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Abstract. We consider 1-dimensional, unimodular Pisot substitution tilings with three
intervals, and discuss conditions under which pairs of such tilings are locally isomorhphic
(LI), or mutually locally derivable (MDL). For this purpose, we regard the substitutions as
homomorphisms of the underlying free group with three generators. Then, if two substitutions
are conjugated by an inner automorphism of the free group, the two tilings are LI, and a
conjugating outer automorphism between two substitutions can often be used to prove that the
two tilings are MLD. We present several examples illustrating the different phenomena that can
occur in this context. In particular, we show how two substitution tilings can be MLD even if
their substitution matrices are not equal, but only conjugate in GL(n, Z). We also illustrate
how the (in our case fractal) windows of MLD tilings can be reconstructed from each other,
and discuss how the conjugating group automorphism affects the substitution generating the
window boundaries.

1. Introduction

In this article, we consider substitutions σ on an alphabet of three letters, whose abelianisation
matrix (substitution matrix) M is primitive and unimodular, has irreducible characteristic
polynomial, and a leading (Perron-Frobenius, PF) eigenvalue which is a Pisot number. The
words generated by such a substitution can be regarded as elements of a free group with
three generators, and automorphisms of the free group give rise to transformations of words.
Alternatively, we can work with a geometric realisation of the substitution, by letting it act on
three intervals, whose lengths are chosen proportional to the components of the left eigenvector
associated with the leading PF-eigenvalue λ of M . Each tile is then substituted with a sequence
of tiles, whose total length is equal to λ times the original length. Such a geometric realisation
generates a tiling of the line, instead of a sequence of symbols, or a word in a free group.

The matrix M represents a linear mapping A of R
3, expressed with respect to some basis

{bi}. As M is unimodular, this mapping is an automorphism of the lattice L generated by
this basis. We choose the geometry of L such that the expanding and contracting eigenspaces
of A are perpendicular to each other, so that A commutes with the orthogonal projections on
these eigenspaces. This can be realised as follows. After appropriate rescaling, the tile lengths,
being components of the PF-eigenvector, are contained in the algebraic field Q(λ), and so are
all coordinates of lattice points in the expanding eigenspace of V of A. The corresponding
coordinates in the contracting eigenspace W can be chosen as the d− 1 Galois conjugates of the
coordinate in V . We then have a cut-and-project scheme (CPS) defined by the lattice L, and



the eigenspaces V and W of A:

V ∼= R
π1←− R

3 π2−→ W ∼= R
2

∪ ∪ ∪
Λ L Ω

(1)

One of the formulations of the Pisot conjecture states that the vertex set Λ of a Pisot
substitution tiling always is a model set, which means that there exists a window set Ω ⊂ W

which is the closure of its interior, and which has boundary of measure zero, such that
Λ = {π1(x) |x ∈ L, π2(x) ∈ Ω}. Similarly, the subsets of the left end points of all tiles of a
given type in a Pisot substitution tiling are model sets, too, with appropriate subwindows Ωi.
For all examples considered below, the Pisot conjecture can be shown to hold, even though a
proof for the general case is still missing. For a more detailed description of Pisot substitution
tilings and their associated CPS, we refer to [1]. In particular, we note that one can derive
also a dual, contractive substitution acting on window sets in W , whose fixed points are the
subwindows Ωi. We remark that the CPS (1) also admits a canonical projection tiling, whose
window Ω is the image under the projection π2 of the parallelepiped spanned by the basis {bi}
of L. The subwindow for tile i, whose length is equal to the length of π1bi, is simply the
parallelogram spanned by the vectors π2bj and π2bk, where j and k are the two indices different
from i. This canonical projection tiling is not substitutional in general, but its subwindows can
serve as convenient starting points for the dual substitution determining the windows. Acting
on the canonical windows as seeds, the dual substitution overlap free.

2. LI and MLD Relations

The CPS (1) does not specify the window Ω yet. Substitutions having the same abelianisation
matrix M (but differ in the order of the letters within a substituted word) give rise to the same
CPS, but will have different windows in general. As we shall see below, even substitutions with
different abelianisation matrices may belong to a common CPS.

In the following, we shall study relations between certain substitution tilings belonging to a
common CPS. For this, besides the geometric realisation of a substitution tiling it is also useful
to consider the substitution action on the underlying free group with three generators. In our
examples, the substitution acts with a group automorphism. If for two substitutions σ1 and σ2

there exists a fixed word w in the group, such that σ1(g) = w−1σ2(g)w for every generator g of
the group, then the two substitutions produce tilings wich are locally isomorphic (LI), meaning
that all their finite subpatterns are the same. This can be seen as follows. One first observes
that there exists some power of σ1, such that σk

1
has a bi-infinite fixed point, and that σk

1
and σk

2

are still conjugate in the same way, with a (longer) word w′. In a second step, one can then show
that the fixed point of σk

1
is also a fixed point of σk

2
, which implies that the two substitutions

generate the same tilings.
A more delicate relation is mutual local derivability (MLD) [2]. Two tilings are MLD, if one

can be reconstructed from the other in a local way, and vice versa. For this to work, the two
tilings must first be brought to the appropriate relative scale and position. A good starting
point is to consider two tilings belonging to a common CPS. In fact, two (model set) tilings
are MLD if and only if the window of one can be constructed by finite unions and intersections
of lattice translates of the window of the other, and vice versa. Looking at the windows can
suggest an MLD relation, but for proving such a relation it is very helpful if one substitution
can be written as a conjugate of the other, σ1 = ρ−1 ◦ σ2 ◦ ρ, where ρ is an outer automorphism
of the free group (an inner automorphism would lead to an LI relation). Such an automorphism
will make the transformation of one tiling into the other explicit.

If a substitution σ acts invertibly on the underlying free group, the boundaries of its windows
are generated by a substitution, too. This boundary substitution is given by σb = σ̃−1, which



Figure 1. Windows of the substitution
a→ cb, b→ c, c→ cab.

Figure 2. Windows of the substitution
a→ bc, b→ c, c→ cba.

is the inverse of σ, read backwards [4, 5]. As a seed for the iteration, it is again convenient to
take the windows of the canonical projection tiling belonging to the same CPS. For instance,
the canonical window for tile a is bounded by the closed path consisting of the four consecutive
segments π2b2, π2b3,−π2b2, and −π2b3. This path is represented by the word bcb−1c−1 in the
free group, on which the boundary substitution σb acts. In each step, the boundary path is
transformed into one with more, but shorter segments, eventually converging to the fractal
boundary of the final window.

If we now have two substitutions σ and σ′ which are conjugated, σ′ = ρ−1 ◦ σ ◦ ρ, their
boundary substitutions satisfy σ′

b = ρ̃−1 ◦ σb ◦ ρ̃. Iterating this, we find σ′n
b = ρ̃−1 ◦ σn

b ◦ ρ̃. In
the limit of a fully fractalized window, the action of ρ̃−1 can be neglected (it is local at the
scale of the then infinitesimally small segments), and σ′

b can be understood as σb acting on the
seed of σ′

b, transformed by ρ̃. As the dual substitution acting on the canonical windows and
their iterates is overlap free, the transformation ρ̃ commutes with the fractalization induced
by σb, and it becomes manifest that the windows of σ are obtained from those of σ′ via the
transformation induced by ρ̃. In particular, the windows of the two substitutions have the same
fractal structure.

In the following, different phenomena arising in this context are illustrated with a number of
examples. As a short-hand notation, we write the action of a substitution σ on a free group as
the list of images of the generators, in our case a triple [σ(a), σ(b), σ(c)].

3. Examples

As a first example, we consider the substitutions σ1 = [cb, c, cab] and σ′

1
= [bc, c, cba], which

have the same abelianisation matrix. These two substitutions are conjugate by the free group
automorphism ρ1 = [bab−1, b, c], with inverse ρ−1

1
= [b−1ab, b, c]. It is easily checked that indeed

we have σ1 = ρ−1

1
◦σ′

1
◦ρ1. In a word generated by σ1, there is always a b to the right of an a. ρ1

eats up that b, and adds a b to the left of the a instead, effectively replacing ab pairs by ba pairs.
ρ−1

1
performs the opposite operation. This is obviously a local operation, no matter whether

one works with words in a free group, with symbolic sequences, or with tilings. The LI classes
of tilings generated by the two substitutions are MLD. The windows of the two substitutions σ1

and σ′

1
are shown in Figures 1 and 2, respectively. The windows for the a, b, and c tiles are in

red (medium gray), green (light gray), and blue (dark gray). When transforming from Figure 1
to Figure 2, part of the b tiles (green), namely those to the right of an a tile, move to where the



Figure 3. Windows of the substitution
a→ c, b→ a, c→ cab.

Figure 4. Windows of the substitution
a→ c, b→ ca, c→ cb.

a tiles were before. The subwindow of the a tiles (red) thus becomes green, and a congruent
copy of it is cut away from the original subwindow of the b tiles in green. The red subwindow
of the a tiles instead moves to a different place, because the a tiles are now to the right of a
b tile. As a and b tiles have different lengths, the left endpoint of the second tile of ab and ba

pairs differs, and so the corresponding subwindows are at different places.
In the second example, we consider two substitutions with different abelianisation matrices,

σ2 = [c, a, cab] and σ′

2
= [c, ca, cb]. Again, there is a conjugating automorphism ρ2 = [a, a−1b, c],

with inverse ρ−1

2
= [a, ab, c], so that σ2 = ρ−1

2
◦σ′

2
◦ρ2. Here, in words produced by σ2, all b tiles

are to the right of an a tile. ρ2 eats up the a tile to the left of a b tile, effectively replacing all
ab pairs by just one b. Other a tiles (not to the left of a b) and all c tiles are left as they are.
Conversely, ρ−1

2
splits all b in a σ′

2
-word into ab pairs. On the tiling level, this operation is local

if and only if the length of an ab pair of tiles in the σ2-tiling is the same as the length of a b tile
in the σ′

2
-tiling, whereas a and c tiles have the same length for both tilings. With appropriate

global scalings, this is indeed the case. σ2 = ρ−1

2
◦ σ′

2
◦ ρ2 implies that the two abelianisation

matrices are conjugate in GL3(Z). In fact, the two substitutions have the same CPS, with the
same lattice L. The only difference is, that the linear mapping A is expressed with respect to
two different lattice bases, yielding two different matrix representations of A, and different tile
lengths (which are the lengths of the projected basis vectors). It is therefore not surprising,
that the length of tile b in the σ′

2
-tiling is the sum of the lengths of the two tiles a and b of the

σ2-tiling. The windows of the substitutions σ2 and σ′

2
are shown in Figures 3 and 4, respectively,

using the same coloring as for the previous example. In Figure 3, part of the a tiles (in red),
namely those to the left of a b tile, become the new b tiles in Figure 4 (green), whereas the
old b tiles in Figure 3 (green) are discarded. MLD relations can therefore arise also if the two
abelianisation matrices are not equal, but conjugate in GL3(Z), because the two substitutions
then share a common CPS. We emphasise, however, that this relation is local only for the tilings
with properly sized tiles. This pair of examples had been discussed in detail already in [3]. σ′

2

is LI to the Rauzy or Tribonacci substitution.
Finally, as a third example, we consider a quartet of substitutions, all with the same

abelianisation matrix M . These substitutions are σA = [ca, ab, cab], σB = [ac, ab, abc],
σC = [ca, ba, bac], and σD = [ac, ab, bac]. σA and σD are conjugate in a way already seen in the
first example: σD = ρ−1

3
◦ σA ◦ ρ3, where ρ3 = [a, b, a−1ca] simply replaces ac pairs by ca pairs.

In order to discuss the relations to the other substitutions, we introduce the automorphisms



Figure 5. Windows of the substitution
a→ ca, b→ ab, c→ cab.

Figure 6. Windows of the substitution
a→ ac, b→ ab, c→ abc.

Figure 7. Windows of the substitution
a→ ca, b→ ba, c→ bac.

Figure 8. Windows of the substitution
a→ ac, b→ ab, c→ bac.

u1 = [c, a, ab] and u2 = [c, a, ba]. We then have σA = u1 ◦ u1 ◦ u2, σB = u1 ◦ u2 ◦ u1, and
σC = u2◦u1◦u1, so that σA = u1◦σB◦u

−1

1
and σC = u−1

1
◦σB◦u1. The conjugating automorphism

u1 has an abelianisation matrix U which commutes with the common abelianisation matrix M of
the substitutions, even though U is non-trivial. This is possible because M is equal to the third
power of U . Therefore, M is conjugate to itself by some non-trivial mapping, which acts non-
trivially on the lattice L, changing the scale of the tiling by the cubic root of the inflation factor
λ of the substitution (or its inverse). Consequently, in order to be MLD, the tilings produced

by σA, σB and σC must be at relative scales λ−
1

3 , 1, and λ
1

3 , respectively. The situtation is in
fact similar to the second example, where the substitutions share a common CPS, but different
lattice bases of L are used. Here, these different lattice bases still lead to the same abelianisation
matrix M , but produce tiles of different sizes. The windows of the substitutions σA, σB , σC ,
and σD are shown if Figures 5 to 8, respectively. We don’t discuss the transformations between
them in detail here, but it is quite obvious that each subwindow can be obtained as translate or
union of translates of subwindows of the other substitutions.



4. Conclusions

The CPS of a Pisot substitution tiling can accommodate many other substitution tilings as
well. Some of these are obtained by permuting the letters in the substituted words, but there
may be others arising from the choice of a different basis for the lattice of the CPS, as we have
seen in the second example. The more complicated a substitution is, the richer is the set of
substitution tilings supported by its CPS. Some of the tilings sharing a common CPS can be
related in interesting ways, however. In particular, there may local isomorphism or mutual local
derivability relations, sometimes in surprising ways. We have discussed some of the phenomena
that may arise in this context, and have illustrated them with a number of examples. The key
tool was to formulate the substitution as an automorphism of an underlying free group, which
allowed to find the relations with algebraic methods, and to make the transformations between
the related tilings explicit.
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