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Cluster coverings as an ordering principle for quasicrystals
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Abstract

Cluster density maximization and (maximal) cluster covering have emerged as ordering principles for quasicrystalline structures. The
concepts behind these ordering principles are reviewed and illustrated with several examples. For two examples, Gummelt’s aperiodic
decagon model and a cluster model for octagonal Mn–Si–Al quasicrystals, these ordering principles can enforce perfectly ordered, quasiperi-
odic structures. For a further example, the Tübingen triangle tiling (TTT), the cluster covering principle fails to enforce quasiperiodicity,
which sheds some light on the limitations of this approach. © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

The formation and stabilization of quasicrystals is one
of those problems which are still poorly understood. Dif-
ferent approaches by various authors have been used to ex-
plain how the observed quasicrystal structures could arise
as states of minimal free energy. Some have concentrated
on minimizing internal energy by using interactions mim-
icking matching rules for the underlying tilings, others have
concentrated on the maximization of entropy in the random
tiling approach. Both approaches have their problems and
are not entirely convincing. In this situation, the observa-
tion that certain quasicrystal structures can be obtained by
maximizing the density of a few well chosen clusters [1,2],
or even by requiring a covering by overlapping copies of a
single cluster [3–5], brought an entirely new aspect into the
discussion. Since the internal structure of a covering cluster
imposes constraints on the possible cluster overlaps, these
overlap conditions impose also constraints on the possible
structures that can be covered. For suitably chosen clusters,
the overlaps can generate quasiperiodic order, and provide
in this way a mechanism for the propagation of quasicrys-
talline order.

In a way, the overlapping constraints of the clusters are a
particularly efficient kind of matching rules. Usually, match-
ing rules for a quasiperiodic tiling are given by a list of
all allowed local neighborhoods. They are translated into
an energetic model for the tiling by giving all allowed lo-
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cal neighborhoods a lower energy than all the disallowed
ones. The ground state should then be a structure satisfy-
ing the matching rules, i.e. a perfect quasiperiodic tiling.
However, favoringall allowed local neighborhoods overall
disallowed ones is, for a realistic atomic structure, a hope-
lessly complicated task. Such an approach is therefore not
realistic, and this is the main problem of the matching rule
approach.

This approach neglects the fact, however, that not all lo-
cal neighborhoods are equally important for the structure. A
finer distinction betweenallowedor not allowedis needed.
Many quasiperiodic tilings havecharacteristic clustersof
tiles that occur very frequently and may even cover the whole
structure. Such clusters must therefore be very important
for the structure, and must be the energetically most favor-
able configurations. The system will try to maximize their
density. Clusters will have to overlap, which restricts their
relative positions and orientations. The constraints imposed
by the possible cluster overlaps therefore create order, even
long-range order.

There are several ways to turn these ideas into anorder-
ing principlefor quasicrystals. Actually, one can distinguish
three different, but closely related ordering principles:
1. Cluster density maximization principle: Find simple clus-

ters such that the maximization of their density leads to
a perfectly ordered quasicrystal.

2. Cluster covering principle: Find simple clusters such that
every structure covered by them is an ordered quasi-
crystal.

3. Maximal cluster covering principle: Combine the two
previous principles: to obtain an ordered quasicrystal,
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maximize the cluster density among all structures cov-
ered by the cluster.
Overlapping clusters share the atoms contained in their

overlap. If there is much overlap, which seems necessary
for the enforcement of perfect quasicrystalline order, this re-
sults in considerable double counting of the configurational
energy in a simple cluster density maximization approach.
Consequently, simply adding up the cohesion energies of
overlapping clusters is not entirely suitable. The second ap-
proach seems better in this respect. It basically requires that
every atom is contained in some energetically favorable lo-
cal configuration. The third approach is a refinement of the
second one: it requires a clustercovering, but prefers among
those the ones with the higher cluster density. In a covering
with higher cluster density, it is more likely that atoms are
well in the interior of some cluster, which might be better
than just on the cluster surface. Whatever variant of a clus-
ter model is chosen, it can be regarded as a particularly ef-
ficient realization of a kind of matching rules. The primary
advantage of these cluster models is that they concentrate
on the local neighborhoods that are really important for the
structure (the clusters), and neglect the rest, thereby avoid-
ing unnecessary complexity.

Of course, depending on the chosen covering cluster, the
class of covered structures can contain more than just per-
fectly ordered tilings. In fact, clusters which can enforce a
perfectly ordered tiling will be rather rare. Much more typi-
cal will be clusters that can coversuper-tile random tilings
[1,2]. These are random tilings with big tiles (super-tiles),
which are usually obtained by inflating the original tiles sev-
eral times. Such super-tile random tilings look rather perfect
on a local scale, but globally they are random tilings with
a positive entropy density at zero temperature. In this way,
also for the cluster models it is possible to obtain random
tiling type models in a very natural way.

In the following, we shall illustrate these concepts with
three examples from the literature: Gummelt’s aperiodic
decagon [3,4], an octagonal cluster model for Mn–Si–Al [6],
and the Tübingen triangle tiling (TTT) [7].

2. Gummelt’s aperiodic decagon

Whereas the earlier papers on cluster maximization did
not attract much attention, the discovery of an aperiodic
decagon by Gummelt [3,4] convinced many people that the
cluster approach might be worth to be considered more seri-
ously. The aperiodic decagon (Fig. 1) has a coloring which
restricts the possible overlaps to two kinds. Gummelt [4]
could prove that the only structures that can be covered
by the aperiodic decagon are equivalent to perfect Penrose
tilings. A larger patch of a covering is shown in Fig. 2.

There are several models of decagonal quasicrystals
[8–11] which in one way or another have been described
as cluster coverings, with a cluster which is a decoration
of Gummelt’s aperiodic decagon. Apart from minor de-

Fig. 1. Gummelt’s aperiodic decagon. On the right, an equivalent patch
of a Penrose tiling is superimposed. Decagon coloring and tiling patch
impose the same overlapping constraints.

tails perhaps, all these models are, just like the different
variants of the Penrose tiling, mutually locally derivable
(MLD) from each other [12] (often, this property is also
called local equivalence). For this reason, they cannot be
regarded as being essentially different. With respect to
the classification of ordering principles given in the intro-
duction, all these cluster models are based on the cluster
covering principle, and their ground state is a structure
equivalent to a perfect Penrose tiling. Jeong and Steinhardt
[5] could show, however, that among all tilings with the
two Penrose rhombi, the Penrose tiling is the one with the
highest density of Gummelt’s aperiodic decagon cluster.
This holds true, in particular, also for tilings which are not
covered by decagons. Therefore, the cluster models based
on Gummelt’s aperiodic decagon are just as well character-
ized by the cluster density maximization principle, or even
the maximal cluster covering principle. For these models,
there is no distinction between the different approaches.

Fig. 2. A patch of Gummelt’s decagon covering. The coloring allows two
kinds of decagon overlaps.
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Fig. 3. The alternation condition requires that along a lane of tiles the two
kinds of rhombi alternate. It can be enforced by an arrowing of the tiles.

3. An octagonal cluster model

In many respects, the octagonal Ammann–Beenker tiling
[13,14] is among the simplest of all quasiperiodic tilings. To
some extent this is true also for its cluster descriptions. We
shall therefore use it as our second example to illustrate the
general principles of cluster models. Matching rules enforc-
ing a perfect octagonal tiling are rather complicated [14–16].
They are expressed in terms of a non-local decoration of the
tiling. However, in order to make a cluster model work it is
sufficient to build it upon a local subset of these matching
rules. This is the alternation condition [17], which requires
that along any lane of tiles the two types of rhombi have to
alternate (Fig. 3). It is enforced by a suitable arrowing of the
tiling edges. The alternation condition cannot enforce per-
fect octagonal tilings, but it does enforceperfectly ordered,
quasiperiodic tilings, which are at least four-fold symmetric
[18]. In fact, tilings satisfying the alternation condition are
all members of a one-parameter family of four-fold symmet-
ric, quasiperiodic tilings. The unique member of this fam-
ily with even eight-fold symmetry is the Ammann–Beenker
tiling.

The alternation condition can therefore be used to ob-
tain the Ammann–Beenker tiling with a cluster maximiza-
tion principle. The idea is to prefer clusters which favor the
alternation condition. This is the case for the two clusters
shown in Fig. 4, called the octagon and the ship. It has been
shown numerically [2], that if these two clusters are energe-
tically preferred, with suitable relative energies, the ground
state is a perfectly ordered tiling with eight-fold symmetry.
The relative weights of the two clusters have to be chosen
such that among all tilings satisfying the alternation condi-
tion, the octagonal tiling has the lowest energy. This is the
case for weights in a wide interval, so that the phenomenon
is very robust [2]. If only octagon clusters are preferred,
however, we arrive, at fixed stoichiometry, at a supertile ran-
dom tiling structure [2]. The ship cluster therefore is really
needed to enforce the alternation condition. It propagates

Fig. 4. Two clusters to be energetically preferred, the octagon and the ship.

Fig. 5. Arrowed octagon cluster, and inflated unarrowed octagon cluster.
Both impose the same overlapping constraints.

the information on the orientation of rhombi across two ad-
jacent squares.

Later on it was realized [19] that if the octagon cluster
is arrowed (Fig. 5), the situation improves considerably. A
tiling completely covered by arrowed octagons must neces-
sarily satisfy the alternation condition, and among these the
Ammann–Beenker tiling has the highest octagon density. A
cluster model can therefore be based on the maximal clus-
ter covering principle. Under the (plausible) assumption that
tilings that are not completely covered by the cluster cannot
have a higher cluster density than the maximal density for
tilings that are covered, the arrowed octagon can even be
used in a cluster density maximization principle to enforce
the octagonal Ammann–Beenker tiling. Although there is no
proof of the above assumption, it appears very unlikely that
a tiling which is not completely covered can have a higher
cluster density. In any case, among all square rhombus tilings
covered by arrowed octagons, the Ammann–Beenker tiling
is the unique structure with the highest cluster density.

If undecorated clusters are preferred for some reason, one
can inflate the octagon once to arrive at a larger cluster,
which has exactly the same asymmetries as the arrowed
octagon (Fig. 5). This larger, undecorated cluster therefore
imposes the same overlapping constraints, and can be used in
place of the arrowed octagon. In fact, arrowed and unarrowed
tilings are in the same MLD class, or locally equivalent. The
arrowing just reduces the size of the cluster that is needed.
One should keep in mind, however, that real quasicrystals
are not tilings, but are, at best, decorations of a tiling. To
obtain a quasicrystal, the tiling has to be decorated with
atoms, and it could also be this atomic decoration which
introduces the necessary asymmetry and thus imposes the
necessary overlapping constraints.

This is indeed the case for the quasicrystal structure of
octagonal Mn–Si–Al described by Jiang et al. [20], as has
been discussed in detail recently [6]. This quasicrystal is a
layered structure. . . ABAB ′ . . . , and can be regarded as a
decoration of the Ammann–Beenker tiling. The decoration
of the octagon motifs (which cover the whole structure) is
shown in Fig. 6. Both the decoration of the edges in layer A
and the decoration of the interiors of the squares in layers B
and B′ show the same asymmetry as the arrowing. There are
actually two possible decorations of an octagon, whose only



202 F. Gähler / Materials Science and Engineering 294–296 (2000) 199–204

Fig. 6. Decoration of a small octagon patch. (a) Layer B, (b) layer B′, (c)
layer A and (d) layers B and B′ together. Large dots denote Mn atoms,
small dots Si or Al atoms. In (d), only Mn atoms are shown; atoms from
the B layer are shown as full dots, and atoms from the B′ layer as open
dots. In (e) and (f), abstract representations of the layer stackings ABAB′
and AB′AB are given, respectively.

difference is that the decorations of the layers B and B′ are
exchanged. One kind of octagon is decorated with a stack-
ing . . . ABAB ′ . . . , the other with a stacking. . . AB′AB . . .

Since each octagon actually represents an infinite prism with
octagonal base, these two decorations correspond to prisms
which are shifted by half a lattice period inz-direction with
respect to one another, but are identical otherwise. We there-
fore have a covering by identical prisms, which, of course,
can be chopped into identical, finite clusters.

It is most convenient to represent these prisms again by
an abstract decoration of the octagon. The different vertical
positions of the prisms are encoded by a coloring, as shown
in Fig. 6e and f. Tiles which differ in color, but have other-
wise the same decoration, correspond to prisms shifted by
half a lattice period inz-direction. It is interesting to note
that since the octagonal prisms occur at two different po-
sitions in z-direction, the Bravais lattice of this octagonal
quasicrystal must be an octagonal centered one [6]. This can
also be seen in the colored and arrowed tiling of Fig. 7: if
a tile is a translate of another tile by an odd number of tile
edges, it has the opposite color. If an even number of tile
edges separates the two tiles, they have like colors. In or-

Fig. 7. Colored and arrowed Ammann–Beenker tiling.

der to obtain a lattice translation, a (horizontal) translation
by an odd number of tile edges must be combined with a
translation inz-direction by half a lattice period, in order to
make up for the color change. This results in the octagonal
centered lattice.

4. How typical are covering clusters?

In the previous two sections we have seen two examples
where the cluster covering principle works perfectly well to
explain the stability of the corresponding quasicrystals. The
question now arises whether these examples are rare excep-
tions, or whether such a phenomenon is, on the contrary,
quite typical. One should distinguish between two different
questions, however. One is the question of the mere exis-
tence of a covering cluster, and the other whether a cluster
covering can enforce quasiperiodic order.

The notion of covering clusters is actually quite old. In
1991, Burkov [21] has given a realistic model of decagonal
quasicrystals which is covered by copies of large, interpen-
etrating clusters. It is well known, however, that these clus-
ters can cover also supertile random tilings with the same
tiles, and thus cannot enforce quasiperiodicity. For icosahe-
dral quasicrystals, the situation is somewhat more difficult.
Duneau [22] found clusters which almost cover a qua-
sicrystalline structure, but also here it is fairly clear that no
quasiperiodic structure isenforced. In recent papers [7,23],
Kramer has argued that the existence of covering clusters
actually has to be expected for theoretical reasons, at least
for the canonical projection tilings. There are two kinds of
such projection tilings [24]. The first kind has vertices at
projected lattice positions, with an acceptance domain which
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is the projected Voronoi cell of the higher-dimensional
lattice. The second kind has vertices at projected corners
of the Voronoi cells, with acceptance domains which are
the projected, dual Delaunay cells. According to Kramer’s
theory, for the first kind of canonical projection tilings
we should expect covering clusters at projected corners of
Voronoi cells, whose size is given by the corresponding
projected Delaunay cell. Conversely, for the second kind of
canonical projection tilings, covering clusters are expected
at projected lattice points, with a size given by the projected
Voronoi cell. In other words, covering clusters and vertices
are, in a sense, dual to each other. To be precise, there does
not seem to be a proof that Kramer’s clusters indeed cover
the whole tiling without gaps in the general case, but for
many particular examples this has been verified. Indeed,
the two examples discussed in the previous sections are
exactly of this kind. Gummelt’s decagon covering the Pen-
rose (rhombus) tiling is centered at projected lattice points,
whereas the vertices of the Penrose tiling are at projected
corners of the Voronoi cells. In the case of the octagonal
tiling, the vertices are at projeced lattice points, whereas
the octagon cluster is centered at projected corners of the
Voronoi cells. In both cases, the cluster size coincides with
the size predicted by theory. Kramer has given as a further
example the Tübingen-Triangle-Tiling (TTT) [7]. Here, the
clusters are located at projected corners of the Voronoi cells,
whose size correspond to projected Delaunay cells. There
are four translation classes of cluster centers, and thus also
four different clusters, two small and two big pentagons.
Disregarding orientation, there are just two clusters, big and
small pentagons (Fig. 8), which indeed cover the TTT.

Much more difficult is the question of enforcing a
quasiperiodicstructure just by the requirement of cluster
covering, or at least by the requirement of a maximal cluster
covering. Whereas for the octagonal tiling and for the Pen-
rose tiling there is indeed such an enforcement, this does
not seem to be the case for the TTT. It is very easy to see
that the two pentagons can cover also periodic tilings, even
ones with rather small unit cells. The situation improves
to some extent if the pentagons are decorated. In order to
formulate nearest neighbor matching rules for this tiling,
there are two decorations necessary: edge decorations and
vertex decorations [25]. The edge decoration can be applied

Fig. 8. Pentagon clusters covering the arrowed Tübingen triangle tiling.
Both clusters, as well as their mirror images, occur in 10 orientations.

Fig. 9. Cluster covering of a periodic variant of the Tübingen triangle
tiling. A unit cell is outlined in gray.

to the two pentagons in a consistent way: all pentagons of
the same kind obtain exactly the same decoration. The edge
decoration rules out covering of the periodic tilings with the
smallest unit cells, but still admits a covering of a periodic
tiling with a somewhat larger unit cell (Fig. 9). The edge
decoration of the clusters alone can therefore not enforce
quasiperiodicity. We should point out that passing to inflated
clusters cannot improve the situation, because the edge deco-
ration completely determines the inflated cluster. Inflation
therefore cannot induce any further cluster asymmetry, and
thus no further overlapping constraints. The situation would
improve if also the vertex decoration is applied. This cannot
be done in a satisfactory way, however, because each kind
of cluster is decorated in many different ways, which means
that much of the attractive simplicity of the model is lost.

5. Discussion and conclusion

In this paper we have discussed the general concepts upon
which the different quasicrystal cluster models from the liter-
ature are built. These concepts have been illustrated with two
instructive examples, Gummelt’s aperiodic decagon, and the
octagon cluster model. In fact, these are the only cluster
models which are known to enforce a perfectly ordered qua-
sicrystal. The many cluster models built upon Gummelt’s
aperiodic decagon are all in the same MLD or local equiva-
lence class, and cannot be regarded as being essentially dif-
ferent. The question therefore arises whether and how this
can be generalized to other cases. The analysis by Kramer
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[7] suggests that the existence of a cluster covering is quite
typical, at least for canonical projection tilings. The exam-
ple of the TTT shows, however, that there is still a long
way to go from the existence of a cluster covering to an
enforcement of quasiperiodicity. Cluster coverings which
can enforce the quasiperiodicity of a tiling or quasicrys-
tal will be at least as rare as tilings with perfect matching
rules, perhaps even rarer. One might hope, however, that in
each MLD class of tilings with perfect matching rules, one
can find a member with quasiperiodicity-enforcing covering
clusters.
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