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Covering cluster description of octagonal MnSiAl quasicrystals
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A likely mechanism for the formation of quasicrystals is by maximally covering space with overlapping,
stable atomic clusters. This notion is here applied to the experimentally determined layered structure of
octagonal MnSiAl quasicrystals, which can be described in terms of a decoration of the octagonal Ammann-
Beenker tiling. This decoration is abstractly represented by a two-color version of the tiling. The covering
cluster of the quasicrystal corresponds to an octagonal covering patch of the colored tiling. This covering patch
appears in two variants with complementary colors. The three-dimensional quasicrystal has a centered octago-
nal translation module, and its space group isI84 /mcm. @S0163-1829~99!15525-5#
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I. INTRODUCTION

Clusters have long been suspected to play an impor
role in the formation and stabilization of quasicrystals. Jeo
and Steinhardt1 have argued thatoverlapping clusterscould
generate order through constraints on the possible over
Overlapping clusters share certain atoms, and so they m
agree in the overlap, which reduces the types of overlap
small number of possibilities. Jeong and Steinhardt co
show that such constraints can lead to perfectly ordered,
sicrystalline structures, for instance the Penrose tiling. T
key principle is the maximization of a small number of we
chosen clusters, which asks for overlaps and therefore
ates correlation and order. Such an approach could succ
fully be applied also to the octagonal Ammann-Been
tiling.2

Independently of this, similar questions had been stud
also from a purely geometric viewpoint. Gummelt3,4 found a
suitably decorated decagon with the property that ev
structure completely covered by it is equivalent to a perf
Penrose tiling. It is again the restricted number of poss
overlaps which is responsible for the creation of order. Je
and Steinhardt5 could extend this result by showing that th
perfect Penrose tilings have the highest density of Gu
melt’s decagon among all tilings, irrespective of wheth
they are covered or not. A similar result could be obtain
also for the octagonal Ammann-Beenker tiling,6 although so
far no formal proof has been found which extends to tilin
which are not completely covered.

So far, this cluster approach had only been worked out
tilings, and the application to actual atomic structures h
remained on a rather abstract level. Only very recen
Steinhardtet al.7 succeeded in applying it to a particula
instance of a decagonal quasicrystal, Al72Ni20Co8. In this
case, the experimentally determined atomic cluster sugg
constraints of overlap which eventually enforce the form
tion of a perfect quasicrystal. It is the purpose of this pape
present such a covering cluster for octagonal MnSiAl qua
crystals.

Octagonal quasicrystals were observed by Wang, Ch
PRB 600163-1829/99/60~2!/860~5!/$15.00
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and Kuo8 in CrNiSi and VNiSi alloys. They are periodic
along one direction, and quasiperiodic and eightfold sy
metric in the plane perpendicular to the periodic directio
Their structure is closely related to theb-manganese-type
tetragonal structures in the same alloy systems. Later,
octagonal quasicrystal phase was found, with improved q
ity, also in the MnSiAl alloy system.9 Huang and
Hovmöller10 put forward a structure model for this octagon
MnSiAl phase, which was later improved and further co
roborated by Jiang, Hovmo¨ller, and Zou.11 It is this latter,
improved structure model of octagonal MnSiAl on which o
paper is based.

We shall present a clusterC which completely covers the
MnSiAl quasicrystal structure, and the overlaps which t
cluster admits are such that among all structures covere
the cluster, the octagonal quasicrystal has the highest clu
density. Maximization of this cluster therefore appears as
natural ordering principle leading to the formation of octag
nal quasicrystals.

It is not our intention to argue that the formation an
stabilization ofeveryquasicrystal is governed by such a clu
ter maximization principle. Our example shows, howev
that there are cases where such an interpretation is ind
very tempting. Nevertheless, other mechanisms might c
tribute to the stabilization of the quasicrystalline phase a
in this case.

In the remainder of this paper we first analyze the str
ture model of octagonal quasicrystals~Sec. II!. The results of
this analysis allow for a thorough discussion of the spa
group symmetry~Sec. III!. In Sec. IV we proceed to the hea
of the paper, by describing how the quasicrystal structure
be regarded as being covered by copies of a single clustC
and explaining how the maximization of the density of th
cluster leads to a perfect quasicrystal. We finally conclude
Sec. V.

II. OCTAGONAL QUASICRYSTAL STRUCTURE

In this section we review the structure of octagonal M
SiAl quasicrystals as described in Ref. 11. This structure
860 ©1999 The American Physical Society
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PRB 60 861COVERING CLUSTER DESCRIPTION OF OCTAGONAL . . .
periodic stacking . . .AB8AB9 . . . , where the layerA is
eightfold symmetric, and the layersB are fourfold symmet-
ric. The latter occur in two versions,B8 andB9, rotated by
45° with respect to each other. All three layers can be
scribed as decorations of the well-known Ammann-Been
tiling,12,13 consisting of squares and 45° rhombi. The de
rations in layersA andB8 of an octagonal patch as given
Ref. 11 are shown in Fig. 1. The decoration of layerB9 can
be obtained by rotating the decoration of layerB8 by 45°.

To analyze the structure in more detail, let us have
closer look at a smaller, but very important motif, decorat
an octagonal patch of two squares and four rhombi~note that
in the following, we shall consistently write ‘‘patch’’ for a
patch of tiles and ‘‘cluster’’ for a cluster of atoms!. The
decoration of this patch in all three layers is shown in Fig
We first observe that the decoration of the tile edges in la
A is not symmetric. That is best seen by looking at the squ
with horizontal and vertical edges in Fig. 2~c!. The five at-
oms in the interior of that square form a smaller square, w
one atom at the center. This smaller square is obviously c
tered inside the tile. If we compare the positions of the c
ners of that square with the positions of the atoms on
edges of the tile, it is obvious that the edges are asymm
cally decorated. The edges are thereforeoriented.

While theA layer decoration of the interior of the tiles
symmetric, this is not the case for the decoration of
B-type layers. There are two possible decorations of
rhombus and two possible decorations of the square.
these decorations occur in both theB8 and theB9 layers. The
two decorations of the square are mirror images of each o
with respect to one of the diagonals of the square. A k
observation is that if a tile has one of the two decorations

FIG. 1. Decoration of an eightfold symmetric patch, as given
Ref. 11. Only the decorations of layersA ~top! andB8 ~bottom! are
given. The decoration of layerB9 can be obtained by rotating th
decoration of layerB8 by 45°. Large dots denote Mn atoms, sm
dots Si or Al atoms.
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layer B8, it has the other decoration in layerB9, and vice
versa. This can best be seen in Fig. 2~d! ~where for simplicity
we show only Mn atoms!. The mirror line along the vertica
diagonal of the square standing on its corner maps solid
~atoms from layerB8) to open dots~atoms form layerB9)
and vice versa. Incidentally, the same holds true for the
rhombi adjacent to that mirror line. Of course, all these pro
erties hold for the decorations of all tiles in the structure, n
only for the octagonal patch.

We are now ready to introduce an abstract representa
of the tiles decorated with atoms. To represent the asym
try of the tile edges and also the asymmetry of the interior
the squares, we put arrows on the tile edges. Such arrow
commonly used to formulate matching rules for t
Ammann-Beenker tiling.14,13,15,16Here, they arise naturally
through the asymmetry of the decoration. To distinguish
tween the two possible decorations of the interior of the til
we use a coloring with two colors. A tile is painted in on
color if it has the first of the two possible decorations in lay
B8 and the second decoration in layerB9, and it is painted in
the other color if it has the second decoration in layerB8 and
the first decoration in layerB9. The squares are regarde
here as being composed of two half-squares, divided al
the diagonal symmetry axis of the decorated square. The
halves are then painted in two different colors. We sho
emphasize that every tile actually represents an entire,
nite prism in the quasicrystal. Two tiles which agree
shape, orientation, and arrowing, but have different colo
represent the same prism; one of them is only translated
half a lattice period in thez direction ~perpendicular to the
basal plane! with respect to the other.

Our choice of the colors is shown in Fig. 3. If an octag
nal prism has in theB8 layers the decoration shown in Fig
2~a!, and in theB9 layers the decoration shown in Fig. 2~b!,
we represent it by the abstract tile patch shown on the lef
Fig. 3. If, on the other hand, the decorations of theB8 andB9
layers are exchanged, we represent the prism by the abs
tile patch shown on the right of Fig. 3. In both cases, t
decoration of theA layers is the one shown in Fig. 2~c!. As
well as the two colored tiles, the two octagonal patches r

FIG. 2. Decoration of a small octagon patch:~a! layer B8, ~b!
layerB9, ~c! layerA, and~d! layersB8 andB9 together. Large dots
denote Mn atoms, small dots Si or Al atoms. In~d!, only Mn atoms
are shown; atoms from theB8 layer are shown as solid dots, an
atoms from theB9 layer as open dots.
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862 PRB 60SHELOMO I. BEN-ABRAHAM AND FRANZ GÄHLER
resent essentially identical infinite prisms. They only diff
by being translated by half a lattice period in thez direction
with respect to each other.

Since the arrowed octagon patches cover the wh
Amman-Beenker tiling, there is a unique arrowing of t
tiling consistent with the arrowing of our octagon patc
Moreover, once we have decided on the coloring of the fi
octagon patch, the coloring of all the other octagon patche
determined, since all octagons in the pattern are conne
through overlaps. In these overlaps, the coloring must ag
A larger region of the colored and arrowed Amman
Beenker tiling is shown in Fig. 4. From this figure, it shou
also be clear that every square in the tiling belongs to on
two octagons, while every rhombus belongs to two or th
octagons. This observation may help to elucidate the lo
chemical structure in actual octagonal quasicrytals.

III. SPACE GROUP SYMMETRY

In this section we analyze the space group symmetry
the octagonal quasicrystal structure. Since our abstract
with their coloring and arrows have exactly the same sy
metry as their decoration with atoms, this is best done c
sidering the abstract tiling.

For quasicrystalline tilings, the role of the lattice of tran
lation symmetries is played by thetranslation module.17 The
translation module is an important concept, because it de
mines the Fourier module or reciprocal ‘‘lattice,’’ which
experimentally observable. The translation module can
determined as follows. For any finite patch of tiles, one
termines the set of all its translates~which must agree in
every respect, also in coloring and arrowing!. The set of

FIG. 3. Abstract representation of the two possible decorati
of the octagon patch. For an explanation, see text.

FIG. 4. Colored and arrowed Ammann-Beenker tiling.
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distance vectors between pairs of such translates genera
free Z module, called the translation module of that patc
The translation module of the whole tiling is then the inte
section of the translation modules of all its finite patch
Note that when a patch is enlarged, its translation mod
can only shrink, not increase. Fortunately, forquasiperiodic
tilings like the Ammann-Beenker tiling, the translation mo
ules do not shrink when a patch size is increased. It is th
fore enough to consider the translation modules of sin
tiles.

For the uncolored~but possibly arrowed! Ammann-
Beenker tiling, it is well known that the translation module
the module generated by all its tile edges. For the colo
tiling, this is no longer so. A closer look at Fig. 4 shows th
tiles of the same shape, orientation, arrowing,and coloring
are always separated by a path involving anevennumber of
tile edges. On the other hand, tiles of different color but li
orientation are separated by an odd number of tile edg
Only the ‘‘even’’ translations preserve the color, whereas
‘‘odd’’ translations change the color. The same holds true
any kind of finite patch: if a translation maps one patch
another patch in the tiling, this other patch has the sa
color if the translation is even and the other color if t
translation is odd.

We should remember now that tiles which differ only
color actually represent the same prism, but translated
half a lattice period in thez direction. Therefore, the odd
translations simply have to be combined with a translation
the z direction by half a lattice period, to make them el
ments of the translation module of the three-dimensio
~3D! quasicrystal structure. Color-preserving even trans
tions, on the other hand, can be purely horizontal or can
combined with lattice translations in thez direction. The
translation module of the 3D quasicrystal therefore is acen-
tered octagonalmodule.18

This finding is well in line with the experimental diffrac
tion patterns.8,9 Recall that the translation module is gene
ated by a set of vectors which project on the eight tile edg
but which have also az component corresponding to half
lattice period, because these basis translations are odd.
translation module within a plane spanned by thez axis and
a tile edge therefore consists of two kinds of layers, ev
ones and odd ones, where different positions are occup
On the other hand, in a plane spanned by thez axis and a
vector between two tile edges, there is only one kind
layer, because the odd layers are missing altogether. In
a plane, there are only even translations.

The Fourier module of such a translation module
spanned by a similar umbrella of generating vectors. T
umbrella is rotated, however, by 22.5°. Therefore, in Four
space, the missing odd layers are in vertical planes cont
ing the tile edges, whereas the vertical planes between
tile edges contain two different kinds of layers, odd ones a
even ones, with different sets of Bragg positions. This
exactly what is found in electron diffraction patterns.8,9

The missing layers in planes spanned by a tile edge
the z axis are thereforenot due to a glide plane, but due t
the centered Bravais lattice. However, this plane neverthe
is a glide plane, as can be seen in Fig. 4. Neglecting
coloring, there are many local patches invariant under suc
mirror. The colors, however, are exchanged by the mirror
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PRB 60 863COVERING CLUSTER DESCRIPTION OF OCTAGONAL . . .
that a translation in thez direction must be added to make
a symmetry. On the other hand, local mirrors between
tile edges preserve the coloring and are therefore true m
planes, not glide planes. From this it follows that the eig
fold rotation from the 2D Ammann-Beenker tiling becom
an 84-screw axis, so that the space group isI84 /mcm. The
glide planes cannot cause any further extinctions, becaus
Bragg peaks that are candidates for extinction are alre
extinct due to the lattice centering condition.

IV. COVERING CLUSTER DESCRIPTION

In the preceding section, we have seen that the octag
quasicrystal structure is covered by two types of infin
prisms with octagonal base. The only difference between
two prism types is that they are translated by half a latt
period in thez direction with respect to each other. Bo
kinds of prisms can be regarded as being covered by asingle
kind of cluster,C. This is achieved by dividing the two kind
of prisms at different hights into clusters. For the clusterC
we choose a prism with octagonal base, consisting of
layersB8AB9AB8. The top and bottomB8 layers are then
shared with the neighboring clusters. Since the quasicry
is covered by infinite prisms, it is also completely covered
copies of the clusterC.

We shall now determine the class of structures that can
completely covered by the clusterC. By construction, the
perfect octagonal quasicrystal structure is among these. I
insist that neighboring clusters in thez direction overlap by
one layer, the clustersC can only form correct, infinite
prisms. If, in turn, these infinite prisms are to cover t
whole, infinite structure, they can do this only by overla
ping to some extent with their neighbors in thexy plane. In
these overlaps, they will have to share the atoms with th
neighbor clusters, and so the decoration with atoms will h
to agree in the overlap. Because the abstract octagons sh
in Fig. 3 admit exactly the same overlaps as the atomic de
ration, any structure that is completely covered by the clu
C can be represented by a two-dimensional tiling comple
covered by these abstract, colored, and arrowed octagon

Any square-rhombus tiling that is completely covered
arrowed octagons necessarily satisfies the alterna
condition.19 The alternation condition, illustrated in Fig. 5,
enforced by the matching of the arrows on the tile edges.
coloring does not impose any further constraint. By insp
tion of the possible local neighborhoods, it is easy to see
any tiling covered by arrowed octagons can always con
tently be colored in exactly two ways, which differ only by
trivial color switch.

FIG. 5. The alternation condition requires that along any lane
tiles, the two types of rhombi must alternate. This is enforced by
arrowing of the tiles, which must match.
e
or
-

all
dy

al

e
e

e

tal
y

e

e

-

ir
e
wn
o-
er
ly
.

n

e
-
at
s-

In Ref. 6 it has been shown that among all tilings co
pletely covered by the arrowed octagon~and thus satisfying
the alternation condition!, the octagonal Ammann-Beenke
tiling is the unique tiling with the highest octagon densit
And since there is so much overlap of octagons in
Ammann-Beenker tiling, it is hardly imaginable that there
a tiling not completely covered that has an even higher d
sity. We can therefore conclude that the octagonal quasic
tal structure is the unique structure having the highest den
of C clusters.

V. DISCUSSION AND CONCLUSION

In this paper we have shown that the octagonal quasic
tal structure determined in Ref. 11 is completely covered
a single kind of cluster,C. Moreover, this structure is eve
the one with the highest density ofC clusters. SinceC clus-
ters are so abundant, they must be energetically prefer
and atoms inside such a cluster must have a favorable e
ronment. Since every atom in the structure is contained
several suchC clusters, every atom must therefore be in
favorable environment. The maximization ofC clusters
therefore seems to be the natural ordering principle tha
reponsible for the formation of octagonal quasicrystals.

Our conclusions rely heavily on the results of Ref.
where a similar result for the two-dimensional Amman
Beenker tiling was obtained. In that paper, it was sugges
that the arrowed octagon might be replaced by a larger,
decorated patch, which has exactly the same asymmetr
the arrowed octagon and therefore imposes the same o
lapping constraints. In the present case this is not neces
quite on the contrary. It is, in fact, the atomic decoration
the tiles which provides us with exactly the right overlappi
constraints that are needed to enforce the perfect octag
structure through the maximization ofC clusters.

The octagonal quasicrystal therefore appears almost li
textbook example that illustrates how the maximization o
single cluster can create quasiperiodic order. This orde
created through constraints of overlap, which are the resu
the particular atomic structure of the cluster. In this way, o
can see how the global order of the structure follows from
local order.
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