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Summary. Propagation of mode-I cracks in a three-dimensional model quasicrys-
tal is studied by molecular dynamics simulations. The samples are endowed with an
atomically sharp crack and subsequently loaded by linear scaling of the displacement
field. The response of the system is then monitored during the simulation. In partic-
ular, the crack surface morphology is investigated in dependence of the orientation
of the fracture plane. For this purpose, fracture surfaces perpendicular to two- and
fivefold axes are compared. For both directions, brittle fracture with rough fracture
surfaces is observed.

1 Introduction

Quasicrystals are intermetallic alloys whose diffraction patterns display sharp
Bragg peaks with non-crystallographic point symmetries. Therefore their mass
density is quasiperiodic rather than periodic. Most concepts used to predict
the response of a material to an applied load are (at least on an atomic scale)
based on the periodicity of the underlying structures, and thus do not apply
to quasicrystals.

Although it is possible to grow single quasicrystals of centimeter size, ex-
periments on crack propagation in single quasicrystals are rare. Most of the
available experiments are indentation tests where the fracture toughness is
estimated from the geometry of the indentations, the applied force and the
length of the microcracks that are emitted from the corners [1]. The values for
the fracture toughnesses are about 1 MPa m1/2 [1, 2], which is close to that
obtained for brittle ceramics or silicon.

Cracks in the vicinity of microhardness indentations are observed to prop-
agate predominantly along well defined crystallographic planes [1], suggesting
that crack propagation in quasicrystals is, as in periodic crystals, influenced by
the plane structure. On the other hand, investigations of cleavage surfaces by
scanning tunneling microscopy show that the morphology of fracture surfaces
is strongly influenced by the cluster-based structure of quasicrystals [3].
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In previous studies [4, 5, 6, 7] we have performed numerical simulations of
crack propagation in decagonal model quasicrystals. Decagonal quasicrystals
show quasiperiodic order in two dimensions. They consist of quasiperiodically
ordered planes which are arranged periodically in the third dimension. For
decagonal systems it is thus possible to use simple two-dimensional models to
investigate the characteristic features and elementary processes which domi-
nate the fracture of real decagonal quasicrystals.

Icosahedral quasicrystals, however, show quasiperiodic order in three di-
mensions, which cannot be reduced to simple two-dimensional model systems.
In this article, we report on large scale molecular dynamics simulations of
crack propagation in three-dimensional icosahedral model quasicrystals.

2 Simulation Method

2.1 Model

The simulations are carried out for a three-dimensional binary model qua-
sicrystal proposed by Henley and Elser [8] as a structure model for icosahe-
dral (Al,Zn)63Mg37. As we do not distinguish between Al and Zn, the model
consists of two types of atoms, larger ones that represent Mg and smaller
ones that represent Al or Zn atoms. The atomic interactions are modelled by
Lennard-Jones (LJ) potentials [9], originally derived for the van der Waals
type interaction of inert gases. The depths of the LJ potentials are ε0 and 2ε0
for atoms of the same and different types, respectively. As unit of length we
use the nearest neighbour distance r0 of two small atoms in the structure. All
masses are set to unity, and the time is measured in units of t0 = r0

√

m/ε0.
This is thus a very simplistic model quasicrystal, but it nevertheless should
produce the correct qualitative behaviour of crack propagation in close-packed
quasicrystals like icosahedral (Al,Zn)63Mg37.

2.2 Method

Since we are interested in the morphology of fracture surfaces we use a ge-
ometry that allows us to follow the dynamics of the running crack for a long
time. For this purpose, a strip geometry is used to model crack propagation
with constant energy release rate [10]. The samples consist of about 4 mil-
lion atoms, with dimensions of approximately 450r0 × 150r0 × 60r0. Periodic
boundary conditions are applied in the direction parallel to the crack front.
For the remaining directions, all atoms in the outermost boundary layer of
width 2.5r0 remain fixed during the simulation. The strip is homogeneously
strained perpendicular to the fracture plane, and an atomically sharp crack
is inserted from one short side, to about one quarter of the strip length. Sub-
sequently the sample is relaxed to obtain the displacement field of the stable
crack at zero temperature. The strip is chosen long enough to ensure that the
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crack does not feel the boundary conditions at the two ends of the strip, so
that the dynamics is independent of the crack tip position. The crack thus
feels a constant driving force and propagates at constant energy release rate.

The system is initially strained to the Griffith load where the energy release
rate G is equal to the surface energy of the two crack surfaces, 2γ. In this work,
we will concentrate on exploring brittle fracture without thermal fluctuations.
Thus we set the initial temperature to 10−4 of the melting temperature Tm,
which is close to zero temperature. Afterwards the crack is loaded by adding
a fraction of the displacement field to the stable crack. The answer of the
system is followed by molecular dynamics simulations. The overloads are given
by ∆K∗ in the following, which is the relative fraction of the stress intensity
factor due to the displacement field that is added to the stable crack.

According to the Griffith criterion, planes with low surface energy are
potential fracture planes. To identify those planes we relax a specimen and
split it into two regions. Subsequently, the two parts are shifted rigidly by a
distance of 10r0 perpendicular to the cutting plane. The surface energy is then
calculated from the difference of the artificially cleaved and the undisturbed
specimen.

3.6

3.8

4

4.2

4.4

4.6

0 5 10 15 20

su
rf

ac
e 

en
er

gy
 γ

 [ 
ε 0

 / 
r 0

2 ]

y [ r0]

2-fold
5-fold
3-fold

Fig. 1. Surface energy in dependence of the position of the cutting plane, for plane
orientations perpendicular to two-, three- and fivefold directions.

For simple crystal structures like the face centered cubic structure of noble
metals the surface energy only depends on the crystallographic orientation of
the surface. In quasicrystals, however, it even varies for crystallographically
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equivalent but structurally distinct surfaces. Fig. 1 shows the surface energy
for three different orientations as a function of the position of the cutting
plane. We find a pronounced plane structure of low and high surface energies
along twofold directions. The planes of lowest surface energy occur with two
separations, forming a Fibonacci chain. Along the fivefold direction the plane
structure is less pronounced, but we still find planes of low surface energy,
while for the threefold direction there is no such distinct plane structure. For
our simulations we select as initial fracture planes surfaces of lowest energy
perpendicular to two- and fivefold directions.

All molecular dynamics simulations were done with our own code IMD
[11, 12], which performs well on a large variety of hardware, including single
and dual processor workstations and massively parallel supercomputers.

2.3 Visualization

There are two essentially different types of data that can be used for the
visualization of a molecular dynamics simulation. The first possibility is to
compute the distribution of certain scalar quantities like the kinetic energy
density, which is evaluated on a regular grid and then displayed with a volume
renderer. Fig. 2 shows such a volume data set of the kinetic energy. Regions
of low intensity are rendered with high transparency. Sound waves emitted by
the propagating crack are clearly visible. In most cases, however, volume data
are often too homogenous and show little contrast, so that not much can be
seen.

Fig. 2. Kinetic energy density, displayed with the Virvo volume renderer [13]. Sound
waves emitted by the propagating crack are clearly visible.

Volume data sets represent, by their very nature, a continuous distribu-
tion of some locally averaged quantity. For this reason, they are not suited for
the elucidation of microscopic processes. To study crack propagation on an
atomistic level, it is necessary to render selected atoms only. Due to the large
number of atoms required for the study of crack propagation in three dimen-
sional systems, the selection and reduction of data is of crucial importance. It
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is not feasible to always write out the positions of all atoms, and even less to
display them all. One simply would not recognize any useful information. In
periodic crystals, defects can be visualized by plotting only those atoms whose
potential energy exceeds a certain threshold [14]. In quasicrystals, however,
atoms may have largely varying local environments. Their potential energy
thus varies significantly from atom to atom, even for atoms of the same type
in a defect-free sample. Defects can therefore not be visualized by applying a
simple energy cut-off as in periodic systems.

Fig. 3. Snapshot of a simulation with 4 million atoms. Only atoms with low coor-
dination number are displayed.

A more promising method is to display only those atoms whose coordina-
tion number is smaller than a certain threshold. The coordination number is
evaluated by counting the number of atoms within a certain distance. This
cut-off distance is configurable and may depend on the type of the atoms in-
volved. Like the potential energy, the coordination number varies from atom
to atom, but to a much smaller degree. In a perfect sample, it is 12 or 13 for
the small atoms, and ranges from 14 to 16 for the large atoms. Fortunately,
atoms near a defect have a significantly lower coordination number, so that
it is possible to visualize fracture surfaces and dislocation cores by display-
ing only atoms below a suitable threshold in the coordination number. Fig. 3
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shows a snapshot of a simulation with 4 million atoms, where atoms are dis-
played if their coordination number is less than 12 for small atoms, and less
than 14 for large atoms. With this method, the number of atoms to write to
the output files could be reduced by three orders of magnitude, which allows
to take more frequent snapshots instead.

2.4 Online Visualization

In addition to the offline visualization of data written to files during the sim-
ulation, an online visualization interface has been developed. A visualization
application can request data from the simulation via a socket connection. By
the same mechanism, it is also possible to interactively steer the simulation
by sending requests to change certain simulation parameters. For online vi-
sualization, it is even more important to carefully select the data before it
is sent to the visualization. Otherwise, the communication overhead and ren-
dering time could become overwhelming. Currently supported are requests
for changing certain simulation parameters, and request for sending selected
atoms, along with some of their properties. The selection criteria for those
atoms, and the atom properties that shall be sent with them, can be chosen
interactively. Atoms can be selected by requesting that their position is inside
some rectangular box, and that their type, kinetic energy, potential energy,
and number of neighbours are within some chosen interval. All these selection
criteria can be switched on and off. The data sent with each selected atom
can include the type, the position, the velocities, the kinetic and the potential
energy, and the number of neighbours. Each of these quantities can be se-
lected or deselected. This allows to keep the amount of requested data small.
The interface can easily be extended, e.g. by requests for sending volume data
instead of atom data.

Jürgen Schulze-Döbold of the visualization group at HLRS has written
a plugin for the COVER renderer of the COVISE visualization system [15],
which implements the protocol sketched above on the visualization side. This
plugin can be used for visualizations both on a computer screen and in a
virtual reality environment like a CAVE.

The first experience suggests that such online visualization facilities can
be a very valuable tool for the rapid determination of suitable simulation
parameters. The visualization of large systems in real time requires, however,
considerable computational power on the simulation side, which is not always
available interactively.

2.5 Performance and Load Balancing

IMD is known to perform very well on PC processors [16]. On a 2-processor
Athlon MP1900+ PC, a typical crack simulation run with 4 million atoms
takes about 48 hours per 10’000 time steps. Often, some 50’000 to 60’000 time
steps are necessary, so that such a simulation takes 10 to 12 days. Since we have
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several such machines available, a reasonable throughput can be obtained for
parameter studies, but a turnaround time of almost two weeks is not optimal.

As IMD scales very well up to large CPU numbers [16], the solution seems
to be massively parallel processing. The only available machine with very
many CPUs was the Cray T3E. Its processors are about 8 times slower than
the AMD processors on the PCs, however. With 96 T3E CPUs, a simulation
run takes some 8 hours per 10’000 time steps. The problem here is, that
the maximal time limit of the queues is 12 hours, so that a simulation of
60’000 time steps has to be split into 4 consecutive runs, where the later runs
require the output of the previous ones as input. In principle, it is possible to
start the later runs automatically from the previous ones, but such a scheme
is complicated and error prone. Starting the later runs by user intervention
means a lot of work and reduces the turnaround time considerably. The entire
simulation would fit into a single run only if about three quarters of the
machine could be used, but so many processors are usually not available. With
only 96 or 128 CPUs, the restarting of the jobs is sufficiently inconvenient,
that most of the simulations have actually been performed on our 2-CPU PCs.
The T3E has mainly been used for the shorter relaxation runs which fit into
the 12 hour queue limit. It would be highly desirable to reduce the turnaround
time considerably, but this seems possible only with a more powerful machine
and/or larger queue time limits. In a sense, the problems we want to study
have become too large for the T3E.

If a large number of CPUs is used for a crack simulation, the load bal-
ancing problem deserves particular attention. IMD uses a geometric domain
decomposition scheme for the work sharing [11]. More than 95% of the time is
spent in the force computation, which depends on the number of neighbours
of an atom. In a crack simulation, fixed boundary conditions are used in two
directions, and periodic boundary conditions in the third direction. Atoms
near fixed boundaries have less neighbours, so that the corresponding CPUs
have less work to do. A similar effect occurs in the middle of the sample along
the crack. On the other hand, by the widening of the crack some atoms are
moved to the boundary CPUs, which means more work for them. In practice,
it is very hard to arrange things such that these competing effects exactly
cancel each other. If some CPUs have less work to do than others, they have
to wait (at least once every time step) until the other CPUs catch up. This
usually occurs in a collective communication routine, or in the collecting of
the forces from the neighbouring CPUs. It turns out that for a crack simu-
lation the problem of an unbalanced work load can mostly be avoided by a
clever choice of the dimension of the CPU grid. In a normal bulk simulation,
it is usually most efficient to assign to each CPU a block of material that
is approximately cubic. This reduces the surface of the block, and thus the
communication overhead. In a crack simulation, it is more efficient to use only
two CPUs in the direction perpendicular to the crack surface. With such a
scheme, all blocks contain a similar amount of work, so that the communi-
cation overhead (including waiting time) is reduced to as little as 3-4%. If
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three or four CPUs are used in this direction, which would result (at a fixed
number of 96 CPUs) in a better aspect ratio of the blocks, the communication
overhead is increased up to 10-12% (which seems still acceptable).

3 Results

For our simulations we have set up initial fracture planes perpendicular to
five- and twofold axes. For both orientations a plane of lowest surface energy
is chosen, that corresponds to one of the deepest minima in Fig. 1. The prop-
agation direction is along a twofold symmetry axis. In both cases we have
performed a series of simulations with overloads in a range from ∆K∗ = 0.1
to ∆K∗ = 0.8.

We observe brittle fracture without any crack tip plasticity irrespective of
the orientation of the fracture plane. This is in good agreement with simula-
tions of dislocation motion in the same model [17]. These simulations show
clearly that the plasticity is very limited in this model, in particular at low
temperatures.

For small overloads up to ∆K∗ = 0.2, the crack propagates only a few
atomic distances r0, and then stops for all orientations of the fracture plane.
The minimal velocity for brittle crack propagation is about 10% of the shear
wave velocity vs. For loads ∆K∗ > 0.2 the velocity increases monotonically
with the applied load. The crack velocities are in a range of 10-45% of vs.

Fig. 4. Height profile of fracture surfaces perpendicular to twofold (top) and fivefold
(bottom) axes, for ∆K

∗ = 0.6. The height increases from blue (−2r0) via cyan
(−1r0), green (average height), and yellow (+1r0) to red (+2r0).

To analyse the morphology of the fracture planes, the height of the fracture
surfaces, h(r), is calculated as a function of the two lateral coordinates r =
(x, y). Fig. 4 shows examples of such surface profiles. The crack propagation
direction is from the left to the right. The initial fracture surface is flat, as
can be seen from the homogeneous regions on the left. The surfaces resulting
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from the propagation of the crack, however, show a pronounced pattern of
regions with different heights. The average vertical roughness is of the order
of 4r0.

4 Conclusions

In this article we have reported on molecular dynamics simulations of crack
propagation in icosahedral model quasicrystals. For this purpose the qua-
sicrystal stucture was endowed with an atomically sharp crack on fracture
planes perpendicular to five- and twofold directions. Subsequently the crack
was loaded by linear scaling of the displacement field of the stable crack, and
the response of the system was followed by molecular dynamics simulations.
For both directions we find brittle fracture with rough fracture surfaces.
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