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Abstract

A simple, local cluster interaction is presented, which has as (only) ground states per-

fectly quasicrystalline tilings from a single local isomorphism class. Since these tilings do

not allow for any perfect matching rules, it is thereby shown that the class of structures

which are the ground state of some finite range interaction is considerably larger than pre-

viously anticipated. Cluster interactions having a quasicrystalline ground state turn out

to be simple and robust, and therefore provide an attractive explanation for the existence

of quasicrystals. A simplified version of our cluster interaction is found to have super-tile

random tiling ground states. Due to the big size of the super-tiles, these random tilings

still look very perfect on a local scale.
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I. INTRODUCTION

It is generally believed that the existence of local matching rules for a quasiperi-

odic tiling, and the existence of finite range interactions having as ground state a

quasicrystalline structure locally decorating that tiling, are closely related to each

other. More precisely, it can be argued[1, 2] that whenever a quasicrystalline struc-

ture and a quasiperiodic tiling with perfect matching rules[3] are locally derivable[4]

from each other, there exist finite range interactions having this structure as their

ground state. Perfect matching rules enforce tilings (or other discrete structures)

from a single local isomorphism (LI) class, consisting, roughly speaking, of tilings lo-

cally indistinguishable from each other. Perfect matching rules thus are the strongest

possible matching rules. This strong requirement of perfect matching rules was not

considered a problem, since in most cases one is anyway interested in having inter-

actions whose set of ground states consists of structures from a single LI class.

There are, however, interesting structures whose LI class does not allow for any

local, perfect matching rules. Notable examples are certain eight- or twelve-fold sym-

metric quasiperiodic tilings[2]. In these latter cases the problem is usually “solved”

by adding further, non-local information to the tiling, in the form of a (non-local)

decoration[5]. However, this cannot really be considered a solution of the problem,

since the structure with decoration certainly is not the same structure any more –

the decorated structure is not even in the same local derivability class. The sta-

bilization of the undecorated structure by finite range interactions therefore still

remains as an open problem.

Some of the tilings without perfect matching rules still allow for so-called strong

matching rules[3], which enforce perfectly ordered tilings, but allow for tilings from

more than one LI class, usually from a whole 1-parameter family of LI classes. An

important observation now is that structures from different LI classes, for generic

interactions at least, will always have different energies. Therefore, if we have any

interaction which favours a set of strong, but non-perfect matching rules, it will,

of course, penalize tilings not satisfying the matching rules by giving them a high

energy, but it will also differentiate between the different LI classes allowed by the

matching rules, by giving them different energies. The problem then is to find out
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which LI class among those allowed by the matching rules has the lowest energy, and

thus is the ground state of the interaction. Conversely, if a specific LI class is given,

chosen among those allowed by the matching rules, the question is whether this

LI class is the ground state of a suitable local interaction, which should preferably

be simple and of short range. The latter seems possible if the LI class in question

is somehow uniquely distinguished among the other ones allowed by the matching

rules. For instance, it might have a higher symmetry than all the other LI classes.

For a generic choice of an LI class, however, the existence of such an interaction

is questionable. Still, we can conclude that under certain additional conditions it

should be possible to build local interactions having a ground state which does not

admit perfect matching rules.

In the following, these ideas will be illustrated by explicitly working out a partic-

ular example, the undecorated octagonal Ammann-Beenker tiling[6, 7]. In Section II

a simple cluster interaction will be presented, which has as its only ground states

perfectly quasiperiodic octagonal tilings. In Section III it is shown that a simpli-

fied version of this interaction, which is not able to stabilize the perfect octagonal

tiling, still leads to super-tile random tiling ground states. Finally, in Section IV we

summarize our results and discuss the prospects of applying these concepts to other

systems.

II. A CLUSTER INTERACTION STABILIZING THE UNDECORATED

OCTAGONAL TILING

It is well known that octagonal Ammann-Beenker tiling [6, 7], which is composed

of squares and 45◦ rhombi, does not allow for perfect matching rules. This can

be seen as follows. Any square-rhombus tiling which is consistently arrowable by

Beenker arrows[7] on the edges can uniquely (and locally) be deflated an arbitrary

number of times. This is the case, in particular, for the (periodic) tiling consisting

of squares only. Starting with this square tiling, after two deflations we arrive at a

tiling, all of whose vertex neighborhoods are allowed vertex neighborhoods from the

perfect octagonal tiling. At the scale of vertex neighborhoods, this tiling thus cannot

be distinguished from a perfect octagonal tiling, and with each further deflation,
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the scale at which the tiling is indistinguishable from the perfect octagonal tiling is

increased by another factor σ = 1 +
√

2. Since all these tilings are periodic, one can

find among them a counterexample to any attempt to characterize the octagonal

tiling by an atlas[8] of allowed neighborhoods of maximal size R, which proves that

the undecorated octagonal tiling does not admit perfect matching rules.

The octagonal tiling does support strong matching rules, however. Such strong

matching rules are given by the alternation condition[9], which had originally been

introduced as so-called weak matching rules for general 2D rhombus tilings, but

failed to work in the octagonal case, because it is not able to exclude periodic

approximants. The alternation condition requires that along any lane of tiles the

rhombi have to point to alternating sides of the lane. An example of such a lane

of tiles is shown in Fig. 1. It has been shown[10] that the alternation condition for

the square-rhombus tiling, which is equivalent to the matching rules imposed by the

Beenker arrows[7], enforces tilings which are perfectly quasiperiodic and (at least)

four-fold symmetric, or which are periodic approximants[17] to such tilings, with

square unit cell. The tilings compatible with the alternation condition consist of all

cut- and projection tilings whose cut space is rotated with respect to the octagonal

cut space by a Schur rotation[11] maintaining one of the two D4 subgroups of the

octagonal D8 symmetry group (see also [12]). The space onto which the tiling is

projected is always the same, in order to maintain the shape of the tiles. The D4

symmetry group that is preserved contains those mirror lines which contain the tile

edges. Maintaining the other mirror lines, which are contained in the other D4

subgroup, does not lead to tilings satisfying the alternation condition. Within the

family of tilings allowed by the alternation condition, there is a single LI class with

full octagonal symmetry. All other tilings have only four-fold symmetry, some of

which are even periodic.

Our strategy now is to choose a simple interaction which strongly favours the al-

ternation condition, and at the same time prefers the perfect octagonal tiling against

all other tilings allowed by the alternation condition. Since in the octagonal tiling

there are never more than two squares between two consecutive rhombi pointing

to opposite sides of a lane, we shall actually choose an interaction which favours

structures having this more restrictive property too. To construct this interaction,
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we first have to take a closer look at the structure of the perfect octagonal tiling.

It is easily verified that if between two consecutive rhombi there is no square in

the same lane, then the two rhombi are part of a hexagon. Every such hexagon is

contained in an octagon cluster, shown in Fig. 2. The same holds true for every pair

of consecutive rhombi with one square in between. A pair of consecutive rhombi

with two squares in between is always contained in a “ship” cluster also, shown in

Fig. 2. Since in the octagonal tiling there are never more than two squares between

two rhombi, every instance of the alternation condition being satisfied (i.e., two con-

secutive rhombi pointing to alternating sides of the lane) is contained in at least one

of the two clusters shown in Fig. 2. For this reason, we shall give these two cluster

low, negative energy, and only these. All other clusters are given zero energy. It

will then be shown that if the ratio µ = Eoct/Eship of these two cluster energies is

chosen properly, tilings having minimal energy will satisfy the alternation condition

and will be eight-fold symmetric, i.e., they are perfect octagonal tilings.

Interactions which give low energy only to a few clusters most important for the

structure, and zero energy to all other clusters, have recently been proposed by Jeong

and Steinhardt[13]. Such interactions do not try to exclude unwanted configurations

by explicitly giving them high energy. Rather, these interactions minimize the energy

of the structure by maximizing the density of the low energy clusters. This is

achieved by frequent overlaps of such clusters, which leads to correlations. If the

low energy clusters are chosen properly, perfectly ordered structures may emerge

as the ground state, even though the interaction does not explicitly penalize bad,

defective local configurations. Such interactions appear to be very robust, i.e., they

need no excessive fine tuning of parameters in order to work, and they seem relatively

easy to realize in terms of atomic pair interactions.

Here we should keep in mind that in complex structures such as quasicrystals we

cannot expect that all pairs of neighboring atoms are at their ideal distances, where

the corresponding pair potential is minimal. For geometrical reasons there will al-

ways be some bonds which are somewhat frustrated, and a compromise between

the competing interactions has to be found for the ground state structure. How-

ever, there may be some finite clusters for which all interatomic distances fit almost

perfectly to the corresponding pair potentials. Such clusters therefore will have a
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particularly low energy, and it is advantageous to pack them as densely as possible,

with large overlaps. In our tiling model, these low energy clusters are represented

by low energy tile clusters, which of course should be thought of as being decorated

with atoms.

By construction, the interaction we have chosen strongly favours the alternation

condition. Still, we have to demonstrate that it also favours the octagonal tiling

among all tilings satisfying the alternation condition. For this we need to calculate

the densities of the octagon and ship clusters as a function of the Schur rotation

angle ϕ, which we set equal to zero for the octagonal tiling. These densities are easily

obtained from the areas of the subregions of the (deformed) acceptance domains

corresponding to these two clusters (see[12]). To leading order, both densities vary

quadratically as a function of ϕ, one with a maximum and one with a minimum at

ϕ = 0. The exact result is:

doct(ϕ) = σ−1(1 − σ2 tan2 ϕ) (| tanϕ| ≤ σ−2)

dship(ϕ) =
σ−2

2
(1 + σ4 tan2 ϕ) (| tanϕ| ≤ σ−4)

(1)

where again we have set σ =
√

2 + 1. The range of validity of (1) is determined by

the domains of stability of the topology of the corresponding subwindows. It should

be noted that these results are exact even for periodic approximants, for which the

calculation of the areas of the subwindows does not necessarily lead to the correct

result. In this case, however, there is only one possible unit cell content for each

approximant[12], for which (1) can be checked explicitly.

From (1) it is now clear that the octagonal tiling has minimal energy among

all tilings satisfying the alternation condition, at least among those with moderate

phason strain, provided the ratio of cluster energies µ ≡ Eoct/Eship satisfies the

inequality 2µ > σ. Would this be an equality, a periodic approximant with square

unit cell of edge length σ would be energetically competitive. Note that for that

approximant (1b) holds even though its phason strain is outside the domain of

validity of (1b). It is also clear that the ratio µ must be bounded from above, too,

since with a cluster energy Eship = 0 the structure could be disordered by partially

flipping certain worms without any energy cost (see [14]). In order to determine the

correct interval of admissible values for the ratio µ of the cluster energies, we have
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numerically calculated the densities of octagon and ship clusters for a large number

of various kinds of periodic approximants to the octagonal tiling, concentrating on

approximants which are not permitted by the alternation condition, or which are

outside the domain of validity of (1). From these densities we can derive that the

octagonal tiling has lowest energy whenever the ratio of the cluster energies satisfies

the inequalities

1 +
√

2 <
2Eoct

Eship

< (1 +
√

2)5 (2)

The structure with highest relative octagon density is found to be a periodic ap-

proximant with rhombic unit cell of edge length σ2, which leads to the upper bound

in (2). Therefore, at both borders of the (huge) window in (2) there is a periodic

approximant which becomes energetically competitive.

While the above results provide ample evidence that under the condition (2)

the octagonal tiling is preferred against periodic approximants, and probably also

against non-periodic structures with a linear phason strain, they do not provide any

information about other tilings made from the same tiles. In particular, these results

cannot exclude that rearrangements of tiles not occurring in perfect approximants

could further lower the energy. In order to exclude such possibilities, we have used

Monte Carlo simulations, similar to the ones used in [13], to find the real ground

state. A large number of periodic approximants of different shapes and sizes of up

to a few thousand tiles have been slowly cooled from infinite to zero temperature. In

all cases where the inequalities (2) were satisfied, and cooling was slow enough, the

correct, perfectly ordered ground state has been found. As this ground state could

be recovered from a completely disordered state, this provides strong evidence that

the octagonal LI class of tilings indeed is the ground state of our cluster interaction.

III. AN INTERACTION WITH SUPER-TILE RANDOM TILING

GROUND STATES

It is easy to see that favouring only one of the two clusters is not enough to

obtain an octagonal ground state. As mentioned above, when only octagon clusters

are given low energy, the overall ground state is a periodic approximant with rhombic

unit cell of edge length σ2. Still, it is interesting to consider such a system at fixed
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stoichiometry, i.e., at fixed concentration for each kind of tile, which also fixes an

average phason strain for the tiling. An important observation now is that a perfect

octagonal tiling can always be composed to a tiling of big squares and rhombi, both

with edge length σ2, which is nothing but its second inflation (Fig. 3). The big square

and rhombic super-tiles are all decorated in the same way, and it is easily verified

that rearranging these super-tiles does not change the number of octagons present

in the structure (see Fig. 4). In fact, any random tiling with these super-tiles, and

with the same density of squares and rhombi, will have the same density of octagons

as the perfect octagonal tiling, and therefore will be energetically degenerate with it.

In particular, this is the case for square-rhombus super-tile random tilings with zero

average phason strain. The same reasoning can be applied to tilings with any other

given, fixed phason strain. Note, however, that in the case of a periodic approximant

there might be no super-tile tiling compatible with that periodicity, so that part of

the periodicity has to be given up in the super-tile tiling, although the phason strain

of the approximant is maintained. For each given phason strain, there is a whole

ensemble of super-tile random tilings which are energetically degenerate.

In order to find the true set of ground states for this system, the Monte Carlo

methods used in [13] have been applied also in this case. Our simulations, which

we performed for many different periodic approximants compatible with a super-tile

tiling, have shown that the square-rhombus super-tile random tilings indeed belong

to the ground state, which therefore is heavily degenerate. An example of such a

random tiling, obtained in one of the simulations, is shown in Fig. 4. There are,

however, other ground state structures as well, which are not square-rhombus super-

tile tilings. One of these is shown in Fig. 5. These other ground state structures

can be described as super-tile tilings with isosceles triangles and darts as super-

tiles. Note that any square-rhombus super-tile tiling can be decomposed into these

smaller super-tiles, too: rhombi are divided into two triangles, and squares into

two triangles and one dart. As we have found no other ground states, we conclude

that the ensemble of ground state configurations at fixed phason strain consists of

triangle and dart super-tile random tilings. Other examples of interactions having

super-tile random tiling ground states have previously been found by Jeong and

Steinhardt[13].
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An interesting aspect of these super-tile random tiling ground states is that they

look very perfect at a local scale. The reason is that, on the one hand, the decorations

of the super-tiles are legal configurations which frequently occur also in the perfect

tiling, and on the other hand, due to the big size of the super-tiles, the effective

phason stiffness is strongly enhanced[15], compared to a random tiling will small

tiles. Such states are therefore hard to distinguish from perfectly ordered states,

and might be perfectly acceptable as models for the structure of even very well-

ordered quasicrystals.

It is instructive to see what happens to the super-tile random tilings if the ship

clusters are again included in the set of low energy clusters. We note that a ship

cluster is located on all of the super-tile edges in Fig. 3, and most of the super-tile

edges in Fig. 4. More precisely, there is a ship cluster on all those edges where

the alternation condition is satisfied for the super-tiles. In other words: the ship

clusters hook the square and rhombus super-tiles together in such a way that the

alternation condition is satisfied at the super-tile level. For each violation of the

alternation condition there is (at least) one edge where the two halfs of the ship

cluster on both sides of the edge do not combine to a complete ship cluster. The

decoration of the big squares and rhombi makes sure that on parallel edges of a

square, ship clusters are oriented alike, whereas on parallel edges of a rhombus they

have opposite orientation. The orientation of the ship clusters therefore works in

the same way as the Beenker arrows on tile edges. Whenever there is a mismatch of

the arrow directions of the two tiles adjacent to an edge, the two half-ships do not

combine to a complete ship cluster. In a similar way, the ship clusters also make sure

that triangles and darts are arranged in such a way that they can be composed to

squares and rhombi. In every triangle-dart configuration where this is not possible,

there is a lower than maximal density of ship clusters. A configuration where this

happens is shown in Fig. 5. By these mechanisms it becomes thus very transparent

how the inclusion of the ship clusters in the interaction can order the super-tile

random tilings to perfectly ordered tilings, in the case of zero phason strain even to

perfect octagonal tilings.
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IV. DISCUSSION AND CONCLUSION

In this paper we have studied in how far simple cluster interactions can stabilize

a unique LI class of quasicrystalline ground states, even in cases where this LI class

does not allow for perfect matching rules. As we have worked with a pure tiling

model, which implies, in particular, that we have completely rigid clusters, we have

implicitly assumed that the interactions responsible for the formation of the tiles and

the clusters are much stronger than the coupling between the clusters. It seems that

this assumption is not completely unreasonable, as it is well known that certain

clusters tend to form already in the melt, shortly before solidification, and it is

certainly compatible with our other assumption that these clusters have much lower

energy than all the other clusters.

Having made this reservation, the following conclusions, which are drawn from

our (mostly numerical) results, appear to be relevant for a better understanding of

quasicrystal formation:

i) Local isomorphism classes of tilings, or other discrete structures, which do

not admit any local matching rules still can be the (complete) set of ground states

of very simple, local interactions. In the example presented here, this is possible

because there are local matching rules which enforce at least a family of LI classes

of tilings which are already perfectly ordered. Within such a family of LI classes,

however, only those LI classes can be selected by a local interaction, which are

somehow distinguished from the other members of the family. In the present case,

the LI class of octagonal tilings has a higher symmetry than all the other tilings in

the family.

ii) There are very simple, local interactions having a quasicrystalline ground state,

and these interactions seem to be very robust. No fine-tuning of any parameters was

necessary. Our example shows that an interaction having a quasicrystalline ground

state does not need to favour all allowed clusters up to a given size against all

forbidden ones, nor does it need to include all these clusters in the interaction. It

is sufficient to favour just the most important clusters, and disregard all the other

ones, whether they allowed or forbidden. By giving a number of important clusters

a lower energy than all the other clusters, a quantitative element is introduced in
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the interaction, which is not present in a pure matching rule interaction, where all

allowed clusters have the same energy. In this respect, such a cluster interaction is

more realistic.

iii) Interactions not capable of enforcing a completely ordered ground state may

still have super-tile random tiling ground states. Even though such structures are not

perfectly ordered, they still may look very perfect on a local scale. Since such ground

states can be obtained with even simpler interactions than perfectly quasiperiodic

ground states, they represent attractive models which can describe the structure of

even well-ordered quasicrystals in a perfectly acceptable way.

We have obtained these results with the example of the octagonal Ammann-

Beenker tiling, but it should be noted that there are other examples which are

expected to be completely analogous. In particular, many (undecorated) dodecago-

nal tilings are suffering from the same deficiencies as the octagonal tiling[2], in that

they do not allow for perfect matching rules, although one can expect matching

rules to exist which enforce tilings in a family of LI classes with (at least) six-fold

symmetry. We expect that also in these cases a simple cluster interaction is capable

of stabilizing a single LI class of perfectly dodecagonal tilings. For the dodecagonal

tiling introduced by Socolar[16], consisting of hexagons, squares and 30◦-rhombi,

the analogy seems to extend even to the matching rules. With the methods used in

[10] it should be possible to prove that the alternation condition enforces a family

of perfectly ordered tilings also in that case.
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FIG. 1: A lane of tiles satisfying the alternation condition.

FIG. 2: The octagon cluster (left) and the ship cluster (right).

FIG. 3: Part of a perfect octagonal tiling, composed to square and rhombus super-tiles.
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FIG. 4: Square-rhombus super-tile random tiling. Note that the super-tiles do not satisfy

the alternation condition everywhere. This configuration was obtained by slow cooling in

a Monte Carlo simulation, with an interaction favouring only octagon clusters.

FIG. 5: Triangle-dart super-tile random tiling, obtained in a Monte Carlo simulation

under the same conditions as the tiling of Fig. 4. Note that a region near the bottom of

the figure cannot be composed to square and rhombus super-tiles.
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