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Centre de Physique Théorique, Ecole Polytechnique,

F-91128 Palaiseau, France

Algorithms are presented for the computation with crystallographic groups of ar-
bitrary dimension, in particular for the determination of the Wyckoff positions
and maximal subgroups of a space group, and for the determination of all space
group types for a given point group. These algorithms have been implemented
in the computer algebra system GAP, and are made publically available. The
capabilities of this software package are illustrated by a number of examples.

1 Introduction

Information about crystallographic groups, in particular space groups, is usu-
ally made available in the form of printed lists, such as in the International
Tables,1 or in the book on four-dimensional crystallographic groups.2 For higher
dimensions, this approach becomes quickly impractical, as the number of such
groups grows very rapidly with the dimension. Since some of the higher-
dimensional space groups are of practical importance as symmetry groups of
quasicrystals and modulated cystals, we suggest here a more promising ap-
proach. Instead of providing pre-computed tables one should rather provide
software that can selectively compute the entries of these tables whenever the
need arises. Such an approach has several advantages. There is no need to
decide beforehand which are the “interesting” groups. Moreover, the user can
work in any basis that seems suitable for the problem at hand, and is not
bound to the choice of basis made by the authors of the table. And finally,
having the information available in electronic form makes it easy to further
process the data by other programs.

Such a software system, called CrystGap,3 has been implemented on top of
GAP,4 a freely available computer algebra system which is particularly strong
in group theoretical computations. CrystGap is distributed together with the
current 3.4.4 release of GAP.4 Building CrystGap on top of GAP has several
advantages over a standalone package. The most important one is that many
group theoretical algorithms are already implemented in GAP and are ready
to be used, so that one does not have to reinvent the wheel all the time. Since
these algorithms have been selected and implemented by experts in the field,
it is likely that they are more efficient than anything one would write for a
standalone package. A further advantage is that GAP also contains a number
of group databases. Of particular interest for a crystallographic groups package



are a table with representavtives of all space group types of dimensions 2, 3
and 4, and tables with Z-class or Q-class representatives of maximal irreducible
finite integral matrix groups for many dimensions. From the tables of finite
integral matrix groups one can determine representatives of all point groups of
a given dimension, and from these the corresponding space groups types can
be computed by means of the Zassenhaus algorithm, which is also provided.

In the following, we first sketch the algorithms used in CrystGap. These
algorithms have been described in more detail in a previous paper.5 Some of
the capabilites of CrystGap are then illustrated with a few examples. A further
example of an application of CrystGap can be found in a separate paper.6

2 Sketch of the algorithms

Since space groups are not finite, computing with them is not entirely trivial.
These problems are solved by using the fact that the subgroup T of pure trans-
lations of a space group S is normal, and that the sequence of homomorphisms
0 → T → S → P → 1 is exact, where P ∼= S/T is the point group of S.

An important piece of information about a space group is its set of Wyckoff
positions.7 To determine these, one takes the full lift of a representative of each
of the subgroup conjugacy classes of the point group (which are efficiently
computed by GAP), and determines the set of points left invariant modulo
lattice translations. These points form an array of affine subspaces. In some
cases the resulting points have an even bigger stabilizer, but otherwise the
S-orbit of any one of these affine subspaces forms a Wyckoff position.

For the computation of maximal subgroups, two different procedures are
used, depending on whether the space group is solvable or not. In the solvable
case one first divides S by p times the translation subgroup, where p is some
prime, and computes the maximal subgroups of the resulting finite group, us-
ing a special power-commutator presentation for which very efficient methods
exist. The other translations are added again later. In this way, the maxi-
mal subgroups of p-power index are obtained. In the non-solvable case, one
has to distinguish between translation-equal and class-equal subgroups. For
translation-equal subgroups it is enough to lift the maximal subgroups of the
point group to S, whereas in the class-equal case one first has to compute the
P -invariant subgroups of given index of T , and then determine the conjugacy
class representatives of their complements in S.

There is one class of algorithms in GAP which is essential for most of
the computations described above. GAP provides facilities to conveniently
compute the orbit and the stabilizer of arbitrary, user-defined group actions,
provided the orbit of the group action remains finite.



3 Examples

CrystGap can deal with space groups expressed in any basis. It is not necessary
to use a primitive lattice basis. This makes it easy to explore the subgroup
structure of a space group by iteratively computing maximal subgroups without
any change of basis. As an example we show part of the subgroup lattice
of the 6D icosahedral space group I 5̄3̄ 2

m
(Fig. 1). Shown are all class-equal

subgroups (having an isomorphic point group) whose index is a power of 2
(and not bigger than 64). There are three symmorphic subgroups P 5̄3̄ 2

m
, and

three non-symmorphic subgroups P 5̄3̄ 2

q
, all of index 2. They correspond to

the three different embeddings of the P lattice in the I lattice. The three
subgroups F 5̄3̄2

q
(index 4) and the four subgroups I 5̄3̄ 2

m
(index 64), on the

other hand, are conjugates of each other by translations. They are conjugated
in the affine normalizer of the top level group I 5̄3̄ 2

m
.
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Figure 1: Part of the subgroup lattice of I 5̄3̄ 2

m
(class-equal subgroups only). A vertex label

Ls means a symmorphic space group of type L5̄3̄ 2

m
, a label Ln a non-symmorphic space

group of type L5̄3̄ 2

q
, where the lattice L is either I, P or F . 2I denotes the I lattice scaled

by a factor 2. For the I lattice there exists only a symmorphic space group.



CrystGap offers the possibility to display the set of Wyckoff positions of
a space group, together with their incidence relations, in the form of a graph
(Fig. 2). For instance, a special line contains a special point if and only if the
two corresponding vertices of the graph are connected. Such a graph allows to
quickly seize the situation. By clicking with the mouse on one of the vertices
a menu pops up, with the help of which one can inquire various properties of
the corresponding Wyckoff position and its stabilizer.
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Figure 2: Structure of the Wyckoff psitions of the 6D icosahedral space group F 5̄3̄ 2

m
. There

are special points with stabilizers Yh = 5̄3̄m and D2h = mmm (4 each), special lines with
stabilizers C5v = 5̄m, C3v = 3̄m (1 kind each) and C2v = mm (4 kinds), one kind of mirror

plane, and the general position. Connections in the graph indicate incidence relations.

Without giving an example, we mention that CrystGap supports also
colour space groups. Space groups can be coloured by specifying the subgroup
which leaves one of the colours (colour 1) invariant. The permutation group
induced by the colour group on the set of colours can also be computed. With
the maximal subgroups routine, it is also possible to determine all inequivalent
colourings with a given number of colours.



4 Conclusion

We have presented a freely available software package for the computation with
crystallographic groups. There are other packages which offer some of these
functions as well. While the performance of our package compares well5 with
the package of Fuksa & Engel8 (which computes Wyckoff positions only), a
performance comparison with the package of Thiers et al.9 could not yet be
made, as the latter is currently available only over the Web.10 What is presently
missing, but planned for the future, is a routine to compute the normalizer of
an arbitrary point group in GL(n, Z), needed in the Zassenhaus algorithm and
for the computation of the affine normalizer of a space group.
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