D. Garbe: Mathematik III für Naturwissenschaftliche Informatik

Übungsblatt 33

Aufgabe 161: Berechne
$$\int_{-\infty}^{\infty} \frac{\xi^{2m}}{1+\xi^{2n}} d\xi$$
 $m, n \in \mathbb{N}$, $0 \le m < n$.

Die folgenden Funktionen sind in den angegebenen Kreis-Aufgabe 162: gebieten in Laurentreihen zu entwickeln:

a)
$$[(z-a)(z-b)]^{-1} \quad (a \neq 0 \ , \ |a| < |b|)$$
 für $|z| < a,$ für $|a| < |z| < |b|$ und für $|b| < |z|$,

b)
$$[(z-a)(z-b)]^{\frac{1}{2}}$$
 für $|b| < |z|$ $(|a| < |b|)$, c) $e^{z+\frac{1}{z}}$ für $0 < |z| < \infty$,

c)
$$e^{z+\frac{1}{z}}$$
 für $0 < |z| < \infty$,

d)
$$e^{\frac{1}{z-1}}$$
 für $|z| > 1$.

Aufgabe 163: Berechne
$$\int_{-\infty}^{\infty} \frac{\cos 2\xi}{\xi^2 + 2\xi + 2} d\xi \text{ sowie } \int_{-\infty}^{\infty} \frac{\sin 2\xi}{\xi^2 + 2\xi + 2} d\xi$$

Aufgabe 164: Berechne
$$\int_0^{2\pi} \frac{d\varphi}{a + b \sin \varphi}$$
 für $a > |b|$.

Aufgabe 165: Berechne
$$\int_{-\infty}^{\infty} \frac{\sin \xi}{\xi} d\xi$$
 mit Hilfe des Resultats von Satz 25.9.