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1- Pseudo Brillouin zones 

The concept of pseudo Brillouin zone boundary (PBZB) can be derived within a weak 
coupling type theory1-3.  Within this framework one can show that the acoustic dispersion 
curve should display a gap opening at pseudo Brillouin zone boundaries (PBZB), whose 
position in reciprocal space is defined by qPBZB = QBragg/2, where QBragg is a reciprocal lattice 
vector of the quasicrystal. Although the reciprocal space is densely filled in a QC, only the 
strongest Fourier components are relevant, the width of the gap being proportional to the 
amplitude of the structure factor F(QBragg).  

To select the main zone boundaries we have considered the measured X-ray structure 
factors. Unlike the case of electron, where the important Bragg planes are those with a length 
close to the Fermi sphere radius, in the case of phonon one has to consider rather small QBragg 
wavevectors in the range 0 to 2 Ǻ-1, or qPBZB in the range 0 to 1 Ǻ-1, since the acoustic regime 
only holds for q smaller than 0.6 Ǻ-1. These PBZB are placed around the strong Bragg peaks 
acting as zone centres 4,5 and are displayed as vertical dashed line in the figures. This 
approximation is only valid in the vicinity of the zone centre, where the acoustic mode is well 
defined. 

When compared with the distribution of Brillouin zone in the 1/1 approximant, it can be 
shown that the first BZB of the 1/1 approximant, located at 0.45 Ǻ-1, is replaced by two 
consecutives PBZB located at 0.33 Ǻ-1 and 0.53 Ǻ-1 associated with the 4/0 and 4/4 2-fold 
axis reflections, as shown by the vertical lines in Figure 2. Indeed, when applying the 
appropriate phason strain transformation those two reflections transforms into the (2 0 0) 
reflection in the approximant. Moreover when comparing the structure factors of the two QC 
reflections to that of the approximant’s single reflection one finds that their respective 
intensities are smaller (0.008 and 0.017 to be compared to 0.035). As a result one expects thus 
a weaker Bragg plane reflection in the QC than in the approximant. 

 
2- Modelling. 
As explained in the text a crucial parameter in modelling the 1/1 approximant and the QC 

is the orientational disorder of the tetrahedra. In the 1/1 approximant supercell model, the 8 
tetrahedra orientations are chosen randomly (12 possibilities for each). Room-T molecular 
dynamic annealing is then performed and followed by a quench at 0K where accurate 
relaxation is carried out. The same procedure was used for the QC. The S(Q,E) response 
function is then calculated with the quench model. This ensures that the proper weak 
correlations between tetrahedra are taken into account, inducing broadening and mode mixing 
in the response function. On the contrary simulations made on a 2 clusters 1/1 model (i.e. 



without a supercell and no tetrahedral disorder), leads to a much more structured spectral 
function, as shown Figure S2. 

The figure S1, displays the diffraction pattern of the simulated 1/1 and 3/2 approximant.  
 

 
 
 
 

Figure S1:  
Simulated diffracted patterns. The left panel displays the diffraction pattern for the super-

cell 1/1 approximant containing 8 clusters per unit cell, once quenched to 0K. The right panel 
displays the diffraction pattern of the 3/2 approximant. The area of the dots is proportional to 
the Bragg peak intensity and is scaled so as to be compared directly with the experimental 
data Figure 1. Although the 3/2 approximant clearly shows lattice periodicity, the intensity 
distribution of the strongest Bragg peaks matches well the one of the quasicrystal in Figure1 c.  



 
 
Figure S2: 
Simulated S(Q,E) response function for an 1/1 model having Im3 symmetry. The scattering 

geometry is transverse and the same as Figure 4. In this model the inner tetrahedra are 
oriented in such a way that they fulfill the Im3 symmetry constraint. This should be compared 
to Figure 4, left panel, where the super-cell model has been used. The Im3 symmetry model 
displays features which are neither seen experimentally, nor in the simulation using the super-
cell model. In particular gaps are showing up at low energy (here around 1.6 meV). Moreover, 
the optical-like excitations are much more structured. Indeed, the introduction of the random 
orientation of the tetrahedron smoothes out the overall intensity distribution of the S(Q,E) 
response function for optical excitations. 
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