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CH-8093 Zürich, Switzerland

and
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Abstract. A detailed model structure of dodecagonal quasicrystals is proposed
which applies to both dodecagonal Ni-Cr and V-Ni or V-Si-Ni. This model struc-
ture can be represented as the restriction of a 5d periodic structure to a 3d sub-
space, which is identified with physical space. The point group and the space
group of the 5d periodic structure are determined. The latter is non-symmorphic,
containing a set of glide “planes” and a screw axis. These space group elements
lead to characteristic extinctions in the Fourier spectrum, which should be exper-
imentally observable. A numeric calculation, which includes multiple scattering
effects for electron diffraction, confirms the presence of the extinctions predicted
by the space group analysis. The model structure proposed here serves as a very
instructive example how crystallographic concepts, such as Bravais type, point
group, or space group, can be applied to quasicrystals.

1. INTRODUCTION

The detailed atomic structure of quasicrystals is to a large extent still an unsolved
problem. Here we present such a model structure with detailed atomic positions
for the case of dodecagonal quasicrystals1−3). Dodecagonal quasicrystals have
first been observed by Ishimasa, Nissen and Fukano1,2) in small particles of Ni-Cr
produced by the so-called gas evaporation technique. Under electron diffraction,
this new phase produces a crystallographically forbidden twelvefold symmetric
diffraction pattern. The dodecagonal phase always coexists with the crystallo-
graphic σ-phase, to which it must be closely related. This can be deduced from the
fact that the corresponding high resolution electron micrographs (HREMs) look
very similar. This will enable us to derive a model structure for the dodecagonal
phase directly from the structure of the σ-phase. More recently, the same phase
had also been observed in V-Ni and V-Si-Ni alloys by Chen et al.3). Their spec-
imens are prepared by the conventional piston-and-anvil technique. This allows
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in particular to observe also diffraction patterns with incoming beam perpendic-
ular to the twelvefold axis. These diffraction patterns show that the dodecagonal
phase is periodic along the z-axis. In the case of the small particles of Ni-Cr it
was not possible to take such pictures because of the multi-phase character of the
particles.

The close resemblance of the HREMs of the dodecagonal and the σ-phase will
be the starting point in the derivation of a model structure of the dodecagonal
phase. These HREMs1−3) show bright spots which form the vertices of a tiling.
In the case of the σ-phase, the tiling is the (periodic) semi-regular tesselation
with Schläfli symbol (32 · 4 · 3 · 4), consisting of equilateral triangles and squares
only. In the dodecagonal case however, the tiling consists of the same triangles
and squares, together with some additional 30◦-rhombuses. Moreover, the local
configurations in the dodecagonal tiling look very similar to those of the σ-phase
tiling. Therefore, it is very tempting to identify the triangles and squares in the
dodecagonal tiling with the corresponding building blocks of the σ-phase, which
are triangular and square prisms respectively. Since the 30◦-rhombus is rather
thin, its decoration is then also fixed whenever it is isolated, which is practically
always the case. Following the tiling, with these three building blocks we can
then construct a layer which we stack periodically to obtain a model structure for
dodecagonal quasicrystals.

In a first step, with the help of the projection method we construct quasiperi-
odic tilings with dodecagonal symmetry. This is achieved by projecting from the
4d dodecagonal lattice4) with a suitably constructed acceptance domain. This
projection method provides us with an analytical description of one layer of the
model structure. We will be concerned mainly with one of these tilings, which
resembles as closely as possible the experimentally observed HREMs. More de-
tails about other tilings which might be relevant for dodecagonal quasicrystals
will be published elsewhere5). In a next step, we construct a 5d periodic structure
such that the restriction of this periodic structure to a suitably embedded 3d sub-
space (physical space) yields the desired model structure. The Fourier spectrum
of the model structure is then the projection to 3d physical reciprocal space of
the Fourier spectrum of the 5d periodic structure.

The construction of the 5d periodic structure makes manifest that it is invariant
under a certain non-symmorphic space group, which is one of the 132 space groups
for quasicrystals6) which can be obtained from 5d periodic structures. In fact, this
space group contains a screw axis and a set of glide “planes”. These symmetry
elements lead to characteristic extinctions in the Fourier spectrum, which should
be experimentally observable. Finally, we calculate electron diffraction patterns
of the model structure for various directions of the incoming beam, and compare
them to the experimentally observed ones, as far as they are available. It turns
out that it is not sufficient to just calculate the Fourier transform of the model
structure, which would lead to a very poor fit. Rather, since electrons are scattered
very strongly by the coulomb potential, we have to include multiple scattering
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effects. Including these effects, we obtain a very nice fit with the experimental
results. Moreover, we can verify that the characteristic extinctions derived in the
space group analysis are actually present in the calculated diffraction patterns.
Unfortunately, the corresponding experimental pictures are still missing.

2. DODECAGONAL TILINGS

In this section we derive quasiperiodic dodecagonal tilings suitable for decoration
with the basic building blocks of the σ-phase. Quasiperiodic tilings with a given
symmetry are usually obtained by projection from a higher dimensional lattice
with this symmetry. Here we therefore have to construct a suitable lattice L with
twelvefold symmetry. For the sake of simplicity, we are interested only in lattices
of minimal dimension. A further requirement is that the twelvefold symmetry
operation A leaving L invariant has a 2d invariant subspace E‖ on which it acts
with the usual 2d representation

r‖(A) =

(

cos(π/6) − sin(π/6)
sin(π/6) cos(π/6)

)

. (1)

In a first step, we determine the representation (and its dimension) with which
A acts on L. As is well known, a 2d lattice cannot have twelvefold symmetry.
If such a lattice would exist, we could express the representation matrices of its
point group with respect to a lattice basis. In such a basis, these representation
matrices would then have only integer entries, and in particular integer traces.
The traces however are the same in every basis, and since tr(r‖(A)) = 2 cos(π/6)
is not an integer, such a lattice cannot exist. Above reasoning suggests however a
way to solve this problem: we simply have to add more irreducible representation
of C12 to r‖ such that the total trace becomes an integer. As it turns out, it
is sufficient to add one more irreducible representation: there is a unique (up to
equivalence) 2d irreducible representation r⊥ acting on an invariant subspace E⊥,
whose trace combines with the trace of r‖ to an integer, namely

r⊥(A) =

(

cos(5π/6) − sin(5π/6)
sin(5π/6) cos(5π/6)

)

. (2)

Therefore, r = r‖ ⊕ r⊥ is a good candidate for the representation with which A
acts on L. Let e1 be a vector in a basis of L. Clearly, e1 must have components
in both E‖ and E⊥. If we act repeatedly with r(A) on e1, we obtain a star of
twelve vectors {e1, . . . , e12}, whose projections on E‖ and E⊥ can be expressed
in a suitable orthonormal basis as

e
‖

i = a‖(cos((i − 1)π/6), sin((i − 1)π/6))

e⊥i = a⊥(cos(5(i− 1)π/6), sin(5(i − 1)π/6)).
(3)

Note that only four of these twelve vectors are rationally independent. The point
is that the vectors in any orbit of a subgroup of C12 add up to zero. For instance,
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the subgroup of order two has six different orbits and generates the relations
ei+6 = −ei. The subgroup of order three has four orbits and generates therefore
four relations, two of which are rationally independent, namely e5 = e3 − e1 and
e6 = e4 − e2. These relations allow us to express all twelve vectors as integer
linear combinations of {e1, . . . , e4}. Therefore, the Z-span of these four vectors,
which we will use as a basis in the following, is indeed a four dimensional lattice
invariant under the representation r of C12.

If we compare these lattices parametrized by a‖ and a⊥ to the complete classifi-
cation of crystallographic groups in four dimensions4), we see that these lattices
form the so called dodecagonal Bravais class in four dimensions. The point group
of these lattices is D24, the dihedral group of order 24, generated by

A =







0 0 0 −1
1 0 0 0
0 1 0 1
0 0 1 0






, B =







0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0






, (4)

where we have expressed the twelvefold rotation A and the mirror B with respect
to the lattice basis {e1, . . . , e4}. Note that there are no other four dimensional
dodecagonal lattices. However, for special ratios of the parameters a‖ and a⊥

we obtain lattices with even larger symmetry. Since the additional symmetry
elements do not leave the spaces E‖ and E⊥ seperately invariant however, these
symmetries are not interesting for quasicrystals.

The vertices of quasiperiodic tilings are usually obtained by projecting the lattice
points of L onto E‖ which are contained in a strip S = C×E, where the acceptance
domain C is some subset of E⊥, and E is a plane parallel to E‖. The size and shape
of C determines the local configurations of the tiling. Recall that we are interested
in constructing tilings consisting of eqilateral triangles, squares and a few isolated
30◦-rhombuses, all of edge length a‖. The lattice parameter a⊥ is arbitrary. If
a certain local configuration should (not) occur in the tiling, we have to take
care that the projections of the corresponding lattice points onto E⊥ do (not) fit
simultaneously into C. If we want to avoid adjacent rhombuses, we have to choose
C so small that x⊥, x⊥+e⊥1 , x⊥+e⊥2 and x⊥+e⊥3 (or a symmetry equivalent set)
do not fit simultaneously into C for any choice of x⊥. The largest such acceptance
region Ca which is connected is shown in Fig. 1. This acceptance region is non-
convex, with a small diameter of 2a⊥, and a large diameter of 4 cos(π/12)a⊥/

√
3.

A tiling constructed with this acceptance region is shown in Fig. 2. It consists
indeed of the desired tiling units and looks remarkably similar to the HREMs1−3).
An even better coincidence can be obtained by rearranging locally some of the
tiles. This is known as Hendricks-Teller disorder7,8), which is very common in
quasicrystals. If we wanted to eliminate all rhombuses, we had to choose an even
smaller acceptance region Cb (Fig. 1), which leads to the tiling shown in Fig. 3.
In this tiling, the 30◦-rhombuses have been replaced by a new tiling unit, an
asymmetric hexagon. If we choose as acceptance region the convex hull Cc of Ca
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(Fig. 1) we obtain a tiling first constructed by Stampfli9) by means of a grid10).
This tiling is shown in Fig. 4. It should be noted that these tilings have been
discussed also by Niizeki and Mitani11). Henceforth, we will concentrate on the
tiling of Fig. 2, without Hendricks-Teller disorder.

Cc

Ca

Cb

Fig. 1: Various acceptance regions Fig. 2: Tiling with acceptance region Ca

Fig. 3: Tiling with acceptance region Cb Fig. 4: Tiling with acceptance region Cc

3. THE ATOMIC STRUCTURE

Next we decorate the squares and triangles of the dodecagonal tiling with the
structural units of the σ-phase. These units are shown in Fig. 5, where dotted
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circles represent atoms* at z = 1/4 and z = 3/4, open circles atoms at z = 0
and full circles atoms at z = 1/2 (in units of the periodicity in z-direction). From
Fig. 5 one can also see that the decoration of the (isolated) rhombuses is forced
by that of the squares and triangles. This decoration has already been proposed
in Ref. 1. From Fig. 5 we see that the layers at z = 1/4, z = 3/4 contain
atoms at the vertices of the dodecagonal tiling, whereas the layers at z = 0 and
z = 1/2 consist of atoms placed on the midpoints of some bonds, along with
possibly some atoms in the interior of the squares and triangles, depending on the
orientation of these figures (see Fig. 5). In the z = 0 layer, only bonds parallel to
e

‖

i with i even are occupied, whereas in the z = 1/2 layer those with i odd are
occupied, so that the decoration of the latter two layers breaks the dodecagonal
symmetry of the underlying tiling to a hexagonal one. Therefore, if we denote
the z = 1/4 (or z = 3/4) layer by A, the z = 0 layer by B and the z = 1/2 layer
by C, the structure is given by a stacking . . .ABAC . . ., where the layers A have
dodecagonal symmetry, and the layers B and C have hexagonal symmetry.

Fig 5: Typical configurations in the σ-phase (left) and the quasicrystal (right). For

description see text.

A similar structure for dodecagonal quasicrystals has been proposed by Yang and
Wei12). Their structure can be understood as an alternating stacking of a layer D
and its mirror image D̃ (where the mirror plane is perpendicular to the z-axis).
The layer D is essentially a decoration of the vertices of the tiling of Fig. 3 by
slightly distorted hexagonal antiprisms containing an additional atom at their
center. Because of the great similarity of this structure to ours, the diffraction
pattern is expected to be very similar too. Nevertheless we consider our decoration
as preferable, for the following reason. As we have argued above, the bright spots
in the HREMs1−3) can be identified with those columns of atoms containig the
atoms of the layers A. These columns are doubly occupied as compared to those
containing the atoms of the layers B or C. Now in these HREMs most of the
asymmetric hexagons, as they occur in Fig. 3, contain an additional bright spot
in their interior, which suggests a disection of these hexagons into a square, two
equilateral triangles and a thin rhomb. Therefore, our decoration, which breaks

*we do not know which kind of atom occupies what kind of position
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the threefold symmetry of these hexagons, seems more appropriate than that of
Yang and Wei.

4. THE 5D PERIODIC STRUCTURE

Despite of the presence of the hexagonal layers B and C the structure has point
group 12/mmm and therefore twelvefold symmetric Fourier spectrum. Since the
main axis of the hexagonal layers are turned with respect to each other by 30◦,
the stacking sequence suggests a 126-screw axis. Moreover, the mirror B (4) maps
the main axis of the layer B onto those of the layer C, and vice versa, so that we
can expect as well that the mirror B is actually a glide mirror, translating the
structure by half a period length into z-direction.

To make these intuitive arguments about the space group more rigorous, we con-
struct a 5d periodic structure with this space group such that the quasiperiodic
structure described above is the restriction of this periodic structure to a suitably
embedded 3d subspace.

In a first step, we have to reformulate the projection method. Instead of pro-
jecting all vertices in the strip L ∩ (C × E) onto E‖ and then decorating them
with the scattering density ρ(x‖) of an atom or cluster of atoms, we can as well
decorate each vertex of L with a density ρ(x‖) · χC̄(x⊥) (where C̄ is the set C
inverted at the origin, and χC̄(x⊥) the characteristic function of C̄) and then
take the intersection of the so obtained periodic density with E, which yields the
same result. This latter formulation, first used by Janssen13) and Bak14), is much
more flexible than the original projection method. In particular, it is easy to
add more atoms of various types at different positions in the unit cell of L, each
with its own characteristic acceptance region. In this way also very complicated
quasicrystals (including atomic decoration) can be viewed as the restriction of a
higherdimensional periodic structure to physical space. Since the Fourier spec-
trum of such an restriction is just the projection of the Fourier spectrum of the
higherdimensional periodic structure to physical space, classical crystallography
can be applied to the periodic structure to determine the Bravais class, point sym-
metry and space group associated with a quasicrystal. The quasicrystal inherits
in this way the point symmetry and the characteristic extinctions associated with
the higherdimensional space group. Therefore, we can speak of the space group
of a quasicrystal, which we define to be that of the associated higherdimensional
periodic structure.

Next we construct the 5d periodic structure. There is only one dodecagonal lattice
in five dimensions15), L5 = L × azZ, where az is the periodicity in z-direction.
This lattice is contained in a 5d space E‖⊕E⊥⊕Ez. It is interesting to note that
L5 cannot have any centerings, i.e. all layers z = const. are the same. Suppose for
the moment that this is not so. Then, any lattice vector x with smallest possible
non-zero component xz in z-direction is not parallel to the z-axis. Let us now act
with the subgroups C2 and C3 of C12 on x. If we add up the vectors in the orbits
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of these subgroups, we obtain vectors of length 2xz and 3xz which are parallel to
the z-axis. Since their difference has length xz and is also parallel to the z-axis,
we arrive at a contradiction, which proves our hypothesis to be false. Therefore,
we have to consider only the lattice L5. In the following, we will always use the
lattice basis {e1, . . . , e4, ez}, where ez is a basis vector in z-direction. Sometimes,
it is conveniant to use the compound notation (x, z), where the first item denotes
the first four coordinates in E‖⊕E⊥. We construct the periodic structure in such
a way that it becomes manifestly invariant under the space group generated by
(A, a), (B, b), (−I, 0) and the set of lattice translations. Here, A and B are the
generators (4), (X, x) denotes the Euclidean transformation y → Xy + x, and
a = b = (0, 0, 0, 0, 1

2).

Fig. 6: Acceptance regions for atoms on a vertex, on a bond, in a triangle and in a

square (from left to right).

First we place an atom with acceptance region Ca (see Fig. 6) at (v, 1
4
), where v is a

lattice site of L. Then we act with all the desired symmetry elements on this motif.
The lattice translations put an atom at all sites in L5 +(0, 1

4). Moreover, for each

atom at (v, z) the screw axis puts another copy at (v, z+ 1
2 ). Since the acceptance

region has dodecagonal symmetry, it is not changed under this screw operation.
The other symmetry elements leave the structure obtained so far invariant. Note
that the acceptance region is invariant also under the mirror B. Next we insert
the atoms on the bonds of the tiling. We put an atom on the midpoint of a
bond of L which is parallel to e2, at z = 0. The acceptance region is chosen in
such a way that it intersects physical space E × Ez if and only if the acceptance
regions of the two atoms at the vertices at the ends of this bond intersect E ×Ez

too. This results in an asymmetric acceptance region shown in Fig 6. Then we
add all translation equivalent atoms. Appling the screw operation puts atoms
on all the other bonds, those on bonds parallel to ei with i even at z = 0, the
remaining ones at z = 1

2 . Due to the rotational part of the screw operation, the
acceptance regions of all these atoms will have their proper orientation. Again,
the glide mirror (B, b) leaves the structure obtained so far invariant. Analogously,
we put an atom in the middle of a triangle in the lattice L which projects to a
triangle of the tiling, at z = 0 or z = 1

2 (depending on the orientation of this
triangle), and with acceptance region shown in Fig. 6. This acceptance region
intersects physical space if and only if those at the corners of the triangle do this
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too. Acting then with the space group on this atom puts copies to the interiors
of all triangles at the correct z coordinate, depending on the orientation of these
triangles. Finally, we put an atom into the interior of a square in the lattice L.
This time, we have to use an acceptance region which is not centro-symmetric
(Fig 6), because the four corners of the square, whose acceptance regions have
to cut physical space too, are at different distances. Acting then with the space
group on this atom completes the structure. Note that the space group takes
care that all atoms have their correct z-value, and that their acceptance regions
have the proper orientation. Therefore, the 5d periodic structure is manifestly
invariant under a non-symmorphic space group, and the quasicrystal structure is
the restriction of this periodic structure to physical space E × Ez.

5. THE RECIPROCAL LATTICE AND EXTINCTION RULES

First, we calculate the reciprocal lattice L̂5 of L5. Since L5 is a periodic stacking
of L, L̂5 is given by L̂⊕ (2π/az)Z, so that is sufficient to calculate the reciprocal

lattice L̂ of L. It is conveniant to choose a⊥ = a‖, but any other choice of a⊥

would give the same result. The metric tensor of L, defined by gij = ei · ej , is
given by

g = a2
‖







2 0 1 0
0 2 0 1
1 0 2 0
0 1 0 2






. (5)

Let {bi} be the basis reciprocal to {ei}, i. e. bi · ej = 2πδij. Then, if the ith row
of the matrix b contains the components of bi with respect to the basis {ei}, we
have that

(bg)ij =
∑

k

bikek · ej = bi · ej = 2πδij , (6)

i. e. b is equal to 2π times the matrix inverse of g, which is given by

g−1 =
1

3a2
‖







2 0 −1 0
0 2 0 −1
−1 0 2 0
0 −1 0 2






. (7)

Comparison with (3) shows that L̂ is again a dodecagonal lattice, but this time
with lattice parameters

â‖ =
2π

3a2
‖

· a‖

√
3 =

2π

a‖

√
3
, â⊥ =

2π

a⊥

√
3
. (8)

Therefore, the peak positions in the quasiperiodic plane are generated by a twelve-
fold symmetric star of vectors b

‖

i which have length â‖ = 2π/a‖

√
3.
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Let us now turn to the extinctions in the Fourier spectrum caused by the space
group. Suppose a periodic structure ρ(r) is invariant under a Euclidean transfor-
mation (X, x), i.e. ρ(r) = ρ(Xr + x). Then, the Fourier transform of ρ satisfies
ρ̂(k) = eik·xρ̂(X−1k). Now, if for a given k

eik·x 6= 1 and ρ̂(k) = ρ̂(X−1k), (9)

then ρ̂(k) must necessarily vanish. When (9) holds it is even always possible to
find a k such that X−1k = k and eik·x 6= 1.

In the present case this means that due to the screw symmetry of dodecagonal
quasicrystals we can expect that all peaks (k, kz) are extinct whenever kz is odd.
Similarly, the glide mirror symmetry causes all peaks k contained in a glide plane
and with kz odd to be absent. These extinctions can be understood also intuitively.
The point is that at least in kinematical theory scattering with a scattering vector
q is sensitive only to the projection of the structure onto this scattering vector.
But since the projection of the layers B and C onto the z-axis give the same
density, a scattering vector parallel to the z-axis sees a structure with half the
period length, and therefore every second peak is absent. Similarly one can argue
for the glide mirror plane, though the situation is slightly more complicated there.

One should note however that multiple diffraction, which occurs always with elec-
tron diffraction, might distroy this effect. Nevertheless, such extinctions are very
typical for quasicrystals periodic in one direction. They have been observed al-
ready for decagonal16) and octagonal17) quasicrystals. Our numeric calculations
(see next chapter), which include multiple scattering, show that these extinctions
have to be expected also in the dodecagonal case.

6. CALCULATION OF THE DIFFRACTION PATTERN

Since we have described our quasicrystal structure by means of a 5d periodic
structure, it is now easy to compute its Fourier spectrum. We simply have to
calculate the Fourier transform of the periodic structure and then project it onto
physical reciprocal space. The Fourier transform of a periodic structure is ob-
tained by first calculating the Fourier transform of the contents of a unit cell and
then convoluting it with the reciprocal lattice, just as one does it with 3d crystals.
The z = 0 layer of the Fourier transform of the quasicrystal is shown in Fig. 7.
The radius of the circles is proportional to the amplitude (not intensity) of a peak.
We see that Fig. 7 consists essentially of a single ring of very strong spots, the
next weaker ones being more than ten times weaker (in intensity). This is very
different from what one sees in electron diffraction1−3), and also different from
what one obtaines if one puts just atoms at the vertices of the tiling11), which
would actually give a very good fit with experiment. The additional hexagonal
layers lead to destructive interferences, so that only a few very prominent peak
survive.
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Fig. 7: The Fourier transform Fig. 8: Dodecagonal diffraction pattern

We have to recall however that electrons are very strongly scattered by the
coulomb potential, so that we have to take into account multiple scattering effects.
This can be done by Darwin’s method18). In electron diffraction, the incoming
k-vector is much larger than the relevant scattering vectors, so that all q-vectors
which contribute to elastic scattering are contained essentially in tangent plane
of Ewald’s sphere, i.e. only scattering vectors contribute which are contained in
a plane through the origin and perpendicular to the incoming k-vector. All scat-
tered beams can be indexed by the reciprocal vectors in this plane. Let φq denote
the amplitude of such a scattered beam, and fq the amplitude of the Fourier trans-
form. While the beams pass through the quasicrystal, their amplitudes develop
according to18)

dφk

dz
= λi

∑

q

φk−qfq, (10)

where z measures the depth in the quasicrystal in the incoming beam direction,
and λ is a constant depending on the density and type of atoms in the material.
The sum extends over all reciprocal vectors in the plane perpendicular to the
incoming beam, and the factor i in front of the sum ensures that the total intensity
remains constant. In fact, it is easy to show that

d

dz

∑

q

φqφ
∗

q = 0. (11)

Starting with φ0 = 1, φq = 0 (q 6= 0) equation (10) can easily be integrated numer-
ically. We have chosen the integration domain such that we obtain best possible
coincidence with the experimentally observed patterns. The step width in the
numerical integration was determined such that about 40 iterations were neces-
sary. In the dodecagonal plane, 3721 scattering vectors were included, whereas
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in the planes containing the z-axis 729 vectors were sufficient. The results are
shown in Fig. 8 (dodecagonal plane) and Figs. 9 and 10 (mirror plane* and glide
mirror plane respectively). Again, the radii of the circles are proportional to the
amplitudes.

Fig. 9: Diffraction pattern in mirror plane Fig. 10: Diffraction pattern in glide plane

All these calculated diffraction patterns compare very well to the observed ones,
as far as available1−3). If we compare Figs. 7 and 8 we see that due to multiple
scattering many additional peaks have appeared, in particular two additional
rings very close to the center. This is very similar to what happens in the σ-
phase of Fe-Cr. The σ-phase has peaks very close these peaks of the dodecagonal
phase. Calculations of T. Ishimasa (private communication) show that for very
thin samples of the σ-phase, the peaks corresponding to the two inner rings are
very weak, those near the positions of the very strong peaks of Fig. 7 are very
strong. When the thickness of the sample increases, the weak peaks become much
stronger however, whereas the strong peaks get weaker, until the three classes of
peaks are of about the same intensity. The dependence of these intensities on
sample thickness suggests that that this effect is due to multiple scattering. This
analogy with the σ-phase supports our hypothesis that multiple scattering is very
important also in the dodecagonal case.

In Fig. 10 we see that the predicted extinctions are indeed present (i.e. the
corresponding peaks are absent). Only in Fig. 9 the forbidden odd peaks on
the z-axis are not extinct due to multiple scattering effects. This effect can be
observed also in decagonal and octagonal quasicrystals16,17). Interesting to note
is also that the layers in Fig. 10 which are still present are very weak. The reason

*the planes between two neighboring glide planes are true mirror planes
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is that in the corresponding plane there is none of the very strong peaks of Fig. 7,
and the intensity remains essentially on the z-axis. May be it will be difficult to
observe such a diffraction pattern, and this might be the reason why in Ref. 3 no
such pattern is published, although it would of course be very interesting because
of the extinctions.

7. CONCLUSIONS

In conclusion, we have presented a detailed model structure for dodecagonal qua-
sicrystals, whose calculated diffraction patterns are in good agreement with the
experimentally observed ones. As we have seen, it is absolutely essential to take
multiple diffraction effects into account, without which the experimental diffrac-
tion patterns cannot be explained. The proposed model structure is the restric-
tion of a 5d periodic structure to 3d physical space. This 5d structure has a
non-symmorphic space group, which has direct consequences for the quasicrystal.
This model structure therefore naturally illustrates how crystallographic concepts
can be applied to quasicrystals: quasicrystallography is simply the crystallography
of the associated higherdimensional periodic structures.
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