Molecular Dynamics on
NEC Vector Systems

Katharina Benkert! and Franz Gahler?

! High Performance Computing Center Stuttgart (HLRS)
University of Stuttgart
70569 Stuttgart, Germany
benkert@hlrs.de
http://www.hlrs.de/people/benkert
2 Institute for Theoretical and Applied Physics (ITAP)
University of Stuttgart
70550 Stuttgart, Germany
gaehler@itap.physik.uni-stuttgart.de
http://www.itap.physik.uni-stuttgart.de/~gaehler

Abstract. Molecular dynamics codes are widely used on scalar archi-
tectures where they exhibit good performance and scalability. For vector
architectures, special algorithms like Layered Link Cell and Grid Search
have been developed. Nevertheless, the performance measured on the
NEC SX-8 remains unsatisfactory. The reasons for these performance
deficits are studied in this paper.

Keywords: Molecular dynamics, Vector architecture

1 Introduction

The origins of molecular dynamics date back to 1979 when Cundall and Strack [1]
developed a numerical method to simulate the movement of a large number of
particles. The particles are positioned with certain initial velocities. The relevant
forces between the particles are summed up and Newton’s equations of motion
are integrated in time to determine the change in position and velocity of the par-
ticles. This process is iterated until the end of the simulation period is reached.
For molecular simulations the particles only interact with nearby neighbors, so
usually a cut-off radius delimits the interactions to be considered.

Since this time, the method has gained an important significance in material
science. The properties of metals, ceramics, polymers, electronic, magnetic and
biological materials can now be studied to understand material properties and
to develop new materials. This progress has been made possible by the con-
struction of accurate and reliable interaction potentials for many different kinds
of materials, the development of efficient and scalable parallel algorithms, and
the enormous increase of hardware performance. It is now possible to simulate
multi-million atom samples over time scales of nanoseconds on a routinely basis,

an application which clearly belongs to the domain of high performance com-
puting. Such system sizes are indeed required for certain purposes, e.g. for the
simulation of crack propagation [2] or the simulation of shock waves [3].

For these and similar applications with high computing requirements, NEC
and the High Performance Computing Center Stuttgart (HLRS) formed the
Teraflop Workbench [4], a public-private partnership to achieve TFlops sustained
performance on the new 72 node SX-8 installation at HLRS.

In this paper, the differences in the implementation of a molecular dynamics
program on scalar and vector architectures are explained and an investigation
of performance problems on the NEC SX-8 is presented.

2 Implementing molecular dynamics simulations

The dynamics of a system of particles is completely determined by the potential
energy function U of the system, shortly denoted as potential. Using Newton’s
law, the force F; acting on an atom i is equal to —V;U. These equations are then
integrated to retrieve the trajectories of the atoms in course of time. The poten-
tial can be simply modeled as an empirical pair potential such as the Lennard-
Jones potential, but many systems require more elaborate potential models. For
metals, so-called EAM potentials [5, 6] are widely used:

E = Z@z’j(rm‘) + ZFi(pi)

where

pi = Z%(w)-

Although being a many-body potential, EAM potentials are as easy to compute
as pair potentials.

For short-range interactions, only particles having a distance smaller than
the cut-off radius r. are assumed to contribute to the forces. The algorithmic
problem is to construct a parallelizable algorithm scaling linearly with system
size to find interacting atom pairs quickly. Testing all possible combinations
results in an O(N?) algorithm, where N is the number of atoms. A first step to
reduce the computational effort is the use of Verlet lists [7]: all particles having
a distance smaller than r. + rs, where r; is the so-called skin, are saved to
temporary lists. As long as one of the particles has not moved more than %,
those lists can be used for the computation of the potential. To finally obtain
an O(N) algorithm, a grid with cells having side lengths slightly greater than
re + s is introduced. At first, the particles are inserted into the cells, and then,
in a second step, the Verlet lists are constructed by considering only particles
in the surrounding cells, resulting in the Link Cell (LC) method of Quentrec et
al. [8] described well in Allen and Tildesley [9]. Parallelization is easily realized
using geometric domain decomposition with additional buffer cells [10].

2.1 Implementation on scalar architectures

On scalar architectures, the Verlet lists are implemented as two lists, one having
pointers into the other list, which in turn contains all particles with distances
smaller than r.+rs. The implementation of the kernel, comprising the calculation
and update of the forces, is straightforward. To achieve better cache-usage, all
information local to a cell, e.g. particle positions, distances and Verlet lists,
can be stored together. Although this introduces an extra level of indirection,
execution times decrease.

2.2 Implementation on vector architectures

In contrast to scalar architectures, which depend on effective cache usage, vector
architectures use pipelining to achieve high performance. Therefore, vector arith-
metic instructions operate efficiently on large, independent data sets. Standard
molecular dynamics codes are not well suited for vector architectures. Frequent
if-clauses, e.g. when deciding whether particles interact or not, and short loop
lengths over all particles that interact with a given one prohibit successful vec-
torization.

For this reason, new algorithms like Layered Link Cell (LLC) [11] and Grid
Search (GS) [12] were developed which both use vectorization over all cells in-
stead of vectorization over all particles within one cell. The performance of these
algorithms on the NEC SX-8 has been investigated in [13]. Analogously to the
LC algorithm, LLC uses cells with side lengths slightly greater than r. + r;
allowing several particles in one cell. The GS algorithm uses a finer grid with
only one particle per cell, which simplifies vectorization, but complicates the
choice of an optimal cell length and the distribution of particles into cells. Its
runtime compared to LLC is generally lower since more advanced techniques like
Neighbor Cell Assignments and Sub-Cell Grouping are used. The Verlet lists are
organized as two lists, saving every particle pair whose distance is smaller than
re +7rs.

2.3 The molecular dynamics program IMD

IMD [14] is a software package for classical molecular dynamics simulations de-
veloped using C. It supports several types of interactions, like central pair po-
tentials, EAM potentials for metals, Stillinger-Weber and Tersoff potentials for
covalent systems, and also more elaborate many-body potentials like MEAM [15]
or ADP [16]. A rich choice of simulation options is available: different integrators
for the simulation of the various thermodynamic ensembles, options that allow
to shear and deform the sample during the simulation, and many more.

Its main design goals were to create a flexible and modular software achiev-
ing high performance on contemporary computer architectures, while being as
portable as possible. Preprocessor macros allow to switch between scalar and
vector versions of the code.

The performance of IMD on several architectures is shown in Table 1. On the
SX-8, IMD implements the LLC algorithm. The "mono” option limits calcula-
tions to one atom type by hard-coding the atom type as zero. On the SX-8, this
gives a considerable performance improvement. In order to allow for maximal
flexibility, potentials are specified in the form of tabulated functions. For the
pair potential, a Lennard-Jones potential was used. It can clearly be seen, that
the price/performance ratio of IMD on vector architectures is dissatisfying.

Table 1. Timings for IMD in us per step per atom for a sample with 128k atoms

Machine, compiler pair|[EAM
SX-8, mono, sxf90 193] 2.73
SX-8, sxf90 2.16| 3.68
Itanium?2, 1.5 GHz, icc |2.58]| 5.05
Opteron, 2.2 GHz, icc |4.41| 6.59
Xeon 64bit, 3.2 GHz, icc|4.64| 7.44

3 Performance of the test kernel

To better understand the problems of molecular dynamics simulations on the
NEC SX-8, a test kernel using the GS algorithm was implemented using For-
tran 90.

As test case, a fcc crystal with 131k atoms was simulated for 100 time steps
using a calculated Lennard-Jones potential. All following tables show extracts
of performance analyses using the flow trace analysis tool ftrace. Since the usage
of ftrace did hardly influence the execution time, statistical profiling results are
not included in this paper.

The column "PROG. UNIT” displays the name of the routine or region,
"FREQ.” gives the number of times a routine was called. ”EXCLUSIVE TIME”
is the total time spent in the routine and it does not include time spent in other
routines called by it. "MFLOPS” depicts the performance in millions of floating
point operations per second. The vector operation ratio, i.e. the ratio of vector
elements processed to the total number of vector operations, and the average
vector length are given in the columns ”V.OP RATIO” and "AVER. V.LEN”,
respectively. These metrics state which portion of the code has been vectorized
and to what extent. The average vector length is bounded by the hardware vector
length of 256. The time spent waiting until banks recover from memory access
is given in the column "BANK CONFLICT”.

Table 2 clearly illustrates that nearly all time is spent during force calcula-
tion. Although major portions of the force calculation are vectorized and possess
a good average vector length of 225.8, the performance of 3.7 GFlops is unsat-
isfactory.

Update times per step per atom are 0.860us. As IMD shows only a modest
performance difference between tabulated and calculated Lennard-Jones poten-
tials, this can be compared with the results of Table 2, which shows that the
Fortran kernel using GS is about twice as fast as IMD using LLC.

Table 2. Ftrace performance output for the kernel

PROG. UNIT|[FREQ.[EXCLUSIVE [MFLOPS| V.OP |AVER.]BANK
TIME[sec](%) RATIO|V.LEN|CONF
total 113 | 11.336 (100.0) | 3729.1 | 99.80 | 225.8 | 0.1199
forcecalculation | 100 | 11.247 (99.2) | 3717.7 | 99.81 | 225.8 | 0.1185

The structure of the kernel is divided into three parts: the construction of
the lists of interacting particle pairs and at times the update of the Verlet lists,
the calculation of the potential, and the update of the forces.

if (verlet lists need to be updated) then
- find potentially interacting particles
- build new verlet lists
- build lists of interacting particles and save distances in
x, y and z direction as well as squared distance to arrays
else ! old verlet lists are used
- find interacting particles
- build lists of interacting particles and save distances in
x, y and z direction as well as squared distance to arrays
end if
- calculate potential
- update forces

3.1 Construction and use of Verlet lists

If the Verlet lists need to be updated and there are particles at a given neighbor-
cell-relation, the distances between those particles are calculated. If the distance
is smaller than r. 4+ rs, the particles need to be inserted into the Verlet lists. If
the distance is also smaller than r., the particle numbers as well as the distances
are saved to arrays for later use.

The performance characteristics of the construction of the Verlet lists are
given in Table 3 and show the same behavior as those of the total kernel: although
vectorization ratio and average vector length are good and the number of bank
conflicts is small, the performance is low.

The key problems are the complicated loop structure with nested if-clauses
and the high number of copy operations. The frequency with which the Verlet
lists need to be updated depends on the skin rs and on the amount of atomic mo-
tion. When simulating a solid, intervals between Verlet list updates are typically

Table 3. Ftrace performance output for construction of Verlet lists

PROG. UNIT|[FREQ.[EXCLUSIVE [MFLOPS| V.OP |[AVER.[BANK
TIME[sec](%) RATIO|V.LEN|CONF
newlist 241 | 0.274 (2.4) | 2830.2 | 99.71 | 256.0 | 0.0569

5 — 15 time steps, or even more when simulating at low temperature, whereas
for the simulation of liquids more frequent updates may be necessary.

If the old Verlet lists are still valid, the distances between the particles have
to be calculated. Those particles which actually interact are stored together with
their distances into temporary arrays. The results are shown in Table 4.

Table 4. Ftrace performance output when old Verlet lists are used

PROG. UNIT|[FREQ. EXCLUSIVE [MFLOPS| V.OP |AVER.|BANK
TIME[sec](%) RATIO|V.LEN|CONF
oldlist 6930 | 6.033 (53.2) | 36135 | 99.83 | 225.8 | 0.0231

The major problems are again the high number of copy operations and the
indirect access to retrieve the positions of the particles stored in the Verlet lists.

3.2 Calculation of potential

As interaction model, a calculated Lennard-Jones potential was used. Given that
16 floating point operations and only two memory operations are needed for one
force evaluation, the performance of 9217.4 MFlops is not remarkable (Table 5).

Table 5. Ftrace performance for calculation of Lennard-Jones potential

PROG. UNIT/FREQ.| EXCLUSIVE MFLOPS| V.OP [AVER. BANK
TIME[sec](%) RATIO|V.LEN|CONF
calcpotential 7171 1.220 (10.8) 9217.4 99.69 | 225.9 | 0.0002

Unfortunately, calculated potentials are not often used. For real applications,
tabulated potentials fitted to reproduce results from DFT simulations are more
flexible, which increases the number of memory accesses and therefore reduces
the performance further.

3.3 Update of forces

During the update of the forces, the distance components in x-, y- and z-direction
are multiplied by the calculated force and divided by the distance, and the result
is added to the forces of the two particles.

do i = 1, nInterAc
sx (i) sx(i) * forceOverDistance(i)
sy(i) = sy(i) * forceOverDistance(i)
sz (i) sz(i) * forcelverDistance(i)
end do

!CDIR NODEP
do i = 1, nInterAc

Fx (interAcList2(i)) = Fx (interAcList2(i)) + sx(i)
Fy (interAcList2(i)) = Fy (interAcList2(i)) + sy(i)
Fz (interAcList2(i)) = Fz (interAcList2(i)) + sz(i)
Fxtmp (interAcList1(i)) = Fxtmp(interAcList1(i)) - sx(i)
Fytmp (interAcList1(i)) = Fytmp(interAcList1(i)) - sy(i)
Fztmp (interAcList1(i)) = Fztmp(interAcList1(i)) - sz(i)

end do

As can be seen from the above code segment, heavy indirect addressing is
needed which is reflected in the performance (Table 6).

Table 6. Ftrace performance output for force update

PROG. UNIT/FREQ.| EXCLUSIVE MFLOPS| V.OP [AVER. BANK
TIME[sec](%) RATIO|V.LEN|CONF
updateforces 7171 3.669 (32.4) 21215 99.82 | 225.9 | 0.0378

The update of the forces is the most critical part of the total force calcu-
lation. The percentage of time spent in this routine and the low performance
due to heavy indirect addressing is a major cause for the unsatisfactory total
performance.

4 Summary

Molecular dynamics simulations on vector machines suffer from the latencies
involved in indirect memory addressing. For our test kernel using GS, most time
is spent when using old Verlet lists and updating forces, whereas simulations
with IMD (using LLC) are dominated by the time spent during force updates.
Since the reasons for the low performance lie within the structure of LLC and
GS, an improvement can only be achieved by developing new algorithms.

5 Acknowledgments

The authors would like to thank Uwe Kiister of HLRS as well as Holger Berger
and Stefan Haberhauer of 'NEC High Performance Computing Europe’ for their
continuing support.

References

11.

12.

13.

14.

15.

16.

. Cundall, P., Strack, O.: A distinct element model for granular assemblies. Geotech-

nique 29(1) (1979) 47-65

Rosch, F., Rudhart, C., Roth, J., Trebin, H.R., Gumbsch, P.: Dynamic fracture
of icosahedral model quasicrystals: A molecular dynamics study. Phys. Rev. B 72
(2005) 014128

Roth, J.: w-phase and solitary waves induced by shock compression of bce crystals.
Phys. Rev. B 72 (2005) 014126

http://www.teraflop-workbench.de/.

Daw, M.S., Baskes, M.I.: Semiempirical, quantum mechanical calculation of hy-
drogen embrittlement in metals. Phys. Rev. Lett. 50 (1983) 1285-1288

Daw, M.S., Baskes, M.I.: Embedded-atom method: Derivation and application to
impurities, surfaces, and other defects in metals. Phys. Rev. B 29 (1984) 6443-6453
Verlet, L.: Computer experiments on classical fluids: I. Thermodynamical proper-
ties of Lennard-Jones molecules. Phys. Rev. 159 (1967) 98-103

Quentrec, B., Brot, C.: New methods for searching for neighbours in molecular
dynamics computations. J. Comput. Phys. (1973) 430-432

Allen, M., Tildesley, D.: Computer simulation of liquids. Clarendon Press (1987)

. Plimpton, S.J.: Fast parallel algorithms for short-range molecular dynamics. J.

Comput. Phys. 117 (1995) 1-19

Grest, G., Dinweg, B., Kremer, K.: Vectorized link cell fortran code for molecular
dynamics simulations for a large number of particles. Comp. Phys. Comm. 55
(1989) 269285

Everaers, R., Kremer, K.: A fast grid search algorithm for molecular dynamics
simulations with short-range interactions. Comp. Phys. Comm. 81 (1994) 19-55
Gabhler, F., Benkert, K.: Atomistic simulations on scalar and vector computers. In:
Proceedings of the 2nd Teraflop Workshop, HLRS, Germany, Springer (2005)
Stadler, J., Mikulla, R., Trebin, HR.: IMD: A software package for molecular
dynamics studies on parallel computers. Int. J. Mod. Phys. C 8 (1997) 1131-1140
http://www.itap.physik.uni-stuttgart.de/ imd.

Baskes, M.I.: Modified embedded-atom potentials for cubic materials and impuri-
ties. Phys. Rev. B 46 (1992) 2727-2742

Mishin, Y., Mehl, M.J., Papaconstantopoulos, D.A.: Phase stability in the Fe-
Ni system: Investigation by first-principles calculations and atomistic simulations.
Acta Mat. 53 (2005) 4029-4041

