D. Garbe: Mathematik III für Naturwissenschaftliche Informatik

Übungsblatt 38

Aufgabe 186: Löse mittels Laplace-Transformation das folgende System

$$\begin{aligned} 2\dot{\xi} + 3\dot{\eta} + 7\xi &= 14t + 7 \\ 5\dot{\xi} - 3\dot{\eta} + 4\xi + 6\eta &= 14t - 14 \end{aligned} , \qquad (t = 0, \xi = \eta = 0)$$

Aufgabe 187: Eine Saite der Länge l sei an beiden Enden fest eingespannt und habe keine Anfangsauslenkung, aber eine Anfangsgeschwindigkeit von sin $\frac{\pi\xi}{l}$. Löse das zugehörige Rand-Anfangswert-Problem mittels Laplace-Transformation.

Aufgabe 188: Löse die folgende Integrodifferentialgleichung für $\xi(t)$:

$$\frac{1}{50}\dot{\xi}(t) + 16\xi(t) + 3200 \int_{0}^{t} \xi(\tau)d\tau = 100 \quad , \qquad \xi(0) = 0 \quad .$$

Aufgabe 189: Beweise: Die Faltung genügt folgenden Rechenregeln:

- $f * (\alpha g + \beta h) = \alpha (f * g) + \beta (f * h)$ für Konstanten α , β , a)
- b) f * g = g * f ,
- f * (q * h) = (f * q) * h. c)
- Wenn f differenzierbar ist und die Faltungen f * g und f' * gd) existieren, so ist f * g differenzierbar, und es gilt (f * g)' = f' * g.

Aufgabe 190: Beweise die folgenden Aussagen über konvexe Mengen in \mathbb{R}^n :

- (i) $M \text{ konvex} \longleftrightarrow [x, y \in M \longrightarrow \lambda x + \mu y \in M \ \forall \lambda, \mu \geq 0 \text{ mit } \lambda + \mu = 1].$ (ii) $M_i \text{ konvex} \ \forall i \in I \longrightarrow \bigcap_{i \in I} M_i \text{ konvex}.$ (iii) Konv(M) ist konvex.
- (iv) Für $M \neq \emptyset$ gilt: Konv(M) ist die kleinste konvexe Menge in \mathbb{R}^n , die Menthält.
- (v) Jeder abgeschlossene Halbraum $H(a,\beta) = \{x \in \mathbb{R}^n : a^t x \leq \beta\}$ ist konvex. Jedes Polyeder, d. i. ein Durchschnitt endlich vieler abgeschlossener Halbräume, ist konvex.
- (vi) Jede affine Hyperebene $a^t x = \beta$, $a \neq 0$, ist konvex. (vii) Der erste Orthant $\{(\xi_1, \dots, \xi_n)^t : \xi_i \geq 0 \ \forall i = 1 \dots n\}$ ist konvex.