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In a recent paper, we have introduced a cluster model for decagonal tilings in two dimensions. This
model is now extended to three dimensions. Two-dimensional tilings are stacked on top of each other,
with a suitable coupling between adjacent layers. An energy model with interactions leading to a
perfect decagonal quasicrystal at low temperatures is studied by Monte Carlo simulations. An order
parameter is defined, and its dependence on temperature and system size is investigated. Evidence
for a finite-temperature order-disorder phase transition is presented. The critical exponents of this
transition are determined by finite-size scaling.
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I. INTRODUCTION

It is well known1 that, in two dimensions (2D), perfect
quasicrystalline order cannot be stable at positive tem-
perature if the interactions have finite range. At positive
temperature, a 2D quasicrystal is always in the random
tiling phase without long-range order, the “transition”
from the ordered to the disordered state being at T = 0.
For three-dimensional (3D) quasicrystals, on the other
hand, this order-disorder phase transition is expected to
occur at positive temperature.2

The low-temperature state is also called the locked

phase,2 because its phason degrees of freedom are frozen
(locked). The high-temperature state is accordingly
called unlocked phase. Here, the thermal energy is suffi-
ciently high to excite the phason degrees of freedom.

3D axial quasicrystals, in particular decagonal ones,
can usually be regarded as periodic stackings of 2D lay-
ers, each of which is quasiperiodic. Geometrically, these
layers can be described as decorations of quasiperiodic
tilings like the Penrose tilings. Henley2 has proposed
to model axial quasicrystals as stackings of 2D tilings
with a suitable coupling between adjacent layers, in ad-
dition to the coupling inside the 2D layers. Such layered
tiling models built up from 2D Penrose tilings have been
studied by Jeong and Steinhardt,3 who indeed found a
finite-temperature order-disorder phase transition.

In a recent paper4 (hereafter referred to as Paper I), we
have introduced a cluster model for 2D decagonal tilings.
In the present article, we will now extend this model to
3D stackings. Our aim is to investigate an order-disorder
phase transition, too, but this time in the framework of
cluster coverings.

In Sec. II, we first give a brief summary of Paper I,
explaining the important features of our cluster model.
This includes the principle of cluster density maximiza-
tion and the ordering of random structures to perfect
ones by a coupling between overlapping clusters. In
Sec. III, we extend this model to 3D by stacking the 2D

layers on top of each other. An additional coupling be-
tween adjacent layers is introduced. For this 3D model
we define in Sec. IV an order parameter to distinguish
between the ordered quasicrystalline phase at low tem-
peratures and the disordered random tiling phase at high
temperatures. By means of this order parameter, the 3D
system can then be investigated for a potential order-
disorder phase transition, which is done in Sec. V using
Monte Carlo (MC) simulations.

II. TWO-DIMENSIONAL CLUSTER MODEL
(BRIEF SUMMARY)

In Paper I, different versions of overlap rules for clus-
ters in a 2D covering model of the Penrose pentagon tiling
(PPT) are discussed. The first version, which has a very
natural realization in terms of a vertex cluster in the PPT
(Fig. 1), is called the relaxed rule. If we compare this clus-
ter with the well known Gummelt decagon,5–7 we see that
it enforces the correct orientation of the large B-overlaps,
but not the orientation of the smaller A-overlaps (Fig. 1).

As an alternative to cluster covering as an ordering
principle for quasicrystals, the principle of cluster density

maximization is considered as well. A statistical model
is built where each random tiling is assigned an energy
which is just the negative of the number of vertex clus-
ters, thus mimicking the cohesion energy of the clusters.

The density of clusters can then be maximized in a

A B

FIG. 1: Vertex cluster, superimposed on the Gummelt
decagon (left), representative A-overlap (middle) and B-
overlap (right). This cluster enforces the relaxed overlap rule.
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MC simulation by simulated annealing, using flip moves
like the one shown in Fig. 2. The simulation algorithm
was a usual Metropolis importance sampling scheme:8,9

A proposed flip is accepted with probability p = 1 if it
decreases the energy (∆E < 0), but only with probability
p = e−β∆E if the energy is increased (∆E > 0).

FIG. 2: Representative example of a flip move in the PPT.

The states of maximal cluster density are supertile ran-
dom PPTs with an edge length τ 2 times that of the un-
derlying tiling (where τ = (1+

√
5)/2 is the golden num-

ber). Naturally, they contain also cluster overlaps which
do not satisfy the constraints of Gummelt’s perfect over-
lap rule, since the relaxed rule does allow for disoriented
A-overlaps because of the missing interior orientation of
the rhombus (Fig. 1).

In a second step, a coupling between overlapping clus-

ters is added which penalizes such defects. To keep the
cluster density constant, the simulations are run at the
level of the supertiling. Each cluster is represented by
a vertex plus an arrow indicating the orientation of the
cluster (Fig. 4).

As MC moves we can still use hexagon flips like the
ones in Fig. 2, provided that the orientations of neigh-
boring clusters are updated consistently with the under-
lying tiling (Fig. 5, left). Additionally, on the level of
the supertiling there is a new type of flip: The rhom-
bus flip (Fig. 5, right) only changes the orientations of
the clusters on the obtuse rhombus corners, but keeps
the tiling itself fixed. In comparison with the basic flip
moves in the Penrose rhombus tiling2,9 (which were used

FIG. 3: Structure with maximal cluster density. The cluster
centers form the vertices of a supertile random PPT.

!

!

!
!

FIG. 4: Supertiling with cluster orientations indicated by ar-
rows. The forbidden A-overlaps, correpsonding to tile edges
with antiparallel arrows, are marked.
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FIG. 5: Creation (top) and shift of defects (bottom) by single
flips of the two types: hexagon flip (left) and rhombus flip
(right).

in the simulations of Jeong and Steinhardt3), the hexagon
flip corresponds to D-type configurations and the rhom-
bus flip to Q-type configurations of the Penrose rhombus
tiling.10

As can be seen from Fig. 5, it is possible to create,
annihilate, or shift defects by these flips. The defects
correspond to tile edges with antiparallel arrows at their
ends (marked in Fig. 5). Hence, we assign a positive
energy to the creation of a new defect and use this energy
model in a Metropolis MC scheme.

By simulated annealing it is shown that the cluster
coupling model is capable of ordering the supertile ran-
dom PPTs to perfectly quasiperiodic structures at low
temperatures. Since, in our 3D simulations, we want to
study transitions between perfect order and disorder, we
will use this second kind of model for the layers in our
stacking of coverings.

III. EXTENSION TO THREE DIMENSIONS

We will now consider 3D stackings of our 2D covering
model. The intralayer interactions are those discussed
above, which favor Gummelt’s overlap rule, and hence
produce perfectly ordered structures inside a layer at low
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temperatures. In addition, a new coupling between the
layers has to be introduced. This interlayer coupling is
chosen such that it prefers adjacent layers to be congru-
ent. Then the ground state consists of identical, per-
fectly orderd layers. In the high-temperature state, the
individual layers are random tilings which need not to be
congruent, so that there is also disorder in the stacking
direction.

Following an idea of Henley2 and analogously to Jeong
and Steinhardt,3 we formulate a flip constraint for the
interlayer coupling. The vertex inside a hexagon in a cer-
tain layer can be flipped only if there is also a hexagon
with coinciding boundary (ignoring the interior vertex)
in the adjacent layers above and below (Fig. 6). An anal-
ogous rule is imposed for rhombus flips: There must be
a coinciding rhombus above and below in order that the
middle rhombus can be flipped. These constraints main-
tain a minimal correlation between adjacent layers.

FIG. 6: Flip constraint for the interlayer coupling. The flip
of the interior vertex of the middle-layer hexagon violates the
congruence of the layers and hence costs energy.
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FIG. 7: Creation (left) and shift of interlayer defects (right).
The arrows represent here schematically the orientations of
hexagons or rhombi, respectively, in the layers.

As we want to favor congruent layers in the ground
state, energies are assigned to any mismatch between ad-
jacent layers. A flip can then either create or remove two
mismatches, or it can shift a mismatch up- or downwards
(Fig. 7).

IV. DEFINITION OF AN ORDER PARAMETER

In order to analyse the transition from the disordered
phase at high temperatures to the ordered phase at low
temperatures, a suitable order parameter has to be de-
fined, which can distinguish between perfect order and
disorder.3,11

Within one layer, perfect order means the absence of
disoriented A-overlaps, as discussed in Sec. II. In a con-

! !

+ − − + + +
FIG. 8: Worm line consisting of hexagons and rhombi. Each
hexagon and rhombus is assigned a “spin variable” + or −.
The presence of defects leads to an alternation of the value of
this variable along the line.

tinuous sequence of hexagons and rhombi along a straight
line (Fig. 8), the orientations are then all the same,
whereas a disoriented A-overlap switches to the oppo-
site orientation. These lines correspond to the so called
“worms” or “Ammann lines” in the Penrose rhombus
tiling,12,13 where again the rhombus in the PPT cor-
responds to Q-type configurations of Penrose rhombi,
and the hexagon to D-type configurations. Flipping a
hexagon or a rhombus in a perfect worm creates mis-
matches and interrupts the sequence of equal orientations
along the worm line.

Therefore, if we characterize the orientation of each
hexagon and rhombus along a straight line by a variable
si = ± (Fig. 8), we can compare the worm line to a 1D
“spin chain”, assigning “spin up” for one orientation of
hexagons and rhombi and “spin down” for the other. If
we sum up all the spin variables si along a line, they will
average out to zero in the random tiling phase. In the
ordered phase, all the spins have the same orientation, so
that the sum is proportional to the length of the chain.

We extend this picture to 3D by combining spin chains
atop each other to “spin sheets” (Fig. 9), comparable to a
2D spin system. In the ordererd phase, all the layers are
congruent, and thus all the spins within one sheet have
the same orientation. In the disordered phase, the sum
over all spins in a sheet will again be zero. However, even
in the perfectly ordered phase, parallel spin sheets do not
necessarily have the same spin orientations. Therefore,

spin chain

spin sheet

2D quasiperiodic plane

spin

FIG. 9: “Spin chains” one atop the other are combined to a
“spin sheet”.
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absolute values have to be taken for each sheet separately.
The order parameter (“magnetization”) thus becomes

M =
1

n

∑

{Sj}

∣

∣

∣

∣

∑

i∈Sj

si

∣

∣

∣

∣

, (1)

where n is the number of spins (hexagons and rhombi)
considered. The inner sum, of which the absolute value
is taken, runs over all hexagons and rhombi (spins si)
lying in the jth spin sheet Sj . Afterwards, the contri-
butions of all parallel spin sheets Sj are added. Such an
order parameter is defined separately for each of the five
directions in the tiling. As we have to use periodic ap-
proximants with periodic boundary conditions, some spin
sheets may wrap around the torus several times, which
has to be taken into account when determining the index
of the spin sheet on which a given spin is located.

The value of this order parameter is one in the perfectly
ordered case, since then all the spins in a sheet have the
same orientation. In the totally disordered phase, the
spins average out to zero already along the chains, so
that the order parameter is zero. The magnetization M
therefore provides a well defined and suitable order pa-
rameter for the detection of perfect quasiperiodic order.

In addition to the magnetization, we also define the
corresponding “susceptibility” χ, which measures the
fluctuations of the order parameter. In analogy to the
magnetic susceptibility, we set

χ = nβ
(

〈M2〉 − 〈M〉2
)

, (2)

where β is the inverse temperature.

V. ORDER-DISORDER PHASE TRANSITION

The behavior of the order parameter has been investi-
gated by MC simulations at different temperatures, us-
ing a series of stacked periodic approximants. In order to
work out real 3D effects, the number of layers is propor-
tional to the linear dimension of the approximant. We
used approximants of order fk+1/fk in the x-direction,
and of order fk/fk−1 in the y-direction. which have the
least number of defects.14 fk is the kth Fibonacci number
(f0 = 0, f1 = 1, fk+1 = fk +fk−1). The linear dimension
is then of the order of fk−1, so that we took fk−1 layers
in the stacking direction. This resulted in systems with
total vertex numbers N = 141 (k = 5), 615 (6), 2576 (7),
10959 (8), and 46347 (9). The run lengths were of the
order of some 100,000 MC sweeps at each temperature,
where perfoming one MC sweep means to choose N -times
a vertex randomly. The correlation time was found to be
short compared to the run length, although no precise
measurement has been made.

A Metropolis importance sampling scheme3,8,9 is used
for the simulations, similar to the one used in Paper I
for the 2D simulations. For each proposed MC move, the
total energy change ∆E due to intralayer and interlayer
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FIG. 10: System size dependence of the sheet magnetization
vs. inverse temperature.

couplings is computed. The move is then accepted with
probability p = 1 if the energy is decreased and with
probability p = e−β∆E if the energy is increased. The
results for the magnetization and the susceptibility are
shown in Figs. 10 and 11, respectively, for one represen-
tative direction in the tiling.

Fig. 10 illustrates how the magnetization curves con-
verge to M = 1 at zero temperature (β → ∞). Further-
more, the magnetization at a fixed temperature above
the critical point (β < βc, with βc ≈ 1.2) decreases with
increasing system size. The magnetization curves should
tend to M = 0 at temperatures above the critical point,
but they do so only very slowly. This can be understood
as follows. In the random tiling phase, many spin sheets
contain only very few spins, so that on those sheets the
spins do not completely average out to zero. If for the
magnetization only sheets are taken into account which
contain a number of spins sufficiently high for a good
statistics within the sheet, the value of M can be de-
creased considerably. At β = 0, M decreases for the sys-
tem with 10959 vertices from M ≈ 0.4 down to M ≈ 0.1,
and even further down to M ≈ 0.08 for a larger system
with about 75000 vertices.

The magnitude of the susceptibility, shown in Fig. 11,
seems to diverge close to the transition temperature with
increasing system size, which is another evidence for a
phase transition. The maximum of the susceptibility
yields a critical temperature of βc ≈ 1.2 in the limit of
infinite system size.

Both the behavior of the magnetization and the sus-
ceptibiliy are consistent with a temperature-driven tran-
sition between the ordered (locked) and the disordered
(unlocked) phase. To obtain the critical exponents of this
phase transition, the method of finite-size scaling8 has
been used to fit the measured curves for magnetization
ML(t) and susceptibility χL(t) to the scaling functions

M̃(L1/ν t) = Lβ/νML(t) (for t ≤ 0) , (3)
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FIG. 11: System size dependence of the susceptibility vs. in-
verse temperature.

χ̃(L1/νt) = L−γ/νχL(t) , (4)

where L is a characteristic length of the system (we use
L = N1/3) and t = T/Tc − 1 the reduced temperature
(with Tc = 1/βc). The critical exponents β and γ are de-
fined by the behavior of magnetization and susceptiblity
close to the transition temperature:

M ∝ |T − Tc|β (for T ≤ Tc) , (5)

χ ∝ |T − Tc|−γ . (6)

The critical exponent ν, which determines the behavior
of the correlation length, ξ ∝ |T − Tc|−ν , has not been
measured explicitly. By fitting the parameters β, γ, and
ν in Eqs. (3) and (4) such that all the curves superimpose
(Figs. 12 and 13), we obtain the critical exponents

β ≈ 0.08 , (7)

γ ≈ 1.7 , (8)

ν ≈ 1.6 . (9)

The uncertainty of these values is about 10% for γ and ν.
In the case of β, the spread of values giving a reasonable
fit is even larger.

We have also measured the energy E and the specific
heat C = N−1β

(

〈E2〉 − 〈E〉2
)

, where N is the number
of vertices and β the inverse temperature. The result is
shown in Fig. 14. The maximum of the curve is close to
the transition temperature determined above. It seems
that the magnitude of the specific heat is independent of
the system size (for large enough systems), which implies
a critical exponent of α ≈ 0, where α is defined by C ∝
|T−Tc|−α close to the critical point. This is in agreement
with the scaling relation α + 2β + γ = 2 (Rushbrooke’s
law).8

For comparison, the values obtained by Jeong and
Steinhardt3 for stackings of Penrose rhombus tilings are
β = 0.2, γ = 1.6, ν = 1.6, and α = 0. These values are in
good agreement with our result (except for the exponent
β, whose uncertainty is relatively large in our case).
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FIG. 12: Finite-size scaling plots Lβ/νM vs. L1/νt for the
magnetization with the exponents β = 0.08 and ν = 1.6.
The critical exponent β and hence the scaling function M̃ are
only defined below the critical temperature, i. e., for the data
collapse only the range t ≤ 0 has to be considered.
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FIG. 13: Finite-size scaling plots L−γ/νχ vs. L1/νt for the
susceptibility with the exponents γ = 1.7 and ν = 1.6.

VI. SOME FURTHER REMARKS

To test the reliability of our results, we have run sim-
ulations with different ratios of the intralayer and inter-
layer coupling strength. It is evident that this influences
the value of the critical temperature and hence leads to
different temperature scales. Normalizing the temper-
ature to the particular critical point, i. e., using β/βc

as temperature scale, we obtain the same behavior of
the magnetization, independent of the relative coupling
strengths (Fig. 15). Only the curves where one of the
coupling energies is set to zero show a different behav-
ior, especially when the energy for the cluster coupling is
zero, labeled by (0,1). In this case, there is no interac-
tion inside the layers, so the order parameter is minimal,
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FIG. 14: System size dependence of the specific heat vs. in-
verse temperature.
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FIG. 15: Behaviour of the sheet magnetization for different ra-
tios of intralayer and interlayer coupling strength. All curves
are for the same approximant. The case of equal coupling
strengths is labeled by (1,1), the case where the intralayer
coupling is twice the interlayer coupling is labeled by (2,1),
and so on.

i. e., zero for infinite system size (see discussion of Fig. 10
in Sec. V). On the other hand, in the case (1,0) where
the coupling energy in stacking direction is zero, there
is still some kind of purely geometrical coupling between
the layers due to the flip constraint (Fig. 6). This yields
an order parameter larger than zero. However, it does
not approach M = 1 at high β (low temperatures) since
this geometrical coupling only restricts the number of
possible flips but does not enforce congruent layers.

We have also studied a 3D version of the cluster density

maximization model obeying the relaxed rule (Sec. II).
In this case, the intralayer energy is just the negative
of the number of clusters. (For the interaction in stack-
ing direction we keep the coupling described in Sec. III).
Each ground state now consists of supertile random PPTs
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FIG. 16: System size dependence of the susceptibility vs. in-
verse temperature in the case of the relaxed rule.

in each layer, which are all congruent. These supertile
random PPTs are locally ordered, but show disorder at
larger scales in terms of disoriented A-overlaps which vi-
olate the perfect overlap rule. The question is whether
this partial, local order distinguishes the ground state
sufficiently from the disordered high-temperature state,
so that a phase transition between the two can take place.
We cannot answer this question yet, because the curves
obtained for the magnetization are too “noisy” (although
the error bars are small), and the behavior of the suscep-
tibility (Fig. 16) does not allow to decide whether or not
it diverges at the “critical point”, at least not for the ac-
cessible system sizes. It could well be that the dynamics
is confined to subsets of the phase space which are sep-
arated by high energy barriers from other such subsets,
thus breaking the ergodicity of the simulation.

VII. SUMMARY

We have presented a cluster model for 3D decagonal
quasicrystals which shows a continuous phase transition
at finite temperature from the ordered low-temperature
state to the disordered high-temperature state. Using
the sheet magnetization as order parameter and its asso-
ciated susceptibility, the critical exponents of this transi-
tion have been determined. Within the statistical errors,
these critical exponents are in good agreement with the
values obtained by Jeong and Steinhardt3 for stackings
of Penrose rhombus tilings (for comparison, see Table I).

The notion of spin sheets suggests a certain resem-
blance of our model to the 2D Ising model. Indeed, there
is some similarity also in the critical exponents (Table I).
We have to point out, however, that there is an essential
difference to the 2D Ising model. The interaction between
the clusters inside the layers is rather different from the
interaction between the layers in the stacking direction,
i. e., the interactions in the system are highly anisotropic.



7

Furthermore, in the Ising model only next-neighbor in-
teractions are considered, whereas in our cluster model
(and also in the Penrose tiling) the coupling between the
clusters (or the coupling which arises from the match-
ing rules in the Penrose tiling, respectively) are of longer
range. Hence, it is not too surprising that the critical
exponents of the 2D Ising model deviate from the ones
obtained for our model (and those obtained by Jeong and
Steinhardt3). Nevertheless, one can say that the critical
exponents for the 3D decagonal quasicrystals resemble
those of the 2D Ising model more than those of the 3D
Ising model.

TABLE I: Comparison of the critical exponents

α β γ ν

Cluster model 0.0 0.08 1.7 1.6

Tiling model3 0.0 0.2 1.6 1.6

2D Ising model15 0 0.125 1.75 1

3D Ising model16 0.11 0.33 1.24 0.63
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