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A cluster for the octagonal square-rhombus tiling is presented, which has the prop-
erty that among all tilings completely covered by the cluster the perfectly quasiperi-
odic and eightfold symmetric ones have the highest cluster density. Since on these
eightfold symmetric tilings there is considerable overlap of clusters, it seems likely
that these tiling have the highest cluster density even among all square-rhombus
tilings. An interaction favouring the cluster therefore will have ground states which
are perfectly quasiperiodic and eightfold symmetric.

1 Introduction

Many quasiperiodic tilings have characteristic clusters of tiles that occur very
frequently, cover the whole structure, and therefore frequently overlap with
neighboring such clusters. Cluster overlaps introduce restrictions in the rela-
tive positions and orientations of clusters. This suggests that such clusters can
play a primary role in the stabilization of quasicrystalline structures. Giving
such clusters a low energy, their density will be maximized, which requires fre-
quent overlaps and therefore creates order. A model exploiting this mechanism
had first been proposed by Jeong and Steinhardt.1 They showed that giving
low energy to a few selected clusters could indeed generate quasiperiodic struc-
tures which are perfectly ordered. This was a considerable improvement over
matching rule type models, in which very many clusters had to be preferred
against all other clusters not allowed to occur in the structure. A similar clus-
ter interaction approach was found to work even for a tiling which does not
admit any local matching rules.2

Independently of such cluster interactions, the possibility of a single cluster
completely covering a quasiperiodic tiling had been investigated.3,4 Gummelt4,5

found a cluster with the property that every tiling completely covered by it is a
perfect Penrose tiling. It is again the large overlaps between neighboring such
clusters which is responsible for this enforcement of quasiperiodic order. Jeong
and Steinhardt6 could show recently that the class of tilings having the highest
density of Gummelt’s cluster is precisely the class of all Penrose tilings. This
shows that a cluster interaction favouring Gummelt’s cluster has precisely the
set of Penrose tilings as its ground states.
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2 Cluster Interactions for the Octagonal Tiling

In the present paper we shall concentrate on cluster interactions for the oc-
tagonal tiling. The (undecorated) octagonal tiling is somewhat special in that
it does not admit any local matching rules. Despite of this it does admit a
simple cluster interaction.2 If the two clusters shown in Fig. 1 are given low
energy, where the ratio of the energies of the two clusters may vary in a large
interval, the ground state consists of perfectly quasiperiodic, octagonal tilings.
The reason why this is possible is that the undecorated tiling does admit local
matching rules which enforce at least perfectly ordered tilings, albeit not nec-
essarily octagonal ones. The tilings admitted by these matching rules, among
them the octagonal tilings, all are quasiperiodic, and have at least fourfold
symmetry.7 The clusters shown in Fig. 1 are in fact selected in such a way that
they favour these matching rules being satisfied, and their relative energies are
chosen such that among the tilings admitted by the matching rules the ones
with octagonal symmetry have lowest energy.

Figure 1: The octagon cluster (left) and the ship cluster (right). Favouring these two clusters
leads to a quasiperiodic, octagonal ground state.

The matching rules enforcing ordered tilings of at least fourfold symmetry
are given by the alternation condition, which requires that along any lane
of tiles the two kinds of rhombi alternate.2 The alternation condition can be
enforced by arrowing the edges of all tiles, and requiring that the arrowing on
shared edges agrees.

It is easy to see that favouring only one of the two clusters in Fig. 1 is not
enough to enforce the octagonal tiling. The ground state would simply be a
periodic approximant.2 Even though the octagon cluster alone covers the whole
octagonal tiling with considerable overlaps, this does not enforce anything. An
octagonal tiling can be decomposed into square and rhombic supertiles of edge
length 3 + 2

√

2, which can be reassembled in many different ways without
affecting the octagon density. Since the rhombic supertile has a slightly higher
octagon density than the square supertile, the periodic tiling with only rhombic
supertiles clearly has higher octagon cluster density than the octagonal tiling.
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Figure 2: Arrowed octagon cluster (left), and its inflation at a smaller scale (right). The two
have the same asymmetry, and enforce the same matching conditions.

If one takes arrowed octagon clusters, however, the situation is different.
Such an arrowed octagon cluster is shown in Fig. 2 (left). A tiling completely
covered by arrowed octagon clusters has to satisfy the alternation condition,
and the periodic tiling with the highest density of unarrowed octagon clusters
does not fall into this category. The tilings satisfying the alternation condition
can again be decomposed into square and rhombic supertiles. The tiling with
the highest octagon cluster density is still the one with the highest density of
rhombic supertiles, but this time subject to the alternation condition. Among
the tilings satisfying the alternation condition it is the octagonal tiling which
has the highest density of rhombic supertiles, and therefore the highest density
of arrowed octagon clusters.

If one prefers clusters without decoration, it is sufficient to inflate the
arrowed cluster once (Fig. 2, left). The unarrowed cluster so obtained has
precisely the same asymmetry as the arrowed octagon cluster, and therefore
imposes the same matching conditions. In particular, each arrowed edge is
replaced by a hexagon formed by a square and two rhombi, which has the
same asymmetry as the arrowed edge. Therefore, among all tilings satisfying
the alternation condition it is the octagonal tiling which has the highest density
of this cluster.

The question now arises whether the octagonal tiling has the highest clus-
ter density among all square-rhombus tilings, not only among those completely
covered by the cluster (which implies that they satisfy the alternation condi-
tion). Since there are large overlaps of clusters in the octagonal tiling, it is
very hard to imagine that there exists a tiling which is not completely covered
by the cluster, but still has a higher cluster density. We do not have a formal
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proof that this is impossible, however. Unfortunately, the method of proof
used by Jeong and Steinhardt6 for the Penrose tiling does not seem to be ap-
plicable in our case. The reason is that in our case, and unlike to the Penrose
tiling, there is not only the octagonal tiling completely covered by the cluster,
but also a whole variety of other tilings with lower cluster density. Since these
other tilings are locally indistinguishable from the octagonal tiling, there is
little hope that one can show by local reasoning that the octagonal tiling has
higher cluster density than any tiling not completely covered by the cluster.

3 Conclusions

We have presented a cluster for the octagonal square-rhombus tiling, which has
the property that every tiling completely covered by that cluster must satisfy
the alternation condition, and is therefore perfectly ordered and quasiperiodic.
Among the tilings completely covered by the cluster, the octagonal tiling is the
unique tiling with the highest cluster density. Although we have no rigorous
proof, there are strong indications that the octagonal tiling has the highest
cluster density even among all square-rhombus tilings.
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