
Atomistic Simulations on

Scalar and Vector Computers

Franz Gähler1 and Katharina Benkert2

1 Institute for Theoretical and Applied Physics,
University of Stuttgart, D-70550 Stuttgart, Germany

gaehler@itap.physik.uni-stuttgart.de
2 High Performance Computing Center Stuttgart,

Allmandring 30, D-70550 Stuttgart, Germany
benkert@hlrs.de

Abstract. Large scale atomistic simulations are feasible only with clas-
sical effective potentials. Nevertheless, even for classical simulations some
ab-initio computations are often necessary, e.g. for the development of
potentials or the validation of the results. Ab-initio and classical simu-
lations use rather different algorithms and make different requirements
on the computer hardware. We present performance comparisons for the
DFT code VASP and our classical molecular dynamics code IMD on dif-
ferent computer architectures, including both clusters of microprocessors
and vector computers. VASP performs excellently on vector machines,
whereas IMD is better suited for large clusters of microprocessors. We
also report on our efforts to make IMD perform well even on vector
machines.

1 Introduction

For many questions in materials science, it is essential to understand dynamical
processes in the material at the atomistic level. Continuum simulations cannot
elucidate the dynamics of atomic jump processes in diffusion, in a propagating
dislocation core, or at a crack tip. Even for many static problems, like the study
of the structure of grain boundaries, atomistic simulations are indispensable.
The tool of choice for such simulations is molecular dynamics (MD). In this
method, the equations of motion of a system of interacting particles (atoms) are
directly integrated numerically. The advantage of the method is that one needs
to model only the interactions between the particles, not the physical processes
to be studied. The downside to this is a high computational effort.

The interactions between atoms are governed by quantum mechanics. There-
fore an accurate and reliable simulation would actually require a quantum me-
chanical model of the interactions. While this is possible in principle, in practice
it is feasible only for rather small systems. Computing the forces by ab-initio
density functional theory (DFT) is limited to a few hundred atoms at most, es-
pecially if many transition metal atoms with a complex electronic structure are
part of the system. For ab-initio MD, where many time steps are required, the

limits are even much smaller. Due to the bad scaling with the number of atoms
(N3 for part of the algorithm), there is little hope that one can exceed these
limits in the foreseeable future. Order N algorithms, which are being studied for
insulators, do not seem to be applicable to metal systems.

For many simulation problems, however, systems with a few hundred atoms
are by far not big enough. Especially the study of mechanical processes, like dis-
location motion, crack propagation, or nano-indentation would at least require
multi-million atom systems. Such simulations are possible only with classical ef-
fective potentials. These must be carefully fitted to model the quantum mechan-
ical interactions as closely as possible. One way to do this is by force matching
[1]. In this method, for a collection of small reference structures, which should
comprise all typical local configurations, the forces on all particles are computed
quantum-mechanically, along with other quantities like energies and stresses. The
effective potentials are then fitted to reproduce these reference forces. This pro-
cedure is well known for relatively simple materials, but has successfully been
applied recently also to complex intermetallics [2]. Force matching provides a
way to bridge the gap between the requirements of large scale MD simulations
and what is possible with ab-initio methods, thus making quantum mechanical
information available also to large scale simulations.

For accurate and reliable simulations of large systems, both classical and
quantum simulations are necessary. The quantum simulations are needed not
only for the development of effective potentials, but also for the validation of the
results. The two kinds of simulations use rather different algorithms, and have
different computer hardware requirements. If geometric domain decomposition
is used, classical MD with short range interactions is known to scale well to
very large particle and CPU numbers. It also performs very well on commodity
microprocessors. For large simulations, big clusters of such machines, together
with a low latency interconnect, are therefore the ideal choice. On the other
hand, vector machines have the reputation of performing poorly on such codes.

With DFT simulations, the situation is different; they do not scale well to
very large CPU numbers. Among other things this is due to 3D fast Fourier
transforms (FFT) which takes about a third of the computation time. It is
therefore important to have perhaps only a few, but very fast CPUs, rather than
many slower ones. Moreover, the algorithms do mostly linear algebra and need,
compared to classical MD, a very large memory. Vector machines like the NEC
SX series therefore look very promising for the quantum part of the simulations.

The remainder of this article is organized into three parts. In the first part,
we will analyze the performance of VASP [3–5], the Vienna Ab-initio Simula-
tion Package, on the NEC SX and compare it to the performance on a powerful
microprocessor based machine. VASP is a widely used DFT code and is very
efficient for metals, which we are primarily interested in. In the second part,
the algorithms and data layout of our in-house classical MD code IMD [6] are
discussed and performance measurements on different cluster architectures are
presented. In the third part, we describe our efforts to achieve competitive per-

formance with classical MD also on vector machines. So far, these efforts have
seen only a limited success.

2 Ab-initio Simulations with VASP

The Vienna Ab-initio Simulation Package, VASP [3–5], is our main work horse for
all ab-initio simulations. In recent years, its development has been concentrated
on PC clusters, where it performs very well, but the algorithms used should also
perform well on vector machines. As explained above, due to the modest scaling
with increasing CPU numbers it is very important to have fast CPUs available.
Vector computing is therefore the obvious option to explore. For these tests an
optimized VASP version for the NEC SX has been used.

As test systems, we take two large complex metal systems: Cd186Ca34 with
220 atoms per unit cell and Cd608Ca104 with 712 atoms per unit cell. In each
case, one electronic optimization was performed, which corresponds to one MD
step. As we explain later, the runtimes for such large systems are too big to allow
for a large number of steps. However, structure optimizations through relaxation
simulations are possible. In all cases, k-space was sampled at the Γ -point only.
Two VASP versions were used: a full complex version and a specialized Γ -point
only version. The latter uses a slightly different algorithm which is faster and
uses less memory, but can be used only for the Γ -point. Timings are given
in Tab. 1. For comparison, also the timings on an Opteron cluster are included.
These timings show that the vector machine has a clear advantage compared to a
fast microprocessor machine. Also the absolute gigaflop rates are very satisfying,
reaching up to 55% of the peak performance for the largest system.

Table 1. Timings for three large systems on the SX8 (with SX6 executables), the
SX6+, and an Opteron cluster (2GHz, Myrinet). For the vector machines, both the
total CPU time (in seconds) and the gigaflop rates are given.

SX8 SX6+ Opteron
time GF time GF time

712 atoms, 8 CPUs, complex 47256 70 88517 38
712 atoms, 8 CPUs, Γ -point 13493 57 20903 36 70169
220 atoms, 4 CPUs, complex 2696 33 5782 15 13190

The scaling with the number of CPUs is shown in Fig. 1. As can be seen, the
full complex version of VASP scales considerably better. This is especially true
for the SX8, which shows excellent scaling up to 8 CPUs, whereas for the SX6+
the performance increases subproportionally beyond 6 CPUs. For the Γ -point
only version, the scaling degrades beyond 4 CPUs, but this version is still faster
than the full version. If only the Γ -point is needed, it is worthwhile to use this
version.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 1 2 3 4 5 6 7 8

W
al

lti
m

e
*

nC
P

U
s

[1
00

0
s]

Number of CPUs

220 Atoms, SX6+
220 Atoms, SX68

712 Atoms, GP SX68
220 Atoms, 10x, GP SX68

 0

 10

 20

 30

 40

 50

 60

 1 2 3 4 5 6 7 8

G
F

LO
P

/s
 (

to
ta

l)

Number of CPUs

220 Atoms, SX6+
220 Atoms, SX68

712 Atoms, GP SX68
220 Atoms, GP SX68

Fig. 1. Scaling of VASP for different systems on the SX8 (with SX6 executables) and
the SX6+. Shown are total CPU times (left) and absolute gigaflop rates (right). The
timings of the 220 atom system (Γ -point only version) on the SX8 have been multiplied
by 10.

3 Classical Molecular Dynamics with IMD

For all classical MD simulations we use our in-house code, IMD [6]. It is written in
ANSI C, parallelized with MPI, and runs efficiently on a large number of different
hardware architectures. IMD supports many different short range interactions
for metals and covalent ceramics. Different integrators and a number of other
simulation options are available, which allow, e.g., to apply external forces and
stresses on the sample. In the following, we describe only those parts of the
algorithms and data layout, which are most relevant for the performance. These
are all concerned with the force computation, which takes around 95% of the
CPU time.

3.1 Algorithms and Data Layout

If the interactions have a finite range, the total computational effort of an MD
step scales linearly with the number of atoms in the system. This requires, how-
ever, to quickly find those (few) atoms from a very large set, with which a given
atom interacts. Searching the whole atom list each time is an order N2 opera-
tion, and is not feasible for large systems. For moderately big systems, Verlet
neighbor lists are often used. The idea is to construct for each atom a list of those
atoms which are within the interaction radius rc, plus an extra margin rs (the
skin). The construction of the neighbor lists is still an order N2 operation, but
depending on the value of rs they can be reused for a larger or smaller number of
steps. The neighbor lists remain valid as long as no atom has traveled a distance
larger than rs/2.

For very large systems, Verlet neighbor lists are still not good enough and
link cells are usually used. In this method, the system is subdivided into cells,
whose diameter is just a little bigger than the interaction cutoff. Atoms can then
interact only with atoms in the same and in neighboring cells. Sorting the atoms

Fig. 2. Decomposition of the sample into blocks and cells. Each CPU deals with one
block of cells. The white buffer cells contain copies of cells on neighbor CPUs, so that
forces can be computed locally.

into the cells is an order N operation, and finding the atoms in the same and in
neighboring cells is order N , too. In a parallel simulation, the sample is simply
divided into blocks of cells, each CPU dealing with one block (Fig. 2). Each
block is surrounded by a layer of buffer cells, which are filled before the force
computation with copies of atoms on neighboring CPUs, so that the force can
be computed completely locally.

This algorithm, which is manifestly of order N , is fairly standard for large
scale MD simulations. Its implementation in IMD is somewhat special in one
respect. The cells store the whole particle data in per-cell arrays and not indices
into a big array of all atoms. This has the advantage that nearby atoms are stored
closely together in memory as well, and stay close during the whole simulation.
This is a considerable advantage on cache-based machines. The price to pay is
an extra level of indirect addressing, which is a disadvantage on vector machines.

Although the link cell algorithm is of order N , there is still room for im-
provement. It can in fact be combined with Verlet neighbor lists. The advantage
of doing this is explained below. The number of atoms in a given cell and its
neighbors is roughly proportional to (3rc)

3, where rc is the interaction cutoff
radius. In the link cell algorithm, these are the atoms which are potentially in-
teracting with a given atom, and so at least the distance to these neighbors
has to be computed. However, the number of atoms within the cutoff radius is
only proportional to 4π

3
r3
c
, which is by a factor 81

4π
≈ 6.45 smaller. If Verlet lists

are used, a large number of these distance computations can be avoided. The
link cells are then used only to compute the neighbor lists (with an order N
method), and the neighbor lists are used for the force computations. This leads
to a runtime reduction of 30-40%, depending on the machine and the interac-

tion model (the simpler the interaction, the more important the avoided distance
computations). The downside of using additional neighbor lists is a substantially
increased memory footprint. On systems like the Cray T3E, neighbor lists are
therefore not feasible, but on today’s cluster systems they are a very worthwhile
option.

There is one delicate point to be observed, however. If any atom is moved
from one cell to another, or from one CPU to another, the neighbor lists are
invalidated. As this could happen in every step somewhere in the system, these
rearrangements of the atom distribution must be postponed until the neighbor
tables have to be recomputed. Until then, atoms can leave their cell or CPU
at most by a small amount rs/2, which does not matter. The neighbor tables
contain at each time all interacting neighbor particles.

3.2 Performance Measurements

We have measured the performance and scaling of IMD on four different cluster
systems: a HP XC6000 cluster with 1.5 GHz Itanium processors and Quadrics
interconnect, a 3.2 GHz Xeon EM64T cluster with Infiniband interconnect, a
2 GHz Opteron cluster with Myrinet 2000 interconnect, and an IBM Regatta
cluster (1.7 GHz Power4+) with IBM High Performance Switch (Figs. 3-4).
Shown is the CPU time per step and atom, which should ideally be a horizontal
line. On each machine, systems of three sizes and with two different interactions
are simulated. The systems have about 2k, 16k, and 128k atoms per CPU. One
system is an FCC crystal interacting with Lennard-Jones pair interactions, the
other a B2 NiAl crystal interacting with EAM [7] many-body potentials. The
different system sizes probe the performance of the interconnect: the smaller the
system per CPU, the more important the communication, especially the latency.
As little as 2000 atoms per CPU is already very demanding on the interconnect.

The fastest machine is the Itanium system, with excellent scaling for all sys-
tem sizes. For the smallest systems and very small CPU number, the performance
increases still further, which is probably a cache effect. This performance was not
easy to achieve, however. It required careful tuning and some rewriting of the
innermost loops (which do not harm the performance on the other machines).
Without these measures the code was 3 − 4 times slower, which would not be
acceptable. Unfortunately, while the tuning measures had the desired effect with
the Intel compiler releases 7.1, 8.0, and 8.1 up to 8.1.021, they do not seem to
work with the newest releases 8.1.026 and 8.1.028, with which the code is again
slow. So, achieving good performance on the Itanium is a delicate matter.

The next best performance was obtained on the 64bit Xeon system. Its In-
finiband interconnect also provides excellent scaling for all system sizes. One
should note, however, that on this system we could only use up to 64 processes,
because the other nodes had hyperthreading enabled. With hyperthreading it
often happens that both processes of a node run on the same physical CPU,
resulting in a large performance penalty. For a simulation with four processes
per node, there was not enough memory, because the Infiniband MPI library
allocates buffer space in each process for every other process.

The Opteron system also shows excellent performance, but only for the two
larger system sizes. The small systems seem to suffer from the interconnect
latency. The performance penalty saturates, however, at about 20%. We should
also mention that these measurements have been made with binaries compiled
with gcc. We expect that using the PathScale or Intel compilers would result in
a 5-10% improvement.

Finally, the IBM regatta system is the slowest of the four, but also shows
excellent scaling for all system sizes. For very small CPU numbers, the perfor-
mance was a bit erratic, which may be due to interferences with other processes
running on the same 32 CPU node.

 0

 1

 2

 3

 4

 5

 0 20 40 60 80 100 120 140

T
im

e
pe

r
S

te
p

an
d

A
to

m
 [

10
−

6 s]

Number of CPUs

Dual Itanium 1.5Ghz, Quadrics, icc

pair 2k
pair 16k
pair 128k
eam 2k
eam 16k
eam 128k

 0

 2

 4

 6

 8

 10

 0 10 20 30 40 50 60 70

T
im

e
pe

r
S

te
p

an
d

A
to

m
 [

10
−

6 s]

Number of CPUs

Dual Xeon 3.2 Ghz, Infiniband, icc

pair 2k
pair 16k
pair 128k
eam 2k
eam 16k
eam 128k

Fig. 3. Scaling of IMD on the Itanium (top) and Xeon (bottom) systems.

 0

 2

 4

 6

 8

 10

 12

 0 20 40 60 80 100 120 140

T
im

e
pe

r
S

te
p

an
d

A
to

m
 [

10
−

6 s]

Number of CPUs

Dual Opteron 2 GHz, Myrinet, gcc

pair 2k
pair 16k
pair 128k
eam 2k
eam 16k
eam 128k

 0

 2

 4

 6

 8

 10

 12

 0 20 40 60 80 100 120 140

T
im

e
pe

r
S

te
p

an
d

A
to

m
 [

10
−

6 s]

Number of CPUs

IBM Power4+ 1.7Ghz, 32 CPUs per node

pair 2k
pair 16k
pair 128k
eam 2k
eam 16k
eam 128k

Fig. 4. Scaling of IMD on the Opteron (top) and IBM Regatta (bottom) systems.

4 Classical Molecular Dynamics on the NEC SX

The algorithm for the force computation sketched in Sect. 3.1 suffers from two
problems, when executed on vector computers. The innermost loop over inter-
acting neighbor particles is usually too short, and the storage of the particle
data in per-cell arrays leads to an extra level of indirect addressing. The latter
problem could be solved in IMD by using a different memory layout for the
vector version, in which the particle data is stored in single big arrays and not
in per-cell arrays. The cells then contain only indices into the big particle list.
In order to keep as much code as possible in common between the vector and
the scalar versions of IMD, all particle data is accessed via preprocessor macros.

The main difference between the two versions of the code is consequently the
use of two different sets of access macros. The problem of the short loops has to
be solved by a different loop structure. We have experimented with two differ-
ent algorithms, the Layered Link Cell (LLC) algorithm [8], and the Grid Search
algorithm [9].

4.1 The LLC Algorithm

The basic idea of the LLC algorithm [8] is to divide the list of all interacting atom
pairs (implicitly contained in the Verlet neighbor list) into blocks of independent
atom pairs. The pairs in a block are independent in the sense, that no particle
occurs twice at the first position of the pairs in the block, nor twice at the
second position. After all the forces between the atom pairs in a block have been
computed, they can be added in a first loop to the particles at the first position,
and in a second loop to the particles at the second position. Both loops are
obviously vectorizable.

The blocks of independent atom pairs are constructed as follows. Let m be
the maximal number of atoms in a cell. The set of particles at the first position
of the pairs in the block is simply the set of all particles. The particle at position
i in cell q is then paired with particle i + k mod m in cell q′, where q′ is a cell
at a fixed position relative to q (e.g., the cell just to the right of q), and k is
a constant between 0 and m (0 is excluded, if q = q′). For each value of the
neighbor cell separation and constant k, an independent block of atom pairs is
obtained.

Among the atom pairs in the lists constructed above, there are of course
many which are too far apart to be interacting. The lists are therefore reduced
to those pairs, whose atoms have a distance not greater than rc + rs. These
reduced pair lists replace the Verlet neighbor lists, and remain valid as long as
no particle has traveled a distance larger than rs/2, so that they need not be
recomputed at every step.

The algorithm just described has been implemented in IMD, but its per-
formance on the NEC SX is still modest (see Sect. 4.3). One limitation of the
LLC algorithm is certainly that it requires the cells to have approximately the
same number of atoms. Otherwise, the performance will degrade substantially.
This condition was satisfied, however, by our crystalline test systems. In order to
understand the reason for the modest performance, we have reimplemented the
algorithm afresh, in a simple environment instead of a production code, both in
Fortran 90 and in C. It turned out that the C version performs similarly to IMD,
whereas the Fortran version is about twice as fast on the NEC SX (Sect. 4.3).
The Fortran compiler apparently optimizes better than the C compiler.

4.2 The Grid Search Algorithm

As explained in Sect. 3.1, most of the particles in neighboring cells are too far
away from a given one in the cell at the center to be interacting. This originates
from the fact that a cube poorly approximates a sphere, especially if the cube

has edge length 1.5 times the diameter of the sphere, as it is dictated by the
link cell algorithm. The resulting, far too many distance computations can be
avoided to some extent using Verlet neighbor lists, but only an improved version
of the LLC algorithm (the Grid Search algorithm) presents a true solution to
this problem.

If one would use smaller cells, the sphere of interacting particles could be ap-
proximated much better. However, this would result in a larger number of singly
occupied or empty cells, making it very inefficient to find interacting particles.
A further problem is, that with each cell a certain bookkeeping overhead is in-
volved. As the number of cells would be much larger, this cost is not negligible,
and should be avoided.

The Grid Search algorithm tries to combine the advantages of a coarse and
a fine cell grid, and avoids the respective disadvantages.

The initial grid is relatively coarse, having 2 − 3 times more cells than par-
ticles. To use a simplified data structure, we demand at most one particle per
cell, a precondition which cannot be guaranteed in reality. In case of multiply
occupied cells, particles are reassigned to neighboring cells using neighbor cell

assignment (NCA). This keeps the number of empty cells to a minimum. Dur-
ing NCA each particle gets a virtual position in addition to its true position.
To put it forward in a simple way, the virtual positions of particles in multiply
occupied cells are iteratively modified by shifting these particles away from the
center of the cell on the ray connecting the center of the cell and the particle’s
true position. As soon as the precondition is satisfied the virtual positions are
discarded. Only the now compliant assignment of particle to cell, stored in a
one-dimensional array, and the largest virtual displacement dmax, denoting the
maximal distance between the virtual and true position of all particles, are kept.

The so-called sub-cell grouping (SCG) exploits the exact positions of the par-
ticles relative to their cells by introducing a finer hierarchical grid. This reduces
the number of unnecessarily examined particle pairs and distance calculations.
To simplify the explanation, we assume in first instance that NCA is not used.

The basic idea of Grid Search is to palter with chance to get a ”successful”
distance computation. We consider a pair of two cells, the cell at the center C
and a neighbor cell N , with one particle located in each cell. In the convenient
case, the neighbor cell is sufficiently close to the cell at the center (Fig. 5), so
that there is a good chance that the two particles contained in the cells are
interacting.

In the complicated case, if the neighbor cell is so far apart of the cell at
the center (Fig. 6) that there is only a slight chance that the particle pair gets
inserted into the Verlet list, SCG comes into play. The cell at the center is divided
into a number of sub-cells, depending on integer arithmetic. Extra sub-cells are
added for particles that have been moved by NCA to neighboring cells for each
quadrant/octant (Fig. 7). A fixed sub-cell/neighbor cell relation is denoted as
group.

N

C

r
c
 + r

s

Fig. 5. Cell at the center C is sufficiently
close to neighbor cell N .

N

C

r
c
 + r

s

Fig. 6. Cell at the center C is not close
enough to neighbor cell N .

By comparing the minimal distance between each sub-cell and the neighbor
cell to rc + rs, a number of groups can be excluded in advance. As shown in
Fig. 8, only 1

4
of the initial cell at the center needs to be searched.

N

C

r
c
 + r

s

Fig. 7. Cell at the center is divided into
sub-cells.

N

C

r
c
 + r

s

Fig. 8. Some groups can be excluded from
search.

The use of NCA complicates SCG, because it changes the condition for ex-
cluding certain groups for a given neighbor cell relation in advance: the minimal
distance between a sub-group and a neighbor cell does no longer have to be
smaller or equal than rc + rs, but smaller or equal than rv = rc + rs + dmax.
The virtual displacement occurs only once in rv, since one particle is known to
be located in the sub-cell, and the other one can be displaced by as much as
dmax. Thus, the set of groups that need to be considered changes whenever the
particles are redistributed into the cells, i.e., whenever the Verlet list is updated.

In order to reduce the amount of calculations and to save memory, a data
structure is established, stating whether a given group can contain interacting
particles for a certain virtual displacement. For 32(64)-bit integer arithmetics,
the cell at the center is divided into 4×4×3 (3×3×2) sub-cells and eight extra-
cells (one for each octant) resulting in 56(26) groups. So in a two-dimensional

integer array, the first dimension being the neighbor cell relation, the second in-
dicating a certain pre-calculated value of dmax, the iGr-th bit (iGr is the group
number) is set to 1 if the minimal distance between the sub-cell and the neigh-
boring cell is not greater than rv.

The traditional LLC data structures, a one-dimensional array with the num-
ber of particles in each cell and a two-dimensional array listing the particles in
each cell, are used in Grid Search on the sub-cell level: a one-dimensional array
storing the number of particles in each group and a two-dimensional array listing
the particles in each group. Together with the array of cell inhabitants produced
by the NCA, this represents a double data structure on cell and sub-cell level,
respectively: for each cell we know the particle located in it, and for each sub-cell
we know the total number and which particles are located in it.

As in the LLC algorithm, independent blocks of the Verlet list consist of
all particle pairs having a constant neighbor cell relation. The following code
examples describe the setup of the Verlet list. For neighbor cells sufficiently
close to the cell at the center, the initial grid is used:

do for all particles j1

if the neighbor cell of the cell with particle j1 contains a

particle j2 then

save particles to temporary lists

endif

end do

If the distance of the neighbor cell to the cell at the center is close to rv, then
SCG is used:

do for all sub-cells

if particles in this sub-cell and the given neighbor cell

can interact then

do for all particles in this sub-cell

if the neighbor cell of the sub-cell with particle j1

contains a particle j2 then

save particles to temporary lists

endif

end do

end if

end do

The temporary lists are then, as in the LLC algorithm, reduced to those pairs
whose atoms have a distance not greater than rc + rs.

4.3 Performance Measurements

To compare the performance of the LLC and the Grid Search (GS) algorithms,
an FCC crystal with 16384 or 131072 atoms with Lennard-Jones interactions is

GS/F90 LLC/F90 IMD/C
0

5

10

15

20

25

30

35

40

ex
ec

ut
io

n
tim

e
[s

]

17.0
19.1

36.7

GS/F90 LLC/F90
0

50

100

150

200

ex
ec

ut
io

n
tim

e
[s

]

136.4

188.5

Fig. 9. Execution times of the different algorithms on the NEC SX8, for FCC crystals
with 16k atoms (left) and 131k atoms (right).

simulated over 1000 time steps using a velocity Verlet integrator. As reference,
the same system has also been simulated with the LLC algorithm as implemented
in IMD. The execution times are given in Fig. 9. Not shown is the reimplemen-
tation of the LLC algorithm in C, which shows a similar performance as IMD.

For the Grid Search algorithm, the time per step and atom is about 1.0µs,
which is more than twice as fast as IMD on the Itanium system. However, such a
comparison is slightly unfair. The Itanium machine simulated a system with two
atom types and a tabulated Lennard-Jones potential, which could be replaced by
any other potential without performance penalty. The vector version, in contrast,
uses computed Lennard-Jones potentials and only one atom type (hard-coded),
which is less flexible but faster. Moreover, there was no parallelization overhead.
When simulating the same systems as on the Itanium with IMD on the NEC
SX8, the best performance obtained with the 128k atom sample resulted in
2.5µs per step and atom. This is roughly on par with the Itanium machine. An
equivalent implementation of Grid Search in Fortran would certainly be faster,
but probably by a factor of less than two.

Next, we compare the performance on the NEC SX6+ and the new NEC
SX8. The speedup of an SX6+ executable running on SX8 should theoretically
be 1.78, since the SX6+ CPU has a peak performance of 9 GFlop/s, whereas
the SX8 CPU has 16 GFlop/s. Recompiling on SX8 may lead to even faster
execution times, benefiting e.g. from the hardware square root or an improved
data access with stride 2.

As Fig. 10 shows, our implementation of the Grid Search algorithm takes
advantage of the new architectural features of the SX8. The speedup of 2.14 is
noticeably larger than the expected 1.78. On the other hand, IMD stays in the
expected range, with a speedup of 1.83. The annotation ’SX6 exec.’ refers to
times obtained with SX6 executables on the SX8.

Acknowledgments The authors would like to thank Stefan Haberhauer for
carrying out the VASP performance measurements.

SX6+ SX6 exec. SX8
0

5

10

15

20

25

30

35

40

ex
ec

ut
io

n
tim

e
[s

]

36.3

17.0 17.0

SX6+ SX6 exec. SX8
0

10

20

30

40

50

60

70

ex
ec

ut
io

n
tim

e
[s

]

67.0

36.7 36.7

Fig. 10. Execution times on SX6+ and SX8 for an FCC crystal with 16k atoms using
Grid Search (left) and IMD (right).

References

1. F. Ercolessi, J. B. Adams, Interatomic Potentials from First-Principles Calcula-

tions: the Force-Matching Method, Europhys. Lett. 26 (1994) 583–588.
2. P. Brommer, F. Gähler, Effective potentials for quasicrystals from ab-initio data,

Phil. Mag. 86 (2006) 753–758.
3. G. Kresse, J. Hafner, Ab-initio molecular dynamics for liquid metals, Phys. Rev. B

47 (1993) 558–561.
4. G. Kresse, J. Furthmüller, Efficient iterative schemes for ab-initio total-energy

calculations using a plane wave basis set, Phys. Rev. B 54 (1996) 11169–11186.
5. G. Kresse, J. Furtmüller, VASP – The Vienna Ab-initio Simulation Package,

http://cms.mpi.univie.ac.at/vasp/

6. J. Stadler, R. Mikulla, and H.-R. Trebin, IMD: A Software Package for Molecular

Dynamics Studies on Parallel Computers, Int. J. Mod. Phys. C 8 (1997) 1131–1140
http://www.itap.physk.uni-stuttgart.de/~imd

7. M. S. Daw, M. I. Baskes, Embedded-atom method: Derivation and application to

impurities, surfaces, and other defects in metals, Phys. Rev. B 29 (1984) 6443–
6453.

8. G. S. Grest, B. Dünweg, K. Kremer, Vectorized Link Cell Fortran Code for Molec-

ular Dynamics Simulations for a Large Number of Particles, Comp. Phys. Comm.
55 (1989) 269–285.

9. R. Everaers, K. Kremer, A fast grid search algorithm for molecular dynamics sim-

ulations with short-range interactions, Comp. Phys. Comm. 81 (1994) 19–55.

