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Abstract

The standard two-dimensional decagonal binary tiling quasicrystal with Lennard-Jones potentials is metastable at
zero temperature with respect to one phason strain mode. By calculating the frequencies of local environments as a
function of phason strain, a correction for the potentials is predicted, which stabilizes the quasicrystal.

PACS: 61.44.Br, 62.20.Dc

1. Introduction

In a previous paper [1] we have measured the
five generalized phason-phonon elastic constants at
zero temperature for the standard two-dimensional
decagonal binary tiling quasicrystal with Lennard-
Jones potentials, using molecular dynamics relax-
ation simulations. One of the phason elastic con-
stants turned out to be negative, rendering the sys-
tem metastable. Lee et al. [2] have shown, that the
ground state of this system is a phase separation into
various crystalline states without any five- or tenfold
motifs.

To improve on those results, we analyze in Sec-
tion 2 the phason elastic constants in dependence of
the two-body interaction potentials, by counting the
frequencies of atomic neighborhoods as a function of
phason strain. These calculations suggest a modifica-
tion of the potentials, presented in Section 3, which
stabilizes the binary tiling quasicrystal. For these
new potentials the elastic constants are determined
with the same simulation method as in [1]. The
elastic constant for stoichiometry preserving phason

strains becomes positive, and the system is stable.
The ground state structure for both potentials

is obtained by Monte-Carlo cooling simulations,
briefly discussed in Section 4. With the unmodi-
fied Lennard-Jones potentials the results of Lee et al.
[2] are reproduced, whereas the modified potentials
strongly prefer tenfold clusters. The cooling simula-
tions yield a ground state structure which is a super-
tile random tiling with mainly doubly inflated thick
Penrose rhombs.

2. Calculation of the zero temperature phason

elastic constants

We consider here a model quasicrystal without
phonon strain or local relaxations of atom positions,
but with an arbitrary phason strain. Such structures
include both periodic approximants and the perfect
quasicrystal. If we consider a cutoff radius Rc for
the atomic interactions, the potential energy Ei of
a single atom depends only on the potentials φ and
the atomic configuration inside the ball BRc,xi

with
radius Rc around the position xi of the atom. There-
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Fig. 1. Acceptance domains for the environments of a
big atom (Rc = 1.92). The atomic configurations are
shown in Fig. 2. An analogous subdivision existst for the
acceptance domain of the small atoms.

fore, we can calculate the total potential energy by
adding the potential energies of the central atoms of
each local environment, multiplied with the number
of occurrences of the environment. In the same man-
ner we can express the total volume by the Voronoi
volumes of the central atoms of the occuring envi-
ronments, and finally get for the potential energy
density

epot =
Epot

V
=

∑

i NiEi
∑

i NiVi

= f (T = 0) . (1)

We can easily rewrite this in terms of the frequencies
ni of the environments. These, on the other hand,
are proportional to the areas of the acceptance do-
mains Ai of the environments:

f =

∑

i niEi
∑

i niVi

=

∑

i AiEi
∑

i AiVi

. (2)

The energy Ei of an atom with a given environment
depends only on the potentials φ, the corresponding
acceptance domain Ai depends on the phason strain
χ, and the Voronoi volumes Vi are fixed and known,
so that we have derived the zero temperature free en-
ergy density f (χ; φ) as a function of phason strain,
parameterized by the values of the potentials at the
occuring distances.

The local environment of an atom is determined
by the set of its neighbors inside a ball of radius Rc.
The acceptance domain of a local environment thus
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Fig. 2. Local environments of big atoms appearing in the
standard binary tiling quasicrystal (Rc = 1.92). (No. 40
dosn’t exist in the perfect quasicrystal, but appears at
infinitesimal phason strain.)

is the intersection of the projections of the atomic
surfaces of all the atoms inside this ball. The atomic
surface of the central atom is thereby divided into
different areas, each belonging to one local environ-
ment in physical space (Fig. 1). Applying phason
strain deforms perpendicular space, and in particu-
lar the atomic surfaces, along with their subdivisions
according to the local environments. The sizes of the
different subdomains of the atomic surfaces, and thus
the frequencies of the local environments, therefore
depend on the phason strain.

From now on we choose the interaction cutoff ra-
dius Rc = 1.92. This is rather small, but includes all
bonds of the characteristic tenfold cluster (Fig. 2).
For this cutoff radius there are 299 inequivalent (up
to symmetry operations) local environments in a to-
tally randomized binary tiling. 19 of them exist in
the perfect quasicrystal, and 4 more occur already
at infinitesimal phason strain. The remaining 276
only show up at phason strains with absolute values
greater than 0.1. As we are only interested in small
phason strains, and are doing linear phason elasticity
theory, these latter environments are neglected.

After calculating the acceptance domains of the
23 environments of interest and the Voronoi volumes
and potential energies of the central atoms, (2) leads
to
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r1 1/τ 0.62

r2 1 1.00

r3 2s/τ 1.18

r4

√

4 − τ 1.54

r5 τ 1.62

r6 2s 1.90

Table 1. Atomic distances smaller than Rc = 1.92 occur-
ing in binary tiling quasicrystals (τ =

√
5+1

2
, s = sin 2π

5
).

f = f0 +
1

2
λ7χ

2
6 +

1

2
λ9χ

2
8 + O

(

χ3
)

(3)

λ7 = − 0.47φAA (r3) − 2.38φAA (r6)

+ 0.76φBB (r1) − 0.68φBB (r3)

− 3.47φBB (r5) − 0.91φBB (r6)

+ 0.58φAB (r2) + 4.40φAB (r4)

λ9 = 0.47φAA (r3) − 1.02φAA (r6)

− 0.76φBB (r1) − 2.72φBB (r3)

− 4.22φBB (r5) − 4.27φBB (r6)

− 0.58φAB (r2) + 2.40φAB (r4) .

The free energy density is a quadratic form in the
phason strain modes. We get the two phason elastic
constants as a function of the potential values at six
occuring distances, shown in Table 1.

If we evaluate the phason elastic constants from
(3) for the Lennard-Jones potentials usually used for
the binary tiling quasicrystal, we get

λ7 = −2.40, λ9 = 1.03,

while our molecular dynamics relaxation simulations
[1] resulted in

λ7 = −2.70, λ9 = 0.80.

The cutoff radius used for the simulations (Rc = 7)
was bigger than the one used for the analytic expres-
sion. However, variations of the simulations show,

that the difference between the obtained phason elas-
tic constants is mainly due to atomic relaxations al-
lowed in the simulations, while the atom positions
are fixed in the analytic calculations presented here.

3. Modification of the potentials

The nearest neighbor interaction terms for the two
phason elastic constants λ7 and λ9 have the same
weights, but opposite sign (first column in (3)). This
is due to the fact, that all binary tilings with the
same stoichiometry have the same potential energy,
if only nearest neighbor interactions are assumed.
For all plausible potentials the nearest neighbor part
of λ7 is negative, while the one of λ9 is positive.
Since the phason strain mode χ6 increases the rel-
ative number of small atoms while χ8 decreased it,
this describes the dependence of the potential energy
density on bond density.

Stoichiometry preserving phason strains satisfy
χ2

6 = χ2
8, and thus have the phason elastic constant

1

2
(λ7 + λ9) = − 1.70φAA (r6) − 1.70φBB (r3)

− 3.85φBB (r5) − 2.59φBB (r6)

+ 3.40φAB (r4) . (4)

The Lennard-Jones potentials are attractive at all
distances r1 to r6. Thus all terms in (4) are positive,
except for the last one. This term drives the system
with the Lennard-Jones potentials unstable. A re-
pulsive component in the potential between different
atoms at distance r4 makes the last term of (4) pos-
itive and leads to stabilization. We have chosen a
mixed Lennard-Jones and Dzugutov [3, 4] potential
for the modification, which has a minimum of −2
at distance r2 and a maximum of +0.25 at approxi-
mately r4 (Fig. 3).

The new potentials result in the following phason
elastic constants:

λ7 = −0.31, λ9 = 2.17,

(λ7 + λ9) /2 = 0.93.

We also reran our molecular dynamics relaxation
simulations with the modified potentials, which re-
sulted in

λ7 = −0.88, λ9 = 1.34,

(λ7 + λ9) /2 = 0.23.
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Fig. 3. Original Lennard-Jones potentials φAA (dash-
dotted), φBB (dashed), φAB (dotted), and modified
potential φ′

AB (solid), a mixed Lennard-Jones and
Dzugutov potential.

With the potential modification described above, we
were able to drive the phason elastic constant for con-
stant stoichiometry positive, but the phason elastic
constant λ7 remains negative. The calculated and
simulated values of the phason elastic constants still
have the same order of magnitude and the same sign,
but differ more than those for the Lennard-Jones po-
tentials. If we enlarge the repulsive part of φAB fur-
ther, for example to 0.5, we obtain from the analytic
expressions phason elastic constants which are all
positive, but the simulations lead to completely dif-
ferent results. So, if the repulsive part is too strong,
atomic relaxations overshadow completely the effect
of the energy dependence on the frequencies of local
environments, and the calculation is no longer real-
istic.

4. Monte Carlo Simulations

In order to obtain the ground state structure, we
have also performed Monte-Carlo cooling simula-
tions, both with the Lennard-Jones potentials and
the modified potentials. In the Lennard-Jones case
we could reproduce the results of Lee et al. [2]. The
ground state then is a phase separation into sev-
eral crystalline states, without any five- or tenfold
local environments. For the modified potentials, on
the other hand, we obtain a super-tile random tiling
structure, where the diameter of the super-tiles is of

the same order as our cutoff radius. We expect to
get a similar structure with bigger super-tiles if we
enlarge the cutoff radius. An interesting question is,
whether a qualitatively different behavior is found,
if the cutoff radius is increased beyond the matching
rule radius, which is about 8 for the present model
[5]. According to the locked state theory [6] one
should then find non-analytic linear terms in the free
energy denstiy. However, the method presented here
is computationally too demanding for such large cut-
off radii, but there may be modifications with which
one could reach the matching rule radius.

5. Conclusion

We have presented a way to compute the phason
elastic constants at temperature zero as a function
of the potential values at certain distances occur-
ing in the quasicrystal. This enabled us to predict
a modification of the potentials, improving the sta-
bility of the quasicrystal. One phason elastic con-
stant remains slightly negative, but the correspond-
ing phason strain changes stoichiometry, so that a
discussion of the free energy dependence on this pha-
son strain without chemical potentials is incomplete
anyway. For the phason strain directions which leave
stoichiometry constant, the stabilization criteria are
fulfilled. The comparison of the analytic results with
relaxation simulation results are important, because
the analytic calculations do not take atomic relax-
ations into account. The analytic calculations are
meaningful only if the effect of the relaxations on to-
tal potential energy is small compared with that of
the variation of the frequencies of local environments.
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