be preferred by the electronic structure in decago
quasicrystals.11 Whereas supertile random tilings are loca
ordered for energetic reasons, their long-range order is
0163-1829/2003/68~21!/214202~10!/$20.00 68 2142
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duced by entropy maximization, as is the case for other r
dom tilings.12

In this paper, we will concentrate on cluster models
decagonal structures. Gummelt’s aperiodic decagon4 pro-
vides a striking example how perfect quasiperiodic order
be obtained by a simple cluster covering principle. This e
ample has been so convincing that many researchers trie
map their experimental structures to the Gummelt decag
even though the fit in the overlap was often not perfect~see,
e.g., Refs. 11 and 13!, and the overlapping constraints n
exactly equivalent. However, many experimental decago
quasicrystal structures are not perfectly quasiperiodic, an
is therefore interesting to consider also overlap rules wh
are less restrictive than the perfect rules of Gummelt, a
which do not enforce perfectly ordered, but rather~supertile!
random-tiling structures.

The analysis of such relaxed overlap rules and their c
responding structures will be the main topic of this pape14

In Sec. II, two different relaxed versions of Gummelt’s ove
lap rules are discussed, and the structures which they

FIG. 1. High-resolution transmission electron microscopy ima
of decagonal Al-Ni-Co~courtesy of Ritsch and Beeli, compare Re
1!. The superimposed tiling has been reconstructed by an autom
procedure~Ref. 2!.
©2003 The American Physical Society02-1
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duce are precisely characterized, along with their relati
ships to various other random-tiling ensemble
Subsequently, in Sec. III we introduce a vertex cluster in
Penrose pentagon tiling~PPT! whose structure imposes th
previously discussed overlap constraints in a natural wa
is shown by Monte Carlo~MC! simulations that the struc
tures with maximal density of this cluster are the same
those produced by the corresponding overlap rules. In S
IV, we determine the entropy density of the set of states w
maximal cluster density, using the entropic sampling al
rithm. An additional coupling between neighboring cluste
is introduced in Sec. V, and it is shown that this coupling
capable of ordering the random-tilings to perfectly orde
structures.

II. COVERINGS FOR PERFECT AND RANDOM PENROSE
PENTAGON TILINGS

It is well known that each covering of the plane by Gum
melt’s aperiodic decagon@Fig. 2~a!# is equivalent to a perfec
Penrose tiling,4 if the covering has the following property
Whenever two decagons overlap, their colorings agree in
entire overlap region. It turns out that Gummelt’s rule p
mits only two different types of overlaps, which are shown
Fig. 2~b!: the smaller A and the larger B overlaps. Furth
more, due to the coloring, there are only certain over
zones for allowed overlaps with neighboring decagons: f
for A and two for B overlaps@Fig. 2~c!#. This altogether is
what we will call theperfect rule~in order to distinguish it
from other variants being discussed later!.

The decagon centers of such aperfect coveringform the
vertex set of aperfect PPT~Fig. 3!. Conversely, each PPT
can be obtained from exactly one covering satisfying
Gummelt overlap rules. We therefore have a local one-to-
correspondence between PPT’s and Gummelt coverings
the Gummelt decagon represents a cluster in the corresp
ing quasicrystal, we will often use the term cluster for t
covering decagon.

In order to allow for partially disordered coverings, Gum
melt et al.15,16 have proposed to relax the overlap rules
some extent. To understand the type of relaxation, recall
if the perfect rules are obeyed, a decagon may have sm

FIG. 2. Gummelt decagon~a!, representative A and B overla
~b!, and allowed overlap zones~c!.
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overlaps with neighboring decagons in four possible dir
tions and bigger B overlaps with neighboring decagons
two possible directions@Fig. 2~c!#. The coloring in the over-
lap region has an orientation, which must be respected.
possible overlaps are thereforeoriented. As a relaxation of
the perfect rule, Gummeltet al.15,16 have proposed to aban
don this orientation constraint, and to retain only thenonori-
ented overlap zones, as shown in Fig. 2~c!. This overlap rule
will be referred to as the fully relaxed rule.

There is a natural intermediate rule between the per
and the fully relaxed rule. In this variant, which will b
called the relaxed rule, the orientation condition is aban
doned only for the small A overlaps, but is retained for t
larger B overlaps. This kind of overlap rule can be motivat
physically as follows: The large B overlaps result in a stro
interaction between the two overlapping clusters, which m
be in its ground state, whereas the small A overlaps only l
to a weak interaction with a small energy difference betwe
differently oriented A overlaps. This intermediate rule a
the resulting structures will be the main topic of this pape

Gummeltet al.15,16 have shown that each covering sat
fying the fully relaxed rule has the property that its clus
centers form the vertex set of a random PPT. It has the
ditional property that all the spiky tiles~stars, ships, and
rhombi; shaded in gray in Fig. 4! are completely surrounde
by pentagons.~In the following, when we use the term ‘‘ran
dom PPT,’’ we always mean one satisfying this extra con
tion; more general ones do not play any role here.! Such a
random PPT is equivalent to a random hexagon-boat-
~HBS! tiling ~gray lines in Fig. 4!. Since coverings satisfying
the more restrictive relaxed rule also satisfy the fully relax
rule, their cluster centers form the vertex set of a rand
PPT, too. Conversely, it is easy to see that every random
can arise both from relaxed and from fully relaxed coverin
The only difference between relaxed and fully relaxed co
erings is the number of coverings associated with a gi
random PPT.

To see this, we note that the orientation of a cluster o
vertex in a PPT is completely fixed by the presence of fou
neighbors or two B neighbors@Figs. 5 and 6~a!–6~d!#, as in
these cases the four A- or the two B-overlap zones, resp

FIG. 3. Perfect PPT, superimposed on the corresponding G
melt decagon covering.
2-2



d
ta
o

or
g

e A

bus
n-

ave
ta-

B
gh

is

tuse
hbor

CLUSTER MODEL OF DECAGONAL TILINGS PHYSICAL REVIEW B68, 214202 ~2003!
tively, are completely saturated. A neighbors are separate
an edge of a tile or a long diagonal across a ship or s
whereas B neighbors are separated by a short diagonal
rhombus, ship, or star. The only vertices whose cluster
entation is not fixed by their local environment in the tilin

FIG. 4. Random PPT with all the spiky tiles~shaded in gray!
surrounded by pentagons. This tiling is equivalent to a random H
tiling ~gray lines!, whose tile edges connect the centers of nei
boring pentagons.
21420
by
r,
f a
i-

are the obtuse corners of the rhombi, which have thre
neighbors and one B neighbor@Figs. 5 and 6~e!#. Therefore,
two cluster orientations are possible for each obtuse rhom
corner. For the fully relaxed rule, where no orientation co
ditions for the overlaps have to be obeyed, we thus h
altogether four choices per rhombus for the cluster orien
tions.

S
-

FIG. 5. The orientation of a decagon on a vertex in a PPT
fixed in the case of four A or two B neighbors~left!. The only
vertices with a choice for the decagon orientation are the ob
rhombus corners, which have three A neighbors and one B neig
~right!.
x
nt.
ed
FIG. 6. Orientation of a decagon on a verte
in the PPT, depending on the local environme
The orientations are given by an arrow, as defin
in the upper right corner.
2-3



th
n

os
o
te
in
en
io
ns

be
o
om
in

vel
re
h

to
ue,

gon
er
, as

nce
r
en
es,
en-

full

ith
in-

r a

int
ye;
. It
orce
ca-
lly
bic
er-
an

n-

e
n-

do
the
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However, for the relaxed overlap rule we have to obey
orientation condition for the B overlaps. It is easily show
that this condition is always satisfied for B overlaps acr
ships and stars. In order to fulfill the orientation condition f
B overlaps across rhombi, too, the orientations of the clus
on opposite obtuse rhombus corners cannot be chosen
pendently. If for one of the corners an orientation is chos
the orientation of the other is already fixed, i.e., the condit
is satisfied only for two of the four possible combinatio
mentioned above.

In the same way, one can quantify the relationship
tween the cluster coverings and certain variants of rand
Penrose rhombus tilings. The random HBS tilings arise fr
random Penrose rhombus tilings still satisfying the match

FIG. 7. Relationship between four-level~thin black lines! and
two-level random-tilings~thick gray lines!. The matching rules for
the ‘‘double’’ arrows~here drawn in black! are still obeyed. Since
the matching rules for the ‘‘single’’ arrows~here drawn in white!
are no longer maintained, each hexagon of the two-level or ran
HBS tiling can be subdivided in two different ways, as shown in
bottom right corner.
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rules for ‘‘double’’ arrows~drawn in black in Fig. 7!. Such
random Penrose rhombus tilings are also called four-le
random-tilings.12,17 When the edges with a double arrow a
simply wiped out, we obtain the random HBS tilings, whic
are also known as two-level tilings.12 The relationship be-
tween four-level and two-level random-tilings is not one
one: Whereas the subdivision of boats and stars is uniq
there are two choices for the subdivision of each hexa
into rhombi ~Fig. 7!, just as there are two possible clust
assignments on the obtuse rhombus corners in the PPT
discussed above@Fig. 6~e!#. Since rhombi in the PPT and
hexagons in the HBS tiling are in one-to-one corresponde
~Fig. 4!, this implies that the multiplicity of relaxed cluste
coverings and four-level random tilings, related to a giv
random PPT, is the same. Apart from the extra multipliciti
the relaxed covering rule is therefore equivalent to the P
rose double-arrow matching rules~ignoring single arrows!,
whereas the Gummelt covering rule is equivalent to the
Penrose matching rules.

III. CLUSTER DENSITY MAXIMIZATION

In the preceding section, we have consideredcluster cov-
erings, where our clusters have simply been decagons w
certain overlap rules. Another variant of an ordering pr
ciple for quasicrystals based on a cluster picture is thecluster
density maximization,3,5,8 which we will consider in the fol-
lowing.

The relaxed overlap rule discussed above allows fo
very natural realization in terms of avertex clusterin the
PPT. This vertex cluster is shown in Fig. 8. We have to po
out that the tile edges are drawn only as a guide to the e
they are not part of the cluster, only the vertex set counts
is easy to see that the vertex set of the cluster cannot enf
the orientation of the small A overlaps of the Gummelt de
gon, whereas the orientation of the B overlaps is intrinsica
enforced. The A overlap consists of a rhombus or a rhom
area inside a ship or star without orientation, and the B ov
lap is formed essentially of a hexagon-shaped area with
interior vertex in asymmetric position which yields an orie
tation ~Fig. 8!.

With this cluster, we can build a statistical model for th
cluster density maximization. We consider the set of all ra

m

e

m
e

FIG. 8. Vertex cluster, superimposed on th
Gummelt decagon~top left!, and representative A
and B overlaps~top middle and right!. This clus-
ter enforces the relaxed overlap rules. The botto
row shows examples of tile configurations for th
vertex cluster.
2-4
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CLUSTER MODEL OF DECAGONAL TILINGS PHYSICAL REVIEW B68, 214202 ~2003!
dom PPT’s~we still require that spiky tiles are complete
surrounded by pentagons! and assign to each tiling a stati
tical weight which is simply the number of vertex clusters
contains. With a suitable MC algorithm, it is then possible
find the subensemble of those random PPT’s which h
maximal cluster density. For this purpose, we need a
dynamics which is ergodic in the ensemble of all rand
PPT’s. By repeated flips it is then possible to turn any r
dom PPT into any other.

We have found~see Sec. IV! that the flip moves shown in
Fig. 9 have the required properties. The flip configuratio
consist of a hexagon with an interior vertex which can jum
to its ‘‘mirror image.’’ This move corresponds to a change
the orientation of the hexagon by 180°. The vertices of
hexagon itself are not affected, but the adjacent tile confi
rations are changed depending on the local environmen
Fig. 9~a!, e.g., the adjacent ship and rhombus are exchan
or in Fig. 9~b!, a star and a rhombus are transformed into t
ships, etc. These flips preserve the property that the s
tiles are always surrounded by pentagons. There are s
‘‘flip configurations’’ where the local environment prohibit
the flip. This is the case for configurations such as in F
9~d!, where the flip would introduce a new kind of tile~see
also Ref. 18!. In all our simulations, such flips were forbid
den. For the sake of completeness, it is explicitly shown
Fig. 10 how a new cluster can be created by a single flip

The flips used for the PPT are in direct corresponde
with hexagon flips in the associated four-level Penrose tili

FIG. 9. Flip moves for the MC simulation. The flips~a–c! are
allowed, whereas move~d! is forbidden since it would produce
new kind of tile ~the zigzag-shaped configuration at the bottom!.

FIG. 10. Creation of a new cluster by a single flip, which lowe
the total energy.
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This is illustrated in Fig. 11. Note that the other type
hexagon flip plays no role, because it leaves the HBS tili
and thus the PPT invariant. As it is known that hexagon fl
are ergodic for the four-level Penrose tiling, this correspo
dence adds further confidence that the PPT flips are ind
ergodic, too.

With this MC scheme, the states of maximal cluster de
sity can be determined by simulated annealing, using as
ergy the negative of the number of clusters, thus mimick
the total cohesion energy of the clusters. Then the energ
ground state, reached at low temperatures, is the ensemb
states with maximal cluster density. The method we use
based on the Metropolis importance sampling algorithm.17,19

The basic MC move is as follows:~i! Choose a vertex ran
domly. ~ii ! If it can be flipped, calculate the energy chan
DE ~which is the negative of the change in the number
clusters! and flip it with probability

p5H e2bDE for DE.0

1 otherwise.
~1!

This algorithm fulfills the condition of detailed balance.
It turns out that the states of maximal cluster density

supertile random PPT’s, whose tiles have an edge lengtht2

times that of the small tiles@where t5(11A5)/2 is the
golden number#. An example of such a supertiling is show
in Fig. 12. It cannot be a perfect tiling, since it is still po
sible to move clusters in the ground state without chang

FIG. 11. Relationship between the flip configurations in the P
~black!, as shown in Fig. 9, and the corresponding local tile co
figurations in the random Penrose rhombus tiling~gray!, which
were used in Ref. 17. The flip move is explicitly shown in th
bottom right corner.
2-5
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MICHAEL REICHERT AND FRANZ GÄHLER PHYSICAL REVIEW B 68, 214202 ~2003!
their number. This is due to the fact that the relaxed rule
hence our vertex cluster does not enforce the orientatio
the A overlaps.

In view of the results of the preceding section, this is
course not too surprising. The cluster centers sit on the
tices of the supertiling, covering all vertices of the sm
tiles. Since the vertex cluster is smaller than the Gumm
decagon, it does not cover the whole area, but only the
tices; there remain small pentagons uncovered, which s
the center of the supertile pentagons. This does not affec
overlap constraints, however.

Our results therefore imply that there is a one-to-one c
respondence betweendecagon coverings satisfying the r
laxed ruleand structures withmaximal density of the verte
cluster ~Figs. 3 and 12, respectively!. Although these two
ordering principles are very similar, they are conceptua
slightly different and have to be distinguished.

Supertile random-tiling ensembles as a result of clus
maximization were found already in Ref. 8. Maximizing st
decagon clusters in a rhombus tiling leads to an ensemb
HBS-type supertile tilings.8,9 That ensemble contains als
other structures, however, which is not the case for our c
ter. In particular, it should be noted that if the tile stoichiom
etry of the pentagons and spiky tiles admits a HBS supe
tiling, then the state of maximal cluster density is alway
HBS supertile tiling. A phase separation as discussed in
9 is not possible. The only tiles that could be separated
the thin rhombi, but if there are enough pentagons, it is
ways advantageous to surround the rhombi with pentag
The ensemble obtained by maximizing our vertex cluste
therefore a strict subensemble of the one obtained by m
mizing the star decagon in random rhombus tilings.9

IV. ENTROPY DENSITY

With our cluster model, it is also possible to measure
entropy density of the ensemble of structures with maxim
cluster density and thus the entropy density of therelaxed
cluster covering ensemble. In the preceding section, we hav
introduced an energy model which assigns a cohesion en
to each cluster in the structure. In this model, the grou

FIG. 12. Structure with maximal cluster density. The clus
centers form the vertices of a supertile random PPT~gray lines!.
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state, i.e., the state of maximal cluster density, consists
supertile random PPT’s with an extra weight of two p
rhombus, because for each rhombus there are two choice
a cluster configuration with the same number of clusters
shown in Fig. 13@see also Fig. 6~e!#. At infinite temperature,
on the other hand, we have the full random PPT~at the level
of the small tiles!, where each rhombus is counted only onc

With the entropic sampling algorithm,19,20 we can deter-
mine the entropy of the system as a function of energy.
this method, the Boltzmann probabilitye2bE of the Me-
tropolis algorithm is replaced by the factore2S(E), where
S(E) is the microcanonical entropy function. Since this fa
tor is just the inverse of the numberg(E) of states with
energyE, according to

S~E!5 ln g~E! ~2!

~in units of kB), we obtain a uniform energy distribution

P~E!}g~E!e2S(E)[1, ~3!

which corresponds to a random walk through the ene
space of the system.

However, the exact entropy functionS(E) is not knowna
priori , hence it has to be determined iteratively, starting w
a rough estimate ofS(E). This estimate can be obtained by
short run using as ‘‘entropy function’’S(E)[0, which yields
an estimate for the degeneracyg(E) of the different energies
and thus, via Eq.~2!, an estimate for the real entropy func
tion. Another possibility to get a good estimate is to ta
advantage of the extensive nature of entropy by scaling
entropy function of a smaller system to a larger one.

Subsequently, the entropy function is optimized by an
erative procedure. Analogous to the Metropolis algorith
we choose for the flip probabilities

p5H e2DS for DS.0

1 otherwise,
~4!

whereDS5S(E1DE)2S(E) is the change in entropy du
to the considered MC move~with energy changeDE). This
choice ofp likewise fulfills the condition of detailed balance
The iteration scheme is then as follows.

~i! Run a MC simulation based on Eq.~4! in order to
obtain an energy histogramH(E).

~ii ! Use the measured histogram to correct the entr
function according to the update rule

r

FIG. 13. In the supertile random PPT, each rhombus is coun
twice because of the two possible cluster orientations on the ob
corners~left!. This is in one-to-one correspondence with the he
gons in the four-level random-tiling~right!.
2-6
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CLUSTER MODEL OF DECAGONAL TILINGS PHYSICAL REVIEW B68, 214202 ~2003!
S~E!←H S~E!1 ln H~E! for H~E!Þ0

S~E! for H~E!50.
~5!

~iii ! Continue at~i! until the energy histogram is suffi
ciently uniform.

An example of such an entropy function is shown in F
14. As this method does not yield absolute entropy valu
we can only measure entropy differences, in particular,
difference S̄ between the ground state and the infini
temperature state~i.e., the maximum of the entropy func
tion!. The entropies at zero (S0) and infinite temperature
(S`) are both entropies of random PPT’s, once with a tw
fold degeneracy for each rhombus~Fig. 13! and once with-
out. To compare these two entropy values, the latter one
to be corrected by adding an extra double counting of
rhombi, which yields for each rhombus a factor of 2 in t
degeneracyg` or an additive contribution of ln 2 in the en
tropy S` , respectively. Moreover, the two random-tilings a
at different length scales, since the supertile edges aret2

times larger than the small tile edges, which has to be ta
into account due to the extensive nature of entropy. The
fore, we have the following relation between the two entro
densitiess0 ands` :

t4s05s`1r rhln 2, ~6!

wherer rh is the measured rhombus density in the infini
temperature state. If we writes`5s01s̄, we end up with
an equation for the ground-state entropy densitys0, in
which all other quantities can be measured:

s05
1

t421
~ s̄1r rhln 2!. ~7!

The ground-state entropy density has been determine
this way for several periodic approximants. By finite-si
scaling, the values can then be extrapolated to infinite sys
size. For this purpose, the entropy density, as a function
system sizeN, is fitted to a function of the~empirical! form
a1be2c/N, which proves to work very well~Fig. 15!. At a

FIG. 14. Representative example of the microcanonical entr
as a function of the energy of the system.
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scale where the supertile edges~which separate A-overlap
neighbors in the cluster model! have unit length, we obtain a
value of

s0 /kB50.25360.001 ~8!

for the entropy density of the relaxed coverings. This can be
compared with the value which Tang and Jaric´ have obtained
by Metropolis-type MC simulations for the entropy dens
of the four-level random-tiling.17 In Sec. II, we have seen
that four-level random-tilings are in one-to-one correspo
dence with relaxed cluster coverings~see also Fig. 13!. If the
different length scales of the two tilings are taken into a
count by a simple geometric conversion, the value of Ta
and Jaric´ turns into

s0 /kB50.25560.001, ~9!

which is compatible with our result.

V. COUPLING BETWEEN CLUSTERS

The only difference between theperfectand therelaxed
overlap rule is that the latter doesnot require orientedA
overlaps~whereas the orientation of the B overlaps has to
obeyed!. Since not all relaxed coverings are perfect, the
must be A overlaps which donot obey the orientation con
dition of the perfect rule. A closer analysis shows15,16 that
there is actually only one kind of disoriented A overlap. All
overlaps which can occur in relaxed coverings or super
random PPT’s, respectively, are shown in Fig. 16. For
disoriented A overlap not permitted by the perfect rule@Fig.
16~d!#, the two clusters have antiparallel orientations.

To order the~supertile! random-tiling structures to perfec
tilings, we introduce a coupling between neighboring clu
ters in such a way that overlaps which are not permitted
the perfect rule are energetically penalized. We expect su
coupling to be weak, because these kinds of defects ca
detected only at larger scales. However, at low temperat

y

FIG. 15. Finite-size scaling of the entropy density of the relax
cluster coverings, whereN is the number of vertices. The applied fi
function is of the ~empirical! form s(N)5a1be2c/N. In this
graph, the line ln@s(N)2a#5ln b2c/N is shown. The error bars ar
smaller than the plot symbols.
2-7
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MICHAEL REICHERT AND FRANZ GÄHLER PHYSICAL REVIEW B 68, 214202 ~2003!
this coupling might still be able to order the supert
random-tiling ground state of the relaxed cluster covering
a perfectly quasiperiodic structure.

This suggests a scenario with two energy or tempera
scales. The presence of each vertex cluster lowers the c
sion energy by a large amount, so that structures with m
mal cluster density are strongly favored, even at relativ
high temperatures. The equilibrium structures at these t
peratures are therefore relaxed cluster coverings. Addit
ally, there is a small coupling between neighboring cluste
which can order the supertile random-tiling to a perfect tili
at low temperatures.

We have verified the feasibility of this approach by M

FIG. 16. Possible A overlaps in supertile random PPT’s or
laxed coverings.~a–c! obey the perfect rule. Only~d! is a disori-
ented overlap.
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simulations. For this purpose, we consider only the sub
semble of states with maximal cluster density. In oth
words, we run our simulations at the level of the supertilin
If we represent a cluster in the supertile PPT by its center
its orientation~given by an arrow!, we can describe the cov
ering in a much more compact way, as shown in Fig.
Such a setup keeps the number of clusters constant, so
we cannot leave the states of maximal cluster density, wh
simplifies the simulation considerably.

As flip moves we can still use those of Fig. 9, except th
we now have to adjust the cluster orientations of seve
vertices in the flip configuration. We have to do this in a w
consistent with the vertex configuration in the underlyi
tiling, which actually determines the cluster orientatio
~Fig. 18!. The first type of flip consists of two simultaneou
flips in the underlying tiling. We have to point out that for
hexagon-type flip configuration such as the one in Fig.
~bottom left! the cluster orientations on the obtuse corners
the adjacent rhombus have to be as shown. Otherwise,
flip is not allowed, since then the cluster orientations wou
be inconsistent with the ship-shaped vertex configuration
ter the flip.

Additionally, we have to introduce a new type of fli

-

FIG. 17. Supertiling with cluster orientations indicated by a
rows. The forbidden A overlaps, corresponding to tile edges w
antiparallel arrows at their ends, are marked.
u-

e

or
be
c-
FIG. 18. Basic flips in the underlying tiling
~top! and effective moves on the level of the s
pertiling ~bottom!. The hexagon flip~left! is the
same as the one used before. Additionally, w
also have the rhombus flip~right! which does not
change the vertex structure of the supertiling. F
both flip types, the cluster orientations have to
adjusted consistently with the underlying stru
ture.
2-8
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FIG. 19. Creation~top! and shift of defects
~bottom! by single flips of the two types: hexago
flip ~left! and rhombus flip~right!.
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which only changes the cluster orientations on the obt
corners of a rhombus, but keeps the tiling itself fixed. Suc
move corresponds to a single flip in the underlying tiling.
comparison with the flip moves in a Penrose rhomb
tiling,12,17 the hexagon flip corresponds toD-type and the
rhombus flip toQ-type configurations.21

This MC dynamics can change the number of defects
demonstrated in Fig. 19. Again, we have used a Metropo
type MC scheme,17,19 now with the number of defects a
energy. We have seen in our simulations that the couplin
the clusters, which penalizes the defects, is indeed capab
ordering the random-tilings to perfectly quasiperiodic stru
tures. In other words, the ground state, reached by simul
annealing, is a perfect PPT, whereas the high-tempera
state is a supertile random tiling or relaxed cluster coveri
In this respect, ‘‘high’’ temperature means high compared
the cluster coupling, but still low compared to the ener
required to break up clusters.

We have to mention that the ground state is not alway
perfect PPT. Perfectness is determined by lifting the verti
to hyperspace; if the projections of the vertices onto the p
pendicular space are all inside the acceptance region,
tiling is perfect, otherwise it is not. Since we use period
approximants of PPT’s in our simulations, the minimal nu
ber of defects is always larger than zero.22 These defects can
be shifted without changing the energy. In this process
vertex can leave the acceptance region in the perpendic
space. Thus, the tilings with minimal number of defects
not necessarily perfect.

With the model of coupled clusters, it is also possible
measure the entropy density of the relaxed covering
semble. In this case, the ground state is ordered and has
entropy~at least in the thermodynamic limit!, and the high-
temperature state is the one whose entropy we are intere
in. We therefore only need to measure the difference betw
the entropies of the high-temperature state and the gro
state, and extrapolate these values to infinite system siz
turns out, however, that the finite-size scaling for this mo
does not work as well as for the model with a super
random-tiling in the ground state as considered in Sec.
The results are therefore less precise, but nevertheless
sistent.

VI. DISCUSSION AND CONCLUSION

In this paper, we have discussed different ordering p
ciples for quasicrystals based on the cluster picture, nam
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the cluster covering principle and the principle of clus
density maximization. A relaxed version of the coverin
rules for Gummelt’s aperiodic decagon has been conside
which produces as ground state a supertile random PP
has been shown that this relaxed overlap rule has a v
natural realization in terms of a vertex cluster in the PPT

The feasibility of our model has been tested by MC sim
lations. In particular, we have verified that the relaxed clus
coverings coincide with the states of maximal cluster dens
The entropy density measured in the random covering
semble is found to agree with the entropy density obtain
by Tang and Jaric´ for the equivalent random four-level tiling
Moreover, we have shown that a coupling between neighb
ing clusters can order the random-tiling-type ground state
a perfectly quasiperiodic structure.

Models of this kind can be very suitable for the explan
tion of experimentally observed decagonal quasicrystals
the latter are often not perfectly quasiperiodic, but more o
random-tiling nature.16 Random PPT’s, and the closely re
lated HBS tilings, are often observed in high-resolution el
tron microscopy images~Fig. 1, compare Figs. 3 and 12!.1,2

The most striking resemblance, however, is with a thr
dimensional atomic cluster found by Roth and Henley23 in a

FIG. 20. Atomic cluster found by Roth and Henley~Ref. 23! in
a molecular-dynamics simulation. White atoms are atz50, black
atoms atz5

1
2 , and dotted atoms atz5

1
4 , 3

4 ~in units of the period in
z-direction!. The area of our vertex cluster is shaded in gray. At
center of a star~marked with a box!, we would have expected a
different atomic configuration~see text!.
2-9
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MICHAEL REICHERT AND FRANZ GÄHLER PHYSICAL REVIEW B 68, 214202 ~2003!
molecular-dynamics simulation of binary decagonal Fra
Kasper-type quasicrystals~Fig. 20!, whose lateral overlap
constraints are almost the same as those of our t
dimensional vertex cluster. The only discrepancy is at
center of a star, where for full equivalence we would ha
expected a single atom atz50 in the Roth-Henley cluster
not two atoms atz5 1

4 , 3
4 .

The vertex set of our cluster can be realized by several
configurations in the PPT~Fig. 8!. This might possibly be
related to the results of an Al-Co-Ni structure analysis
Cervellino, Haibach, and Steurer.24 They observed that ther
is a perfectly quasiperiodic long-range order of the center
atomic clusters, but the interior structure of the clust
themselves is disordered. This means that the local ato
interactions cannot enforce local order, but there exist
long-range order. The proposed mechanism for long-ra
ordering is the electronic long-range term of free electro
These long-wavelength electrons ‘‘see’’ only a simpl
‘‘smeared out’’ version of the complex cluster structure.

As we have seen in Sec. V, the shift of a flipping clus
center is large, whereas the corresponding two vertex mo
in the underlying tiling are small~Fig. 18!. In the atomic
simulations of Al-Co-Ni done by Honal and Welberry,18 the
flip of a cluster corresponds to jumps of only four atoms. T
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All our simulations have been in two dimensions. It
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