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We extend the Wolf direct, pairwise r−1 summation method with spherical truncation to dipolar
interactions in silica. The Tangney-Scandolo interatomic force field for silica takes regard of polar-
izable oxygen atoms whose dipole moments are determined by iteration to a self-consistent solution.
With Wolf summation, the computational effort scales linearly in the system size and can easily be
distributed among many processors, thus making large-scale simulations of dipoles possible. The
details of the implementation are explained. The approach is validated by estimations of the error
term and simulations of microstructural and thermodynamic properties of silica.

I. INTRODUCTION

Silica is by far the most abundant mineral in the earth’s
crust.1 This makes it an interesting system to study
in simulation. Additionally, SiO2 shows a wide range
of crystalline structures depending on temperature and
pressure, and it can also be solidified as a glass. Al-
though there have been enormous advances in ab initio
simulations of silica,2 many effects are inaccessible due
to length and time scale restrictions of these models. For
large-scale atomistic simulations, a high-quality model of
the interactions, a so-called effective potential or force
field, is essential.

Many attempts to parameterize the interactions in sil-
ica have been made in the past thirty years, with various
levels of computational intensity and accuracy. Some
of the earlier potentials are still widely used, like for
example the potential of van Beest, Kramer, and van
Santen (BKS),3 a pure pair potential with fixed charges
and short-range corrections. However, it is believed that
many-body effects are important for correctly describ-
ing bond angles and bond-bending vibration frequencies
in network-forming glasses like SiO2.4,5 The potential
model of Tangney and Scandolo6 (TS) treats the oxygen
atoms as polarizable. The dipole moments of these atoms
are determined self-consistently from the local electric
field, with short-range corrections to the polarization.7
A more detailed description of the TS potential is given
in Sec. II A.

A comparison of various silica force fields showed8 that
the polarizable ion model of TS yields significantly better
results for many properties compared to the BKS poten-
tial, while still leaving room for improvement. In a recent
study by Paramore et al.,9 attempts to map the implicit
many-body effects in the TS model to pure pairwise in-
teractions did not lead to an accurate potential. This
confirms that polarization effects are indeed necessary
for a proper description of SiO2.

In all potential models discussed above, the ions carry
some charge qi and interact with a Coulomb potential.
This leads to the classical Madelung problem:10 deter-
mining the energy of a condensed system with a pair-
wise r−1 interaction. The convergence properties of the

resulting sum require a special treatment, and a num-
ber of methods to evaluate the pairwise r−1 sum have
evolved, with the Ewald method11 as the best-known.
There, rapid convergence for the total Coulomb energy
of a set of N ions with charge qi at positions ri that are
part of an infinite system of point charges,

Etot =
1
2

N∑
i=1

∞∑
j 6=i=1

qiqj

rij
, (1)

(where rij = rj − ri and rij = |rij |) is assured by a
mathematical trick. Firstly, structural periodicity of lin-
ear size L is artificially imposed on the system, and in
the resulting expression a decomposition of unity of the
form

1 = erfc(κr) + erf(κr) (2)

is inserted. The error function is defined as

erf(κr) :=
2√
π

κr∫
0

dt e−t2 . (3)

The Ewald splitting parameter κ controls the distribution
of energy contributions between the two terms. Thus,
Eq. (1) can be written as

Etot =
1
2

N∑
i=1

N∑
j=1

∞∑
n=0

′ qiqj

|rij + nL|
[erfc(κ|rij + nL|)

+ erf(κ|rij + nL|)] ,

(4)

where the sum over periodic images n is primed to indi-
cate that the i = j term is to be omitted for n = 0. Tak-
ing the Fourier transform of the error-function expres-
sion only, but not of the complementary error-function
term, one can convert the conditionally convergent total
energy Eq. (1) into the sum of real-space and reciprocal-
space contributions Etot

r and Etot
k where each of these

converges rapidly. The downside to the Ewald summa-
tion method is the scaling of the computational effort
with the number of particles in the simulation box: Even
when the balance between real- and reciprocal-space con-
tributions controlled by κ is optimized, the computa-
tional load increases at best as O(N3/2).12 For large-scale
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simulations with millions of atoms, this is insufficient.
Additionally, the Ewald technique is limited to periodic
systems. In recent years, alternative simulation tech-
niques that show better scaling properties have been de-
veloped, among them mesh-based methods or fast multi-
pole methods.13 The linear scaling, however, comes with
considerable overhead. In contrast, Wolf et al.14 pro-
posed a direct summation technique with linear scaling
(O(N)) for Coulomb interactions, that can easily be im-
plemented in standard Molecular Dynamics (MD) codes.
This so called Wolf summation takes into account the
physical properties of the systems under study.

To this end, one looks at the Fourier transform of the
error function term of Eq. (4)

Etot
k =

2π

L3

∑
k 6=0

∑
i,j

qiqje
ik·(rj−ri)

exp(− |k|2
4κ2 )

|k|2
− κ

π1/2

∑
i

q2
i ,

(5)
where the self term (n = 0 and i = j) is now included in
the summation and subtracted again separately. Eq. (5)
can be rewritten as

Etot
k =

∑
k 6=0
|k|<kc

S(k)
exp(− |k|2

4κ2 )
|k|2

− κ

π1/2

∑
i

q2
i , (6)

where S(k), with k = |k|, is the charge structure factor

S(k) =
2π

L3

∣∣∣∣∣∣
∑

j

qj exp(ik · rj)

∣∣∣∣∣∣
2

. (7)

The charge structure factor is the Fourier transform of
the charge-charge autocorrelation function.

In the systems of interest here, there are no long-
range charge fluctuations; the charges form a cold dense
plasma, screening each other. This means that for small
wave vectors k, the charge structure factor is also small.
If one now chooses a sufficiently small Ewald parame-
ter κ, the reciprocal-space contribution can be neglected
altogether. As κ is linked to the real-space cut-off rc,
however, this might require a cut-off radius which is sub-
stantially larger than the range of traditional short-range
interactions like in metals.

Concurrently, Wolf et al. also motivated a continuous
and smooth cut-off of the remaining screened Coulomb
potential V (rij) = qiqj erfc(κrij)r−1

ij at a cut-off radius
rc. The authors stated that shifting the pair potential
so that it goes to zero smoothly at r = rc is equiva-
lent to neutralizing the surface charge in a spherically
truncated system. The strong fluctuations in the surface
charge with varying rc inhibit the convergence to the true
Madelung energy with increasing rc. The combination of
(i) shifting the potential so that it vanishes smoothly at
the cut-off, and (ii) damping the Coulomb potential to
reduce the required cut-off radius, but only so weakly
that the reciprocal-space term can still be neglected, is
called Wolf summation.

To evaluate the TS potential with the Wolf direct sum-
mation technique, one first has to extend the formalism
to the treatment of dipolar interactions. How this is done
is shown in Sec. II. We provide an estimate of the er-
rors made by the approximation in Sec. III. The directly
summed TS potential was implemented in the (limited
range) MD code IMD,15 and various observables were
determined and compared to the original TS implemen-
tation with full Ewald summation (Sec. IV). Finally, we
sum up the results in Sec V, where also an outlook is
given.

II. WOLF SUMMATION OF DIPOLE
CONTRIBUTIONS

A. Tangney-Scandolo potential model

In the TS6 force field, there are two contributions to
the potential energy of a system: a pairwise potential of
Morse-Stretch form, and the electrostatic interactions be-
tween charges and induced dipoles on the oxygen atoms.
The dipole moments depend on the local electric field at
the respective atomic sites, which in turn is determined
by the arrangement of charges and dipoles. This implies
that a self-consistent solution must be found.

Tangney and Scandolo propose an iterative solution
for the dipole moments, so that the dipole moment pn

i

on atom i in iteration step n is

pn
i = αE(ri; {pn−1

j }j=1,N , {rj}j=1,N ) + pSR
i , (8)

where α is the polarizability of atom i and E(ri) the
electric field at position ri, which is calculated from the
dipole moments (and charges) in the previous iteration
step. The short-range dipole moment pSR

i is the contri-
bution induced by short-range repulsive forces between
anions and cations, that TS included following Rowley
et al.7 Starting from initial electric field strengths E0(r)
extrapolated from the previous three time steps, Eq. (8)
is iterated until convergence is achieved for each MD time
step.

The parameters of the TS potential were determined
solely from ab initio results with the Force Matching
method.16 There, the potential is parameterized using
first principles values of forces, stresses and energies in
series of reference structures.

B. Smooth cut-off

For MD with limited-range interactions, the potentials
and their first derivatives must go to zero continuously at
a cut-off radius rc; otherwise, atoms crossing this thresh-
old might get unphysical kicks. For the Morse-Stretch
pair potential, this is generally not problematic, as it de-
cays with rij fast enough. In MD, following Wolf et al.,14
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the potential UMS(rij) is replaced by

ŨMS(rij) = UMS(rij)−UMS(rc)− (rij − rc)U ′
MS(rc), (9)

where a prime denotes a derivative with respect to r.
The other functions used in the TS model have a gen-

eral r dependence of the form r−n, n ∈ {1, 2, 3}. Espe-
cially the Coulomb energy with its r−1 dependency can-
not simply be cut off without a treatment as in Eq. (9),
for otherwise the energy of the system would fluctu-
ate strongly with rc, without convergence to the proper
value. But even with a smooth cut-off (9), with which
the Coulomb energy does converge, a rather large cut-off
radius would be required to make shifting of the poten-
tial negligible. Fortunately, the Wolf direct summation
method14 includes a weak exponential damping of the
Coulomb potential by erfc(κr). Such a damped poten-
tial can be cut off smoothly at a much smaller radius rc

without affecting the result. All integer powers of r−1 are
treated in a way to conserve the differential relationship
between the functions, i.e. the damped functions are

r−1 →r−1 erfc(κr) =: f−1(r), (10)

r−2 = −d(r−1)
dr

→− d(r−1 erfc(κr))
dr

= r−2 erfc(κr)− 2κ exp(−κ2r2)√
πr

=: f−2(r).
(11)

This procedure is also required to conserve the energy
during an MD simulation, as discussed in more detail in
Sec. II C.

The damped potentials are then shifted to zero and
zero derivative at the cut-off radius, as in (9). This al-
lows for limited-range MD simulations with a standard
MD code. The computational effort of such a simulation
scales linearly in the number of particles (as the num-
ber of interactions that need to be evaluated per particle
does not increase with the number of particles), but scales
roughly with O(r3

c ).

C. Energy conservation

In MD simulations, the energy is conserved, if the
forces on the particles are exactly equal to the gradient
of the potential energy with respect to the atomic coor-
dinates. Otherwise, the energy might oscillate or even
drift off if not controlled by a thermostat. In standard
MD simulations, the requirement is usually automati-
cally fulfilled: The forces are calculated as the derivative
of the potential, which depends directly on the atomic
positions. In the TS model, there is also an indirect de-
pendence, as the potential is also a function of the dipole
moments:

U = U({ri}, {pi({rj})}). (12)

This would in principle lead to an extra contribution to
the derivative of the potential,

dU

d{ri}
=

∂U

∂{ri}
+

∂U

∂{pi}
∂{pi}
∂{rj}

, (13)

which would be practically impossible to be determined
effectively. Luckily, if the dipole moments are iterated
until convergence is reached, we are at an extremal value
of the potential energy, with ∂U/∂{pi} = 0, and so this
part need not be evaluated. Imperfections in convergence
may lead to a drift in the energy, however, as was already
observed by Tangney and Scandolo.6

When applying the Wolf formalism to the TS poten-
tial, another issue arises concerning the conservation of
energy. It can most easily be explained with a simple one-
dimensional example. Given are two oppositely charged
point charges ±q at a mutual distance r. If the nega-
tively charged one is polarizable with polarizability α, it
will get a dipole moment p = αq/(kr2), with k = 4πε0.
This leads to a total interaction energy

U = −2 · 1
2

1
k

q2

r︸ ︷︷ ︸
q−q

− 2 · 1
2

q

k

p

r2︸ ︷︷ ︸
q−p

+
1
2

p2

α︸︷︷︸
dipole

, (14)

from which it follows that

∂U

∂p
= −1

k

q

r2
+

p

α︸︷︷︸
= 1

k
q

r2

= 0. (15)

Here, q − q denotes the Coulomb interaction between
charges, q−p the interactions between charge and dipole,
and the last term is the dipole energy. When we now
damp and cut off the interactions, we replace the r−1, r−2

functions by their damped and smoothed counterparts
f̃−1(r), f̃−2(r). If energy conservation is to be main-
tained, the differential relation between the f̃−n must
be the same as for the r−n:

df̃−1(r)
dr

= −f̃−2(r). (16)

As a consequence, the first two derivatives of the
smoothed damped Coulomb potential must be zero at
rc.

In MD simulation it is computationally advantageous
to represent pair potential functions internally as func-
tions of r2, and their derivative as f ′̂ := r−1df/dr. The
damped Coulomb potentials f−1 and r−1f−2(r) in their
smoothly cut off version become

f̃−1(r2) = f−1(r2)− f−1(r2
c )

− 1
2f ′̂−1(r2)

∣∣∣
r2=r2

c

(r2 − r2
c )

− 1
8f ′̂̂ ′−1(r2)

∣∣∣
r2=r2

c

(r2 − r2
c )2

(17)
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and

1
r f̃−2(r) = 1

r f−2(r2)− f ′̂−1(r2)
∣∣∣
r2=r2

c

− 1
2f ′̂̂ ′−1(r2)

∣∣∣
r2=r2

c

(r2 − r2
c ).

(18)

In this way, Wolf summation can be applied to dipolar
interactions in the TS potential model. In Sec. III we will
discuss why this approximation is physically justified.

D. Implementation

The ITAP Molecular Dynamics (IMD) package15 is
a flexible, highly scalable MD code for limited-range
interactions, providing linear scaling up to thousands
of CPUs. For finite-range interactions, the number of
potential interaction partners of an atom is uniformly
bounded. In order to reach linear scaling in the number
of atoms, it is essential to find these interaction part-
ners efficiently. IMD uses a combination of link-cells and
neighbor lists, where the former are used to compute the
latter in an efficient way. Since Wolf summation requires
a relatively large cut-off radius, these neighbor list can
get fairly big, but on today’s machines this is not a prob-
lem. Parallelization is done via a fixed geometric domain
decomposition, where each CPU gets an equal block of
material. For the force computation, atoms at the surface
of a block are exchanged with the neighboring CPUs.

All potential functions used in IMD are tabulated, even
if some of these functions may be specified by giving the
parameters of an analytic formula. In that case, poten-
tial tables are constructed from the analytic formula in
a pre-processing step. During the simulation loop, the
functions are then evaluated by table lookup and inter-
polation. This has proven to be the most flexible and
efficient scheme, allowing also for very complicated po-
tential functions. For all potential functions depending
on the radius, care is taken that they vanish smoothly at
the cut-off radius, along with their first derivative.

In contrast to other interactions implemented in IMD,
the TS potential requires a self-consistency loop within
each time step, during which the dipole strengths of the
oxygen atoms are determined. Before entering this loop,
the “static” contributions Estat to the on-site electric
field caused by the charges of anions and cations, and
the short-range dipole contributions pSR

i are calculated
and stored. For the “induced” part of the electric field
Eind, which is generated by the oxygen dipoles, Eq. (8)
is then iterated until convergence is achieved. The it-
eration starts from an extrapolation of the local electric
field at the previous three MD time steps. To improve
the convergence of Eq. (8), En

ind is modified after each it-
eration step n to include a small part c from the previous
iteration,

En
ind → (1− c)En

ind + cEn−1
ind . (19)

This damps the self-consistency loop and thus suppresses
overshooting the optimal solution and subsequent oscil-
lations. For optimal performance, a value of c = 0.2 was
used.

Convergence is achieved, when the root mean square
deviation of all Cartesian dipole moment components be-
tween two iterations is less than a user-specified tolerance
(given in units of the dipole moment). While a larger tol-
erance will reduce the iteration steps to convergence, it
will also introduce a larger error in the energy conserva-
tion, which might lead to a temperature drift in micro-
canonical simulations. In practice, a convergence limit
smaller than 10−6 Åe (with elementary charge e) will
not lead to further improvement. With this tolerance,
about five iterations steps are typically needed per MD
step.

In a parallel simulation, each CPU deals with a block of
material. For the parallel evaluation of the energies and
forces, at each MD step the types and positions of atoms
near the surface of a block are first communicated to the
neighboring CPUs. Each CPU can then perform a part
of the energy and forces computation locally. As each
force is computed only once, certain force and energy
contributions have then to be communicated back to the
home CPU of the corresponding atom, where it is added
up. This scheme is valid for all finite range interactions.
Since only communication between neighboring CPUs is
necessary, the scheme is highly scalable.

For the TS potential the procedure is very similar, ex-
cept that now there are additional data to be commu-
nicated. In each step of the self-consistency loop for the
induced dipoles, the electric fields and dipole moments of
atoms at the surface must be distributed to the neighbor-
ing CPUs, and collected again after they have been up-
dated. There are several additional communication steps
for each MD step, but these are of the same kind as for
other short-range interactions (to neighbor CPUs only),
and the balance between communication and computa-
tion is not affected. For this reason, simulations with the
TS potential will scale as well as with other short-range
potentials.

III. CONVERGENCE AND ERROR
ESTIMATION

A. Formal Analysis

The total interaction energy of N dipole moments pi

at positions ri is given by the expression

Etot = −1
2

N∑
i,j
i6=j

pt
i (∇⊗∇)

(
1
rij

)
pj , (20)

with rij := ri − rj and rij := |rij |. Imposing structural
periodicity and inserting a decomposition of unity of the
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form

1 = erfc(κr) + erf(κr) , (2)

where κ is again the Ewald splitting parameter, we can
rewrite above equation as

Etot = −1
2

N∑
i,j

∞∑
n=0

′ pt
i (∇⊗∇)

·
(

erfc(κ|rij + nL|) + erf(κ|rij + nL|)
|rij + nL|

)
pj . (21)

The total energy splits into a real- and a reciprocal-space
part:

Etot = Etot
r + Etot

k (22)

Since we later intend to neglect the reciprocal-space term
for the Wolf summation, we are interested in the contri-
bution of Etot

k . For its k-behavior we have to take the
Fourier transform of

Etot
k = −1

2

N∑
i,j

∞∑
n=0

pt
i (∇⊗∇)

(
erf(κ|rij + nL|)

|rij + nL|

)
pj .

(23)
The prime has been omitted, since the self term (for
n = 0 and i = j) is now finite. Because of the three-
dimensional periodicity the above expression can be ex-
panded into a Fourier series:

Ẽtot
k =

2πNe2

V

∞∑
k 6=0

ktQ(k)k
exp

(
−k2/4κ2

)
k2

, (24)

where V is the volume of the simulation cell and Q(k)
the dipole structure factor

Q(k) :=
1

Ne2

N∑
i,j

pi ⊗ pj eik·rij , (25)

with the normalization factor 1/
√

Ne2, where e denotes
the elementary charge. As we can see in Eq. (24),
the large k contributions to Ẽtot

k tend to zero rapidly,
whereas the small k contributions are governed by the
behavior of Q(k), which is expected to vanish as k → 0.

B. Discussion

To legitimate the neglecting of the reciprocal-space
term for the Wolf summation we have simulated liquid
silica with 4896 atoms, where we get no spontaneous po-
larization as a first result. The total dipole moment is
p = 6.76 · 10−29 Cm, which is insignificantly small com-
pared to a fully polarized system and thus can be taken
as a fluctuation. All values which are calculated in the
course of the simulation are time-averaged over the full
simulation time of one picosecond.
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FIG. 1: k-dependence of the dipole structure scalar Q(k). For
small k, the dipole structure factor is negligible.

To analyze the k → 0 behavior we calculated the dipole
structure scalar,

Q(k) = 〈ktQ(k)k 〉S , (26)

where the angular brackets indicate an average over a
spherical shell S with width ∆k centered at constant
|k| = k. Note that for a for a periodic system Q is
not a continuous function, but a discrete set, consisting
of all reciprocal space vectors. Hence the average over
the spherical shell is necessary. Fig. 1 shows the dipole
structure scalar in liquid silica simulations. For small
absolute values of k, Q(k) goes to zero.

Fig. 2 shows the k-dependence of the reciprocal-space
term,

Ẽk(k) =
2πNe2

V
Q(k)

exp
(
−k2/4κ2

)
k2

, (27)

for different Ewald splitting parameters κ (again aver-
aged over a spherical shell). As mentioned above, due to
the exponential damping, large-k contributions are neg-
ligibly small, whereas the small-k values are governed by
the behavior of Q(k) as k → 0.

Finally the sum in Eq. (24) is evaluated for the given
k-mesh with truncation sphere in the reciprocal-space.
The difference between this approach of a spherical trun-
cation and the full summation is very small because of
the exponential damping in Eq. (27), as seen in the rapid
decay of Ẽk(k) for increasing k in Fig. 2. In Fig. 3 the
κ-dependence of the reciprocal-space term Ẽtot

k is illus-
trated in a logarithmic plot. For the chosen damping of
κ = 0.1 Å

−1
we get

1
N

Ẽtot
k = 3.3 µeV , (28)

which is small compared to the real-space part and can
thus be neglected.
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ior of eEk(k) is governed by Q(k), which results in negligible
contributions of the small k-values to the total energy.
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FIG. 3: Logarithmic plot of the reciprocal-space term eEtot
k

for different Ewald splitting parameters κ. For sufficiently
small κ, there is no noticeable contribution to the total energy
compared to the real-space part.

IV. RESULTS

The damped and smoothly cut off TS potential was
used to study the same thermodynamic and structural
properties the original authors6 examined for the Ewald-
summed potential.

A. Equation of State and Bonding Properties

We compare the equation of state of liquid silica at
3100 K to experiments,17 ab initio results and, of course,
the full TS potential in Fig. 4. Pressures were obtained
as averages along constant-volume MD runs of approx-
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FIG. 4: Equation of state of liquid silica for damped and
smoothly cut off TS potential compared to experiment,17 ab
initio simulations and classical simulations with BKS and the
full TS potential.6

imately 10 ps following 10 ps of equilibration and with
simulation cells containing 4896 atoms. We reproduced
the good agreement of the full TS potential with the ex-
perimental results; both the full TS potential and our
damped and smoothly cut off TS potential match even
better with experiment than the ab initio results. As
already mentioned by the original authors6 the BKS
model systematically underestimates the volume by ≈
13%. The large scatter of the ab initio results can be ex-
plained with the system size and time constraints of this
method: especially for low pressures, the system cannot
be equilibrated completely.

On a microscopic level, the Si–O–Si angle distribution
was determined from multiple MD simulation runs at
3100 K and various pressures. The results are shown
in Fig. 5, and are in agreement with the full TS potential
and ab initio results.

In Fig. 6 the percentage of N -fold coordinated silicon
atoms in liquid silica at 3100 K as a function of pressure
is illustrated. Our results are compared to simulations
with the full TS potential,6 which agree rather well with
ab initio18 results.

To sum up, the equation of state and the bonding prop-
erties of liquid silica, which the original authors6 exam-
ined for the Ewald-summed potential, can be reproduced
very well by using the damped and smoothly cut off TS
potential, while using dramatically less CPU time. Due
to the linear scaling of computational effort in the system
size, this advantage becomes even more pronounced the
larger the system is.
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FIG. 5: Oxygen centered angle distribution in liquid silica for
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full TS potential as well as ab initio calculations.6
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FIG. 6: Percentage of N -fold coordinated silicon atoms in
liquid silica at 3100 K as a function of pressure compared to
simulations with BKS and the full TS potential.6

B. Crystal Structure Data

We also probed the damped and smoothly cut off TS
potential by simulating the most important low pressure
crystal structures quartz, cristobalite and coesite. The
relevant equilibrium variables density, Si–O–Si angle and
the lattice parameters at 300 K are given in Tables I, II
and III. The average relative deviation of the data from
the experimental results is ≈ 0.9%, which is a compara-
tively good agreement. By contrast, the BKS potential
differs by ≈ 2.1% on average. Note that simulations with
the full TS potential yield a relative deviation of the pa-
rameters that averages at merely ≈ 0.7%. This decrease
in precision might be countered by redetermining the pa-
rameters for the smoothed and damped TS force field, as
we suggest in Sec. V. Additionally, the ordered crystals
might be more susceptible to spontaneous polarization
compared to the liquid, however we could not confirm
this in our simulations.

TABLE I: Quartz

Expt.a New Potential TSb BKSb

a (Å) 4.916 4.872 4.925 4.941
c (Å) 5.405 5.359 5.386 5.449
ρ (g/cm3) 2.646 2.718 2.665 2.598
Si–O–Si (◦) 143.7 142.1 144.5 148.1

aReference 19.
bReference 6.

TABLE II: Cristobalite

Expt.a New Potential TSb BKSb

a (Å) 4.969 5.015 4.936 4.920
c (Å) 6.925 6.999 6.847 6.602
ρ (g/cm3) 2.334 2.268 2.412 2.515
Si–O–Si (◦) 146.4 147.1 144.0 143.9

aReference 20.
bReference 6.

It should be noted, however, that the TS potential
was optimized to reproduce atomistic properties of liquid
SiO2 at 3000 K. For this reason, its application to low-
temperature crystalline systems should be closely mon-
itored. In the case of cristobalite we found that both
the full TS potential and the smoothly truncated poten-
tial energetically favor a slightly different orientational
arrangement of the fundamental SiO4 tetrahedra at low
temperatures, with only little consequence on quantities
given in Tab. II.

V. CONCLUSION

In this work, we have demonstrated that the advan-
tages of the TS polarizable force field can be captured
and reproduced in MD simulations with a strictly finite
interaction range. To this end, we have shown that the
Wolf summation technique, i.e. smoothly cutting off the
damped long range real space part of the electrostatic
interaction, and neglecting the reciprocal space part al-
together, is justified for the TS dipolar force field for
silica. With a suitably large real space cut-off, the errors
in the forces and energies are acceptable for the systems
of interest. This can also be seen in simulation results:

TABLE III: Coesite

Expt.a New Potential TSb BKSb

a (Å) 7.136 7.123 7.165 7.138
b (Å) 7.174 7.161 7.162 7.271
c (Å) 12.369 12.347 12.377 12.493
β (◦) 120.34 120.34 120.31 120.76
ρ (g/cm3) 2.921 2.940 2.933 2.864
Si–O–Si (◦) 143.6 144.2 144.0 150.5

aReference 21.
bReference 6.
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Our Wolf-summed TS potential can reproduce the ex-
perimental and ab initio structural properties of silica
reasonably well compared to the full TS interaction.

By omitting the reciprocal space contribution, simula-
tions with our potential can be performed with a stan-
dard finite-range MD code like IMD. Thus, it can profit
from the linear scaling of computational effort with sys-
tem size common to this method. Similarly, the calcu-
lations can easily and efficiently be parallelized, opening
the door to large-scale calculations impossible with the
standard Ewald summation technique. Moreover, once
the reciprocal space part can be neglected, there is no
longer any need for periodic boundary conditions. It has
been shown that Wolf summation performs very well also
for open or mixed boundary conditions,14 opening up a
wealth of new possibilities.

As a rule of thumb, the real space cut-off radius re-
quired for Wolf summation has been estimated as about
five times the largest nearest neighbor distance of oppo-
site charges in the system.22 For silica, this amounts to a
moderate value of about 8 Å. But even with a more con-
servative choice of 10 Å, for more accurate simulations,
for a system with 4896 atoms we obtained a speedup
of more than two orders of magnitude compared to the
original code of Tangney and Scandolo. Also this perfor-

mance increase makes the new method very interesting,
and opens up new possibilities.

The original TS potential parameters were optimized
for the full Ewald treatment of long-range interactions.
Redetermining the parameters for the smoothed and
damped TS force field with the actual cutoff used in
simulation might improve the potential further. Addi-
tionally, using a more flexible short-range interaction
than the Morse-Stretch potential suggested by Tangney
and Scandolo could lead to even better results. We plan
to implement the TS polarizable oxide potential model
in our Force Matching code potfit23 to perform this
optimisation. This implementation could then be used
to determine polarizable oxide potential parameters also
for other materials like alumina or magnesia.
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