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We introduce a simple local atomic structure optimization algorithm which is significantly faster
than standard implementations of the conjugate gradient method and often competitive with more
sophisticated quasi-Newton schemes typically used in ab initio calculations. It is based on con-
ventional molecular dynamics with additional velocity modifications and adaptive time steps. The
surprising efficiency and especially the robustness and versatility of the method is illustrated using
a variety of test cases from nano-science, solid state physics, materials research and biochemistry.
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Finding mechanically stable equilibrium configurations
of atomistic systems is one of the most common tasks
in computational materials science, solid state physics,
chemistry and biology. This corresponds to finding the
(nearest) atomic structures with minimum potential en-
ergy, starting from a given initial configuration. To
solve this task a variety of well established optimiza-
tion methods, like steepest descent, conjugate gradi-
ent (CG), Newton-Raphson, quasi-Newton or truncated-
Newton methods are available [1–4]. The current state-
of-the-art methods are mostly based on some approxi-
mate representation for the Hessian matrix to determine
line search directions. Also variants of molecular dynam-
ics (MD) methods which systematically remove kinetic
energy from the system are commonly applied for mini-
mization purposes [5–7]. Such local ‘quenching’ is impor-
tant also in many global minimization algorithms [8, 9].
Interestingly, relaxation methods based on MD has been
thought to be good for practical realization, but not very
competitive with the afore mentioned sophisticated algo-
rithms, and for this reason they have often been intro-
duced as by-products of secondary importance in regular
articles [5–7], not receiving the attention they deserve.

Here we introduce a simple, yet powerful MD scheme
for structural relaxation. Consider a blind skier search-
ing for the fastest way to the bottom of a valley in an
unknown mountain range described by the potential en-
ergy landscape E(x) with x = (x1, x2). Assuming that
the skier is able to retard and steer we would recommend
him to use the following equation of motion:

v̇(t) = F(t)/m − γ(t)|v(t)|(v̂(t) − F̂(t)) , (1)

with the mass m, the velocity v = ẋ, the force F =
−∇E(x), and hat for a unit vector. We recommend as
strategy that the skier introduces acceleration in a direc-
tion that is ‘steeper’ than the current direction of motion

via the function γ(t) if the power P (t) = F(t)·v(t) is pos-
itive, and in order to avoid uphill motion he simply stops
as soon as the power becomes negative. On the other
hand, γ(t) should not be too large, because the current
velocities carry information about the reasonable ‘aver-
age’ descent direction and energy scale.

We show in this Letter that eq. (1) brings the skier
surprisingly fast to the desired destination. A discretized
version of eq. (1) in combination with an adaptive time
step results in a minimization scheme for multidimen-
sional functions E(x1, . . . xM ) which is competitive in
speed with the above mentioned sophisticated optimiz-
ers, but has also other important features as we shall
demonstrate. Contrary to the conventional schemes the
new algorithm relies on inertia and, consequently, this
novel method was dubbed FIRE for Fast Inertial Re-

laxation Engine. Fig. 1 shows that FIRE easily keeps
up with powerful standard schemes like CG and the
limited memory Broyden-Fletcher-Goldfarb-Shanno (L-
BFGS) scheme [10] in a two-dimensional spiral potential.
In calculations on a broad range of realistic test systems
the new algorithm was surprisingly fast and could be used
with great ease for systems with millions of degrees of
freedom.

The numerical treatment of the algorithm is simple.
Any common MD integrator can be used as the basis
for the propagation due to the conservative forces. The
MD trajectory is continuously re-adjusted by two kinds
of velocity modifications: a) the above mentioned imme-
diate stop upon uphill motion and b) a simple mixing
of the global (3Natoms dimensional) velocity and force

vectors v → (1 − α)v + αF̂|v| resulting from an Euler-
discretization of the last term in eq. (1) with time step ∆t
and α = γ∆t. Both ∆t and α are treated as dynamically
adaptive quantities.

Explicitly, the FIRE algorithm uses the following prop-



agation rules (given initial values for ∆t, α = αstart and
for the global vectors x and v = 0):

MD: calculate x, F = −∇E(x), and v using any com-
mon MD integrator; check for convergence

F1: calculate P = F · v

F2: set v → (1 − α) · v + α · F̂ · |v|

F3: if P > 0 and the number of steps since P was neg-
ative is larger than Nmin, increase the time step
∆t → min(∆t·finc, ∆tmax) and decrease α → α·fα

F4: if P ≤ 0, decrease time step ∆t → ∆t · fdec, freeze
the system v → 0 and set α back to αstart

F5: return to MD

In relaxation an accurate calculation of the atomic trajec-
tories is not necessary, and the adaptive time step allows
FIRE to increase ∆t until either the largest stable time
step ∆tmax is reached, or an energy minimum along the
current direction of motion (P < 0) is encountered. In
the latter case the system is instantly frozen (v → 0)
and the time step is substantially reduced in order to
have a smooth restart. A short ‘latency’ time of Nmin

MD steps before accelerating the dynamics is important
for the stability of the algorithm.

Most of the parameters introduced above are not sen-
sitive to different systems. For all systems under study,
the following parameters yielded a fast and robust be-
havior: Nmin = 5, finc = 1.1, fdec = 0.5, αstart = 0.1
and fα = 0.99 [20]. Thus the only adjustable parameter
of the method is the maximum time step ∆tmax. From
a typical MD simulation time step ∆tMD one can obtain
an initial rough estimate of ∆tmax ∼ 10 · ∆tMD.

Special attention needs to be paid to the global na-
ture of the algorithm, which assumes that all degrees of

freedom are comparable. All the velocities should be on
the same scale, which for hetero-nuclear systems can be
roughly achieved by setting all the atom masses equal.

To demonstrate the performance of FIRE, we com-
pare it to two relaxation methods: the Polak-Ribière
version of CG with the popular Numerical Recipes imple-
mentation [2], and the limited memory version of BFGS
(L-BFGS) [1, 10]. These are widely used methods in
large systems where storage and arithmetic costs are
an issue [21]. Although there are more specialized im-
plementations available for these methods [4, 11], the
popularity and good documentations make these algo-
rithms ideal reference methods [22]. In the compar-
isons the root-mean-square (RMS) of the global force

FRMS = |F|/(3N)
1

2 (force norm) is taken as a repre-
sentative measure for the degree of relaxation in most
cases. The number of ‘function calls’ is a generic nota-
tion for the number of separate points x where either
energy, force, or both are evaluated.

FIG. 1: Optimization of a spiral-shaped potential energy func-
tion (see left inset, X is the starting point). Shown is the evo-
lution of the azimuthal angle θ versus the number of function
calls of FIRE, CG and L-BFGS. FIRE is slower at the begin-
ning, but catches up quickly with L-BFGS as the curvature
increases, with CG not converging within 500 function calls
due to inefficient line searches as displayed in the right inset
showing a part of the trajectory of FIRE (red) and CG (blue).

As a first demonstration, Fig. 1 shows FIRE, CG
and L-BFGS optimizations of a function E(x1, x2) =
sin(πr+θ/2)+r2/10, modeling a curved relaxation path-
way. In atomic systems, curved relaxation paths are the
result of the usually highly corrugated, intricate poten-
tial energy surfaces. In this model, FIRE (masses = 1
and ∆tmax = 0.3) with its smooth down-hill trajectory
reaches the minimum (E < −0.99) first, followed soon
by L-BFGS. However, according to wall clock FIRE is
almost three times faster than L-BFGS due to small
computational overhead. CG is slow for the curved,
non-harmonic function due to inefficient line searches as
shown in Fig. 1.

The first real test system is the biomolecule fenre-
tinide, which is used as a cancer drug (see upper inset
in Fig. 2(a)). The atomic interaction was modeled using
density-functional based tight-binding (DFTB) method
(see ref. [12] and references therein). The starting con-
figuration was created by twisting the carbon chain along
the chain axis. This is a challenging set-up since the un-
winding is done by the torsional force of single carbon-
carbon bonds. In FIRE all the masses were set to one
atomic mass unit and ∆tmax = 1 fs.

Fig. 2(a) shows that in terms of FRMS FIRE is always
ahead of L-BFGS even though the energies go nearly par-
allel. CG is much slower and shows almost no decrease
either in FRMS or energy beyond a certain point. Anal-
ysis of the relaxation trajectory shows that especially for
CG the straightening process is crowded with inefficient
line search directions, indicating the high curvature of the
minimization pathway. It is especially interesting to note
that FIRE becomes overall faster relative to both CG and
L-BFGS when the initial twist angle is increased, result-



ing in a larger distance from the minimum and larger
anharmonicity of the energy landscape.

The above relaxation was repeated using SCC-
DFTB [12], which requires self-consistent charge distri-
bution and often pertains intrinsic (random) errors in
the potential energy due to imperfect convergence of the
electronic degrees of freedom. Both CG and L-BFGS op-
timizations did not converge due to their sensitivity to
errors in energy. Even though forces are also erroneous,
FIRE was able to optimize the structure because the in-
ertia manages to smoothen out the errors. This is an
important feature, since this situation is frequent in ab
initio calculations.

DFTB was also applied for quenching of a metallic
Na−71 nanocluster, where the initial structure was a sphere
cut from a perfect lattice. Fig. 2(b) shows that FIRE first
relaxes the symmertic structure but is then able to break
the symmetry of the cluster and finally finds a new low-
energy structure. L-BFGS and CG relax the symmetric
structure but are not able to break the symmetry of the
cluster, which requires to go through a shallow valley
with very small forces which an energy-based optimiza-
tion method does not achieve.

One larger test system is shown in Fig. 2(c), which is an
approximant to a decagonal AlNiCo quasicrystal [13, 14]
with 3360 atoms in periodic boundary conditions (PBC)
and a fixed box size. The atomic interaction was mod-
eled with embedded atom method potential [14, 15]. Al-
though this is a seemingly ideal problem for the classi-
cal algorithms since no large conformation changes occur,
FIRE is surprisingly competitive to L-BFGS and roughly
three times faster than CG.

Further performance tests were conducted on a broad
range of different systems such as the relaxation of a crack
and a vacancy, and the quenching of a hot copper film.
The crack system is set up according to the anisotropic
linear elastic solution for a sharp crack at the Griffith
load in Ni (for details see [16]). It requires the relaxation
of large strains at the crack tip in their interaction with
the long range strain field of the crack. Similarly the va-
cancy system requires the relaxation of very large forces
around the vacancy and the adjustment of the long range
stress field. Finally, the quenching of a free-standing thin
copper film from 1000 K temperature combines the re-
laxation of the long range thermal expansion with the
relaxation of local displacements. The results for these
systems are compiled in Tab. I. In performance FIRE is
in all cases between CG and L-BFGS, being faster than
CG by a factor of 3-6 and becoming more efficient espe-
cially for small convergence criteria.

The determination of saddle points, transition states
or critical points constitutes another class of typical re-
laxation problems. As a well documented example [17],
we have chosen the determination of the Peierls stress τP

of an edge dislocation in Al (2.0 MPa < τP < 2.2 MPa).
Details of the set-up and the boundary conditions are

FIG. 2: a) Relaxation of fenretinide (Lewis structure shown in
the upper inset) modeled with density-functional based tight-
binding. The force norm as a function of the number of func-
tion evaluations is shown for FIRE, CG and L-BFGS (The
color coding is shown in c). The lower inset shows the evo-
lution of the total energy E above the equilibrium value E0.
b) Relaxation of metallic Na−

71
nanocluster. CG and L-BFGS

remain in the symmetric structure (upper inset), while FIRE
finds a lower energy symmetry-broken structure (lower inset).
c) Relaxation of the AlNiCo quasicrystal.

given in [18]. Starting from a fully relaxed stable struc-
ture at τ = 1.8 Mpa the systems were loaded to τ =

TABLE I: Number of function calls required by FIRE, CG and
L-BFGS to reach convergence for the relaxation of different
test systems. The used criteria were FRMS ≤ 10−3 eV/Å
(10−6 eV/Å) (for vacancy also the maximum force component
was used: fi ≤ 10−3 eV/Å (10−5 eV/Å).

system Natoms FIRE CG L-BFGS
AlNiCo 3360 136 (639) 661 (2131) 98 (350)
crack in Ni 4815 61 (207) 174 (764) 20 (118)
hot Cu plate 16200 299 (585) 545 (1767) 61 (217)
vacancy in Cu 107998 43 (132) 58 (329) 9 (55)
vacancy in Cu 1492991 43 (118) 59 (358) 11 (-)



2.0 MPa and 2.2 MPa. FIRE performed as expected.
Relaxation at 2.0 MPa led to a stable configuration at
the initial position. At 2.2 MPa, the dislocation started
to move in the pseudo-dynamics of FIRE. In contrast,
L-BFGS provided no indication for instability. The dis-
location moved for a significant distance (∼ 10 Å) at both
stresses until the optimization stopped since no further
minimization was possible. The direct applicability of
FIRE to such critical point analysis, which apparently is
not possible with L-BFGS and other energy minimizing
algorithms is due to its strict adherence to minimizing
forces. This has to be regarded as a big advantage of the
algorithm and indication of its wide applicability.

Apart from the performance, FIRE thus incorporates
features making it a very versatile optimizer. As already
mentioned, the method is stable with respect to random
errors in the potential energy, it is well suited for prob-
lems near critical points and it can be used with very
small convergence criteria with the force scale decreas-
ing nearly exponentially. In addition to that, compared
to other relaxation algorithms, FIRE is extremely sim-
ple with around 10 additional lines of code to any MD
implementation. Moreover, it has nearly no computa-
tional overhead, has very low memory requirements and
scales well with the system size; calculations with up to
38 million atoms have been performed without problems.
FIRE is also well suited for other optimization tasks, such
as constrained minimization (using the existing standard
constrained MD methods e.g. by setting α = 0), paral-
lel computing, and transition state calculations such as
the nudged elastic band method, where MD-type meth-
ods are often used [19]. Since the initial guess for the
maximum time step δtmax is easy to make, and usually
one makes several optimizations for similar systems, the
parametrization does not require more attention than in
other methods.

Finally, since FIRE requires only the first derivatives
of the target function, it can easily be adapted to var-
ious other minimization problems. By now, FIRE has
been applied successfully also to a handful of other gen-
eral multidimensional minimization problems, where pre-
liminary results show it to be often more efficient than
previously used common algorithms [23].

In conclusion we have presented an extremely simple,
universally applicable robust new algorithm for the re-
laxation of atomic structures. Tests on different systems
show that for large scale simulations the method is sig-
nificantly faster than commonly used CG and competes
even with L-BFGS. FIRE can be generally recommended
as a versatile alternative to non-inertial atomistic relax-
ation methods. It is also ideally suited for the study of
the mechanical stability of systems for the determination
of transition states, where competing methods often fail.
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