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1 1Ito integrals and stochastic differential equations:
A brief introduction

1.1 It6 integrals

We recall here some facts about stochastic integration with respect to Brownian motion
and stochastic differential equations. We restrict our attention to those topics needed
during the course. The presentation mainly follows [25]. For an introduction to the
general theory of stochastic integration with respect to semimartingales, we refer to [26],
[28], for example.

We consider the one-dimensional case first. Let {Wt}t>0 be a one-dimensional standard
Brownian motion on some probability space (2, F,P). We want to give a meaning to
equations of the form

&y = f(ze,t) + F(zt,t) X “white noise”, te€[0,T). (1.1)
Considering the discrete-time version

mtk+1 — CEtk = f(iﬂtk, tk)Atk + F(Cﬂtk, tk)AWk, k c {0, .. .,K — 1}, (12)
with a partition 0 =ty < ¢ < --- < tg =T, Aty = tg41 — tx and Gaussian increments
AWg = Wy, ., — Wy, suggests to interpret (1.1) as an integral equation

t t
:ct::co—l—/ f(:cs,s)ds—l—/ F(z,,s)dW,, (1.3)
0 0

provided the integral fg F(zs,s)dW, can be defined as the limit of EkK:_Ol F(ze, , te) AWy
as Aty — 0 in some suitable sense.

Thus we want to define integrals of the type fg h(s,w) dW,(w) for some class of inte-
grands h(s,w) taking values in R. Assume for the moment that s — h(s,w) is continuous
and of bounded variation for (almost) all w € Q. Were the paths of the Brownian motion
s — Wy (w) also of finite variation, we could apply integration by parts, thereby obtaining

/0 h(s,w)dW,(w) = h(t)Wi(w) — R(0)Wo(w) — /0 We(w)h(ds,w)
= h(t)Wi(w) —/0 W,(w)h(ds, w), (1.4)

where the integral on the right-hand side is defined as a Stieltjes integral for each w. So
we can use (1.4) to define the stochastic integral fot h(s,w)dW,(w) w-wise by the well-
defined right-hand side of (1.4) for such h. This class of possible integrands is not large
enough for our purpose, because the paths of Brownian motion are almost surely not of
finite variation and, therefore, we can not expect s — h(s,w) = F(z,(w), s) to be of finite
variation.

The definition for a more general class of integrands as presented below, is due to
It6 [18]. For integrands which are of finite variation it is equivalent to (1.4). Let {F;}¢xo0
denote the filtration generated by the Brownian motion {W;}¢xo, i.e.,

Fi = o{W,, s < t}, t>0, (1.5)
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is the o-algebra generated by the Brownian motion up to time t.! First we define the
stochastic integral for so-called elementary functions which are step functions in time.

Definition 1.1. A function h : [0,T] X 2 — R s called elementary if there ezists a
partition 0 = tg < t; < ...tg = T such that

K-

h(t,w) =) k(@) ,0(t),  t€[0,T], (1.6)
k=

—

and w — hy(w) ts Fy, -measurable for all k.

For elementary integrands, the stochastic integral can be defined in a natural way by

K-1

/ h(s)dW, = / h(s,w)dW,(w) = hi(w) Wy, ,, (w) — Wi, (w)]. (1.7)
0 0 —o

To extend this definition, we shall use the following isometry between Hilbert spaces.

Lemma 1.2. Let the elementary function h be such that hy € L?(P) for all k. Then,

E{ (/Ot h(s) dWs)z} = /Ot E{h(s)?} ds. (1.8)

Proor: First note that

E{ ( /0 t h(s) dWs)z} = Ki E{hr hi(AWg) (AWD)}. (1.9)

k,l=0

For k < I, hxhi(AWy) is Fi,-measurable, while AW; is independent of F;,. Thus only the
terms with k& = [ contribute to the sum in (1.9). As hg is F;, -measurable while AW} is
independent of Fy,, E{hZ (AW})?} = E{hZ}At; follows. Now,

E{ (/Ot h(s) dWs)z} = Kz_:lJE{h,i}Atk = /Ot]E{h(s)z}ds (1.10)

k=0

is immediate. O

By the preceding lemma, Definition (1.7) can be extended to the following class of
functions A : [0,T] x 2 = R:

e (t,w) — h(t,w) is measurable with respect to B([0,T]) ® F, where B([0,T]) denotes
the Borel o-algebra on [0, T];
e For each ¢, w — h(t,w) is Fr-measurable;

o [TE{h(t)?}dt < co.

'Later we will work with the filtration generated by the Brownian motion and an initial condition o,
which is assumed to be independent of the Brownian motion {W:}:50. Note that all statements remain
valid when using such an enlarged filtration.
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Each such h can be approximated by a sequence of elementary functions e(™ in the
following sense:

T
/ E{(h(s) — e™(5))2}ds — 0, as n — 00, (1.11)
0
and the basic isometry (1.8) allows to define the stochastic integral of h by setting
t t
/ h(s)dW, = lim e (s)dw,,  forallte[0,T), (1.12)
0 nmeeJo

where the limit exists in L%(P).

This defines the so-called It6 integral. It is well-defined in the sense that its value
does not depend on the precise choice of the sequence of elementary functions, but note
the following: By our definition of elementary functions, h is approximated by (random)
step functions e(™ with associated partition t,(c"), E=0,..., KM  The value of e® )(t)

at all times t € [t,(c )1tl(c-|-)1] is chosen ]:t(n) -measurable. If we were to relax this measur-

ability condition, the definition (1.12) f the stochastic integral would yield a different
value. For instance, approximating bounded, continuous functions h by elementary func-
tions e(™ with e(” )( ) = h((t, £ 4 t,(c_|_1)/2) for all t € [¢ ,(c ),t,(cz)l] would yield the so-called
Stratonovich integral, on Wthh we shall comment below.

For any interval [a,b] C [0,T], we define

b T
/ h(s) dW, = /0 1o (5)R(s) AW, (1.13)

The stochastic integral satisfies the following properties.

e Splitting of integrals:
¢
/ s)dW, = / s)dW, —I—/h()dWs for0<s<u<t<T; (1.14)
e Linearity:

t t t
/ (chi(s) + ha(s))dW,s = c/ hq(s) dW, + / ha(s) dWs for all constants c;
0 0 0
(1.15)

E{ /Ot h(s) dWs} = 0; (1.16)

e Covariance of stochastic integrals/isometry:2

E{ (/Ot ha (s) dWs) (/Ot ha(s) dWs)} _ /OtE{hl(s)hg(s)}ds. (1.17)

Next, we want to consider the stochastic integral X; = fo s)dW, as a function of ¢.
As X; is F-measurable, {X;}ic[0,7] is a (continuous-time) stochastlc process. It has the
following properties.

e Expectation:?

2 Note that these properties may—and typically will—fail for the Stratonovich integral.
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e X, is Fi-measurable;?
o {X;}; is an {F;}s-martingale: E{X;|F,} = X, for 0 < s <t < T;2

e { — X;(w) possesses a continuous version, i.e., there exists a stochastic process Y;
with continuous sample paths, which satisfies P{X; # Y;} = 0 for all . Thus we
may always assume that ¢t — X;(w) is continuous for almost all w.

Here a word of warning is due. The definition of the It6 integral can easily be extended
to integrands h satisfying the same measurability assumptions as before but a weaker
integrability assumption. In fact, it is sufficient to assume that

t
]P’{/ h(s,w)*ds < oo forall ¢t > 0} =1. (1.18)
0

The stochastic integral is then defined as the limit in probability of integrals of elementary
functions. Keep in mind that for such h, those of the above properties of the stochastic
integral which involve expectations may fail.

Examples 1.3. (a) Let us first look at an example where the integrand is not of finite
variation. A classical example is

t 1 1
/ W,dW, = “W2 — —t. (1.19)
0 2 2

It is not difficult to calculate this integral directly, see for instance [25, Example 3.6].
Note the unexpected —¢/2, which shows that the It6 integral can not be calculated
like ordinary integrals. This correction stems from the contribution of the quadratic
variation of W;. Below we will state It6’s formula which replaces the chain rule for
Riemann integrals and is very useful for calculating It6 integrals. We remark in
passing that the Stratonovich integral does not require such a correction.

(b) Our second example deals with the special case of deterministic integrands. If h
does not depend on w it follows immediately from the definition of the stochastic
integral, that fot h(s) dW, is a Gaussian random variable with mean zero and variance

fot h(s)%ds.

Theorem 1.4 (It6’s formula). Let h satisfy the measurability assumptions and (1.18),
and let f be another function satisfying the same measurability assumptions and the weaker
integrability assumption

]P’{/t|f(s,w)|ds<oo for allt}O}:l. (1.20)
0

We define
¢ ¢
X = Xo —I—/ f(s)ds+ / h(s) dW,. (1.21)
0 0
Let g : R x [0,T] — R be continuous and assume that the partial derivatives

0 0 0?2
gi(z,t) = Eg(m,t), gz(z,t) = a—mg(m,t), 9zz(z,t) = wg(:c,t) (1.22)
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ezist and are also continuous. Then Y; = g(X4,t) is given by
¢
1
o= 9(X0,0) + [ 01X ) + 0a(Xsy5)(5) + 50ma(Xer ()] ds
0

t
—I—/ 92(Xs, s)h(s) dW,. (1.23)
0
Denoting (1.21) briefly as dX; = fdt + hdW,, It6’s formula can be written as
1
dY = gedt + gz d X, + S gea(dX0)’, (1.24)

where (dX;)? is calculated according to the scheme
(dt)? = (dt)(dW;) = (dW;)(d¢t) = 0, (dW;)? = dt. (1.25)

Examples 1.5. (a) Using It6’s formula, we can easily calculate fot sdW,. Set g(z,t) =
t-z and Y; = g(Ws,t). Then dY; = W, dt + ¢dW; + %0 dt, and, therefore,

t t t
/ sdW,=Y; - Y, — / W,ds = tW; — / W,ds. (1.26)
0 0 0

Note that this is an integration-by-parts formula, cf. (1.4). Similarly, by setting
g(z,t) = h(t) -z, (1.4) can be established for suitable .3

(b) Applying 1t6’s formula to g(W;) for g(z) = z2/2, we easily obtain (1.19).

(c) Applying It6’s formula with g(z,t) = e®~t/2 shows that Z, = Zog(We, t) satisfies
dZ; = Z; dW;. The stochastic process Z; is the so-called Doléans exponential of W;.
Note that Z; is “the solution of the stochastic differential equation dZ; = Z; dW; 7,
which explains why Z; is considered as the exponential of W;.

Remark 1.6 (The multidimensional case). The definition of the stochastic integral
in R can be easily extended to multidimensional Brownian motion and stochastic inte-
grals taking values in some R™. Let W; = (Wt(l), .. .,Wt(k)) be a k-dimensional standard
Brownian motion and assume that h(s,w) = (h;;(s,w))ign,j<k is @ matrix-valued function,
taking values in the set of (n X k)-matrices. Then we can rely on our previous definition
of the stochastic integral and define the ith component of the n-dimensional stochastic
integral by

k t
> / hij(s) dW(), (1.27)
j=1"9

provided each h;; allows for stochastic integration in R. The above mentioned properties
of stochastic integrals carry over in the natural way. In particular, the isometry (1.8) now
reads

s{( [ sam, [swaw)} = [ B{niseeeDies 0

for integrands f and g taking values in the same space, and the covariance of stochastic
integrals can be calculated as

w{ ([ swam) ([ swam)} = [Breaema. 0

3Note that a particularly elegant proof of It4’s formula is based on an integration-by-parts formula such
as (1.4) and (1.35). In that case, integration-by-parts has to be established first.
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We conclude our discussion of the multidimensional case by stating the corresponding
version of It6’s formula. As the multidimensional integral can be defined componentwise,
it is sufficient to consider Y; = g(X},t) for multidimensional X; and one-dimensional Y;.

Theorem 1.7 (Ité’s formula, multidimensional case). Let h : [0,00) x Q — R"xk
satisfy the measurability integrability assumptions for fot h(s)dW, to be defined, and let
f:[0,00) x Q@ — R™ be another function satisfying the same measurability assumptions
and the weaker integrability assumption

P{/t||f(s,w)||ds<oo for azzt>o} 1 (1.30)
0

We define X; by
dX: = f(t)dt + h(t) dW;, (1.31)

and write Xt(i) for its ith component. Let g : R™ x [0,T] — R be continuous and assume
that the partial derivatives

2
g(:c,t), gzizj(m;t) - mg(:c,t) (132)
UL

0 0
gt(m:t) = %g(m,t), gzi(m:t) = p

1

ezist and are also continuous. Then Y; = g(X4,t) is given by

n . 1 n . .
dY; = gu(Xe, ) At + > ge(Xey ) AXD 4 037 ooy (X0, (XN @X ), (1:33)

=1 7,7=1
where (dXt(i))(dXt(j)) is calculated according to the scheme
(dt)? = (de)(dwH) = @wH)(dty =0,  (@WH) (AW = 6, dt. (1.34)

As a consequence of this multidimensional version of Ité’s formula, we immediately
obtain the following integration-by-parts formula.

Lemma 1.8. Let dXt(i) = fidt+ h;dWy, 1 =1,2. Then
t t t
xWx® — xWx@ 4 / XM ax® 4 / x@dx® 4 / hi(s)ha(s)ds.  (1.35)
0 0 0

Finally, there is also a version of Fubini’s theorem for stochastic integrals.

Lemma 1.9. Leth : [0,T] xR xQ — R be B([0,T]) ® B(R ) ® F-measurable, and assume
that for any u € R, the map w — h(t,u,w) is Fz-measurable for all t € [0,T]. If

/OT/R E{h(s,u)*}duds < oo, (1.36)

then the integrals

T T
/ / h(s,u)dW,du and / / h(s,u)dudW, (1.37)
R JO 0 R

are well-defined and almost surely equal.
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1.2 Stochastic differential equations

Let us now turn to our original motivation for defining stochastic integrals which was to
give a meaning to equations such as

Ty = f(mt:t) + F(mt:t)Wta te [O:T]: (138)

where W; denotes white noise, as integral equations

t t
Ty = To —I—/ f(zs,s)ds —I—/ F(z,,s)dW,, (1.39)
0 0

where {W;}:>0 is a Brownian motion and fg F(z,,s)dW, is the Itd integral. We shall
focus on so-called strong solutions, i.e., we try to find a stochastic process {z;}:»0 which
solves (1.39) for a given probability space (2, F,PP) and a given Brownian motion {W;}:>o0.
We will briefly state the usual conditions for the existence of such a solution and its
uniqueness. For further reading we refer to the broad literature on the subject, see for
instance the brief introduction in [25], and the corresponding chapter in [26].

Let f,F:R™x [0,T] — R™ be jointly measurable deterministic functions of z and ¢.

We assume that the initial condition z¢ is deterministic or is independent of the Brownian
motion {W;}:»o and satisfies E{z3} < co. For t € [0, T], let F; = o{zq, W, s < t}.

Definition 1.10. A stochastic process {T:}ic[o,r) i5 called a (strong) solution of the
stochastic differential equation (SDE) (1.39), if

e z; is Fi-measurable;

T T
o P{Jy [If(zs(w),s)llds < oo} =1 and P{[;[|F(zs(w),s)|[’ds < o0} =1;
e for anyt € [0,T], (1.39) holds with probability 1.

Note that the Fi-measurability of z; implies the F;-measurability of w — f(z¢(w),t)
and w — F(z¢(w),t), so that in particular the stochastic integral in (1.39) is well-defined.

The following theorem states the standard result on existence and uniqueness of such
a solution.

Theorem 1.11 (Existence and uniqueness of strong solutions). Assume that there
exists a constant K such that the following holds for allt € [0,T] and all z,y € R :

e Lipschitz condition:
1£(z,2) = F(y, )|+ ||F(z,t) = Fy, £)l| < Kllz — yl; (1.40)
e bounded-growth condition:
1 (@ )l + [[F (=2, 8)]] < K1+ [|l])- (1.41)

Then the SDE (1.39) has a (pathwise) unique almost surely continuous solution {z:}c[o -
Here uniqueness means that for any two almost surely continuous solutions {zt}.co,1) and

{yt}tE[O,T];
]P’{ sup ||ze — yel| > 0} =0. (1.42)

ogLT

NN
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Remark 1.12. The bounded-growth condition (1.41) excludes explosions of the solution,
as in the case of ordinary differential equations. Uniqueness can be proved using only
the Lipschitz condition (1.40). The result remains valid when the Lipschitz condition is
replaced by a local analogue. As in the deterministic case, these conditions are sufficient
but not necessary, and many interesting problems are actually not covered by this simplest
of all existence and uniqueness theorems. It can be proved by a stochastic version of
Picard—Lindel&f iterations.

Example 1.13 (Linear SDEs). We will frequently approximate solutions of stochastic
differential equations locally by solutions of a linearized equation. Linear SDEs can be
solved easily: Consider for example the one-dimensional SDE

dz; = [a(t)z: + b(t)] dt + F(t) dW. (1.43)

Using the notations a(t, s) = f: a(u)du and a(t) = a(t,0), we can write its solution as

t t
2, = zoe*t) 4 / b(s) e(®®) ds + / F(s) ex®8) dw,. (1.44)
0 0

Indeed, (1.44) can be established by an application of It6’s formula: Let z; be defined
by (1.43) and set y; = e"*(®) z;,. Then dy, = b(t) e=*) dt + F(t) e=*(*) dW;, which deter-
mines y;, and (1.44) for z; follows.

If g is either deterministic or Gaussian, then z; is Gaussian for all £. In any case,

¢
E{z:} = E{zo} e*® + / b(s) e2(t2) ds, (1.45)
0
¢
Var {z;} = Var {zo} e?*®) + / F(s)? e22(b) g, (1.46)
0
where we used the fact that we always assume the initial condition to be independent of

the Brownian motion.
As a special case, we obtain that

dz; = —agz: dt + o dW; (1.47)

has the unique almost surely continuous solution
¢
T; = zge 20 —I—O'/ e (=) dW,, (1.48)
0

which is known as Ornstein—-Uhlenbeck (velocity) process, modelling the velocity of a
Brownian particle. In this context, —agz; is the damping or frictional force.
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2 Sample-path large deviations

2.1 Introduction

We are interested in the behaviour of solutions to SDEs in R ¢ of the form
dz§ = b(zf) dt + /e dW%, Ty = zo, (2.1)

where the noise intensity /¢ is considered a small parameter. One would expect that
for sufficiently small noise, z; is close to the solution of the corresponding deterministic
ordinary differential equation (ODE)

iy = b(ze) (2.2)

with the same initial condition. Indeed, if b is Lipschitz continuous with Lipschitz constant
Ly, then

t
llzf — z¢f| < Lb/ |25 — 2| ds + Ve|[W4], (2.3)
0
and Gronwall’s lemma shows that
sup ||z¢ — z,|| < Ve sup ||W,| elt. (2.4)

Thus is is sufficient to estimate the probability that the Brownian motion W, leaves a ball
of some radius r before time ¢, an estimate which is standard. Using the reflection principle
for the one-dimensional Brownian motion, we find that the probability of a sample path
z¢ leaving a §-neighbourhood of the deterministic solution z, satisfies

5 ., 2 o— 2Lt
P< sup ||z§ — z, 25}<]P’{ sup ||[Ws|| 2 —=e~ b}<2dexp{—7}. 2.5
e oz = s > L )

(Note that the dependence on the dimension d in this estimate is not optimal and can
easily be improved.) As expected, for fixed ¢, the probability of leaving a neighbourhood of
the deterministic solution increases with ¢, as typical path will eventually leave any fixed
neighbourhood, and it decreases with increasing § as it is more difficult to leave larger
neighbourhoods. We also see that the smaller the noise intensity /¢, the more difficult it
is to leave a neighbourhood of z;. In order for the probability to be small, we need 62/e
to be larger than (1/t)e?Lt (neglecting the dependence on the dimension d). Thus we
observe an exponential decay of the probability of leaving a neighbourhood of z,.

Let now A be a measurable subset of the set C = C([0,T],R?) of all continuous func-
tions [0,7] — R ¢, where measurable refers to the Borel o-algebra on C. Assume that
A does not contain the d-neighbourhood of the deterministic solution considered above.
Then we know that the path z° = (z5)og,7 satisfies

52 —2LbT

P{z® e A} < 2dexp{—2€T

} —0 as € — 0, (2.6)
and we consider the event that z° € A as a large deviation as z° typically fluctuates
around the deterministic solution and we are now looking at atypical behaviour. Our aim
is to obtain the rate at which the probability in (2.6) tends to zero as a function of the
set A. (Note that we used a rough estimate, neglecting the actual choice of A.) In general
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it is not possible to obtain the exact rate, but at least the exponential rate can be found.
Thus we are looking for a rate function or (normalized) action functional I : C — [0, o]
such that

P{||z° - ¢l < 8} e e 1(0)/e, (2.7)

where ||-||co denotes the supremum norm on the time interval [0,7]. This describes the
case of A being a small ball around some continuous function ¢.

Below we will first consider the special case of a scaled Brownian motion z§ = /W%,
then discuss some general principles and finally generalize to the situation (2.1), where
we will actually allow for a larger class of diffusion coefficients. Our presentation mainly
follows [15] and [13]. We will also comment on the different approach chosen in [12].
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2.2 Sample-path large deviations for Brownian motion:
Schilder’s Theorem

In this section we consider the special case z§ = /eW; of a scaled Brownian motion (in
R9), with z§ = 0. We will use the following notations:

Notations 2.1. Fix a time interval [0, T].
o C:=C([0,T],R%) for the set of all continuous functions [0, T] — R,
Co:={p € C: o = 0},

lllo = lllljo,z7:= sup ||| for ¢ € C or Co,
te[0,T]

Ly = L5([0,T],RY for the set of all square-integrable functions [0,7] — R ¢,

H, = H,([0,T],R%) ::{/OTf(s) ds: f € 52}

for the set of all absolutely continuous functions ¢ : [0,T] — R¢9, with square-
integrable derivative ¢ and o =0,

T 1/2
el =([ letas)”  for e .

Our aim is the following result, due to Schilder (1966):

Theorem 2.2 (Schilder’s Theorem). The family of induced measures {P(z°)71}c50
on Co, equipped with the the Borel c-algebra, satisfies a large deviation principle with the
good rate function

slely,, i e H,

I(p) = I2Y = 2.8
(¢) [O’T]’O((’D) {—I—oo, otherwise. (28)
That 1s, the relation
—inf I <liminfelogP{z® € I'} < limsupelogP{z® €'} < —inf ], (2.9)
re e—0 e—0 T

holds for all Borel sets T C Cy, where I'° and T’ denote interior or closure of I', respectively,
and I is lower semi-continuous with compact level sets.

Remark 2.3.

(a) Relation (2.9) is called a large deviation principle (LDP). It consists of two parts, a
lower and an upper bound, the middle one of the estimates being trivial. A function
I:Cy — [0,+00] is called a rate function if it is lower semi-continuous. Then the
level sets {¢: I(¢) < a} are closed. If the level sets are compact, we call I a good
rate function.

(b) Note that z° ¢ H; almost surely, as the paths of a Brownian motion are almost surely
of unbounded variation. Thus I(z°) = 400 almost surely, for all € > 0. Let I' = o
for the moment. Then infr I = 0 and I being a good rate function implies that there
exists a ¢ such that I(¢) = 0. Of course, in the context of Schilder’s Theorem, this
is trivial as we can choose ¢; = 0. Thus we see again that z° concentrates near the
function which vanishes everywhere. The LDP is useful to estimate the probability
of rare events, namely that z° is not close to ¢; = 0.
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(c) Note also that in general, the limits in (2.9) are not equal, so that
lim e logP{z® € T'} (2.10)
e—0
does not necessarily exist and we cannot do better than stating bounds. If the limit
lim elogP{z® €'} = —inf I 2.11
lim elogP{z® € I'} = —inf I, (2.11)
does exist, then I' is called an I-continuity set.

(d) In the statement of the LDP (2.9), the interior and the closure of I' are needed for
lower and upper bound to hold. It is easy to see that the interior is actually needed
for the lower bound: For non-atomic measures such as P(z°) ™!, P{z° = ¢} = 0 holds
for all . Would the lower bound be valid with I'° replaced by I', then

-1 = —inf I < liminf elogP{z® = = —00 2.12
(¢) = —inf I < lim inf e log P{a” = ¢} (2.12)
would imply I(y) = +oo for all ¢, which contradicts the upper bound, as
0 =limsupelogP{z® € Co} < —inf] = —oo0 (2.13)
e—0 Co

cannot hold. Note that this argument uses only that P(z°)~! is non-atomic.

Example 2.4. As an example let us consider the probability that z° leaves a ball of
radius § around the origin. As the typical spreading of Brownian motion scales with /2,
we expect z° to remain in B(0,6), provided §%/e > T. Let us make this precise. Set
I' = {¢ € Co: ||¢|lo < 6} = B(0,8). Then infre I is obtained for any ¢ of the form
@, = se/T with ||z]| = &, and the LDP states that P{z* ¢ I'} decays like e="/2¢T which
is small for 62/e > T, as expected.

As it is easy to see that I as defined in (2.8) is a good rate function, i.e., I is lower
semi-continuous with compact level sets, we will focus on the proof of relation (2.9).
Our presentation follows [15, Section 3.2]. We will establish two lemmas, providing the
fundamental estimates for upper and lower bound, respectively, and show how Schilder’s
theorem follows from these lemmas.

The first of these lemmas gives a lower bound on the probability of z° remaining in a
ball. Note that this bound depends only on the centre of the ball (and on ¢).

Lemma 2.5. For all§ > 0, ally > 0 and all K > 0, there ezists aneqg = €o(6,7, K,T) > 0
such that for alle < eq and all p € Cy with I(p) < K, we have

P{||z° — ¢lloo < 6} > e () H1/e, (2.14)

Before proving the preceding lemma, let us show that it implies the lower bound in
Schilder’s theorem. (Actually, Lemma 2.5 is equivalent to the lower bound in (2.9).)

PROOF OF THE LOWER BOUND IN THEOREM 2.2. Let G be an arbitrary open set in Cq.
If infg I = +o0, the lower bound in (2.9) is trivial. Thus we may assume that infg I < oo,
in which case we may choose a ¢ € G such that I(y) < co. In addition, we find a radius
ry > 0 such that the ball B(y,r,) of radius r,, centred in ¢, is contained in G. Now

lim i(r)lfslog P{z® € G} > lim i(r)lfslog P{z® € B(p,74)} = —I(v) (2.15)
e—> e—

follows directly from (2.14). All that remains to do is to take the infimum over all ¢ €
G. O
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The proof of Lemma 2.5 is standard. It makes use of the Cameron—Martin or Gir-
sanov formula which allows to change the drift term in an SDE by a suitable change of
measure. Here we only need a particularly simple version which states that for A € £, the
distribution of the stochastic process /I/I?t, given by

t
dW; = dW, — h(t)dt resp. Wy =W, — / h(s)ds, (2.16)
0

considered on the o-algebra F; = 0{W,: s < t}, generated by the Brownian motion W, up
to time ¢, has a density with respect to P which is given by the Radon—Nikodym derivative

S —ep{- [(wnawy - [Ibras)  emm e

ProoF oF LEMMA 2.5. Fix §,v, K > 0 and a function ¢ with I(p) < K. We want to
estimate

Pl el < A} =P{[W - || < S} =PUlw<o/ve), (219

with Wt = W; — ¢t/+/e. By the Cameron-Martin formula (2.17), we can rewrite the
probability as

. T, .
P{lle* - ¢lloo < 8} = e‘zl_sfoT”“’*””S/ e Ve do (P dWe) 4p. (2.19)
{(WeB(0,3/v2)}

Now we split the domain of integration into a “good” part and a “bad” one. As we want
a sufficiently precise lower estimate, the “bad” set is the one where the exponent becomes
unusually small. For the bad set we choose

1 T
Az::{——/ g, dW, <—:c} 2.20
i) ) (2.20)
with ¢ = (/4I(p)/e. In order to be able to neglect A,, we need an estimate on its

probability:
P{A,} = %P{‘%/()T(gbs,dWs) > :c} < 2€1m21[<3{ (/OT(gbs,dWs))z} (2.21)
P{A} < 5s | gl ds = 1) = 1 (2.22)

by Tshebychev’s inequality, and
2ex? ex?

follows by our choice of z. Now, on AS,
P{ll2° — lloo < 5} > 12" P{W € B(0,8/v/E) N AZ)
e 1W)/ee==[P{AS} — P{W € B(0,8/+/)}]. (2.23)

As P{AS} > 3/4, choosing € small enough assures that P{AS} — P{W € B(0,6//€)°} >
1/2, and by our choice of z,

A\

P2 — ¢lloo < 5} > e HlRIH/e (2.24)

follows for all € < €0(6,7, K, T). O
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Let us now turn to the upper bound in Schilder’s Theorem. The upper bound is
a direct consequence on the following upper bound on the probability that z° leaves a
neighbourhood of a level set

®(a) ={p€lo: I(p) < a} (2.25)

of the rate function I. Level sets are special neighbourhoods of the function vanishing
everywhere, so the event of z° leaving a neighbourhood of a level set represents the type
of events we are interested in.

Lemma 2.6. For all§ > 0, all ¥ > 0 and all ag > 0, there exists an g9 > 0 such that for
alle < eg and all a < ap,

P{dist(z°, ®(a)) > 8§} < e”l@/e, (2.26)

where dist(p, ®(a)) denotes the distance of a function ¢ from the level set ®(a), measured
with respect to the supremum norm.

Choosing F' = {¢: dist(¢, ®(a)) > 6} shows that the upper bound in Schilder’s The-
orem implies the preceding lemma. All what is needed is to pay some attention to the
statement’s uniformity in o. The inverse is also true (for good rate functions):

PROOF OF THE UPPER BOUND IN THEOREM 2.2. Choose an arbitrary closed set F'. With-
out loss of generality, we may assume that infg I > 0, so that we may choose a v > 0
such that a:=infp I —v > 0. As I is a good rate function, the level set ®(a) is compact
and, by our choice of ¢, its intersection ®(a) N F' with the closed set F' is empty. Thus
§ :=dist(®(a), F) > 0. Now Lemma 2.6 implies

P{z® ¢ F} < P{dist(z®, ®(a)) > §} < e~ [nfrI-2/e (2.27)
which completes the proof. O

Let us now prove Lemma 2.6 which estimates the probability that z° leaves a neigh-
bourhood of a level set. The main problem in the proof is the fact that I(z®) = +00. Thus
we need to approximate z° by smoother functions. We will choose random polygons. Note
that we might also choose random step functions, for instance.

ProOOF OF LEMMA 2.6. As already mentioned, we want to approximate z¢ by a random
polygon. For a given spacing A > 0 to be chosen later, we denote by z™° the polygon
with vertices

(0,0), (A, 279, (24, 225, ..., (T, ). (2.28)

For convenience, we assume that A has been chosen such that /A € N. When estimating
the probability that z° leaves a neighbourhood of a level set of the rate function, there are
two possibilities to be taken into account: either ™ is not a good approximation to z¢,
which we will show to be unlikely, or ™° is a good approximation and then z° leaving a
neighbourhood of a level set implies that ™ at least leaves the level set itself. Thus,

P{dist(z*, ®(a)) > 6} < P{||z° — 2™|co > 6} + P{I(z™) > a}. (2.29)
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Using the fact that the increments z¢ — z5°°, considered on different time intervals
[kA, (k+1)A), are identically distributed and combining a crude and a standard estimate,
we find the bound

T
Ple" - 27 > 8} ={ sup 5 o311 > 5} < TP sup o5 - o171 35
s \S\

N\

T T )
< P9 sup ||zi]| > 5} = — { sup |[|Wsl||l 2 —} 2.30
! {MAH || S W f (a0

< MTTG_JZ/szA (231)

>

on the quality of the approximation. Choosing A = §%/2day,

P{||z° — 2™||oo > 6} < < e [@07/e (2.32)

N | —

follows for all € < €o(T, 8,7, o).

Now we will also estimate the second term in (2.29) which gives the probability that
the approximation z™¢ leaves the level set. Using the fact that z™° is a polygon, we see
that

T/A T/A
I(a™) = 1 / /IA IVEWia — VEWq_1)all? ds— & z/: IWia — Wa_1)all® (2.33)
2 —~ Ju-1)a A2 2 P A B

The sum on the right-hand side equals in distribution the sum Y £2 over the squares of
dT /A independent one-dimensional standard-normal random variables &;, which can be
estimated by Tshebychev’s inequality, yielding

dT/A

2
P{I(CE"’E) > a} — P{ Z 512 > ?a} < e—2na/e (Eenff)dT/A — (1 B 2/4,)_dT/2A e—2na/e
=1

(2.34)

for any k < 1/2. We choose k = (1 — v/2a)/2. Then, for € small enough,

n,e 1 —[a—]/e

P{I(z™*) > a} < ¢ K (2.35)
follows, and the lemma is proved. O

In [12], a slightly different proof is chosen, namely, z° = /eW is approximated by
random step functions ¢ — z7 := /W, /.. Then the proof of Schilder’s Theorem reduces
to showing that the approximation is sufficiently good, i.e.,

limsupelog P{||z° — 2°||oc > 6} = —o00, (2.36)
e—0

to allow to extend Cramer’s Theorem which states a LDP for sums of independent iden-
tically distributed random variables.

A more abstract proof is presented in [13], which relies more heavily on properties of
Wiener measure and is based on the use of logarithmic moment-generating functions, the
Fenchel-Legendre transform of which are natural candidates for rate functions, see the
remarks on general concepts in the next section.
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2.3 Some general remarks on large deviation principles

In this section we summarize some aspects of large deviation theory in order to shed some
light on how the notions and results presented above are special cases of general concepts.
For details and proofs see [13], [12].

Let E be a separable metric space, equipped with a o-algebra £. We do not necessarily
assume that £ is the Borel o-algebra. On (E,€) we consider a family of probability

measures {ie }e>0-

Definition 2.7.
e A function I : E — [0, 00] is called rate function if it is lower semi-continuous.
o A rate function I is called good if its level sets {x € E: I(z) < a} are compact.

o The family {u.}e>o of probability measures is said to satisfy the (full) large deviation
principle with rate function I, if

—inf I < liminfelog e (T") < limsup e log e (I') < —inf I (2.37)
o =0 0 T

holds for allT € £, where I'° and T denote the interior and the closure of ', respec-
tively.

o The family {u.}eso of probability measures is said to satisfy a weak large deviation
principle with rate function I, if the upper bound in (2.37) holds for all (pre-)compact
sets I,

Remark 2.8.

e Rate functions being lower semi-continuous, their level sets are closed, while good
rate functions even enjoy compact level sets. As a consequence, for good rate func-
tions, the infimum over (non-empty) closed sets is achieved. For good rate functions,

inf I = lim inf J (2.38)
F SN0 F(9)

holds for all closed sets F, where F(%) denotes the §-neighbourhood of F.

e Recall from the previous section that in general, limes inferior and limes superior
in (2.37) do not coincide. If they do coincide for a set I', we call ' an I-continuity
set.

e The rate function is unique in the sense that for a given family of measures and a
given scale €, there exists at most one rate function.

e If £ = B(E) (Borel sets) and the family of measures {y}.>0 is exponentially tight,
then the validity of a weak LDP already implies that a (full) LDP with a good rate
function holds. (Recall that {g.}e>0 is called ezponentially tight if for any o < oo
there exists a compact set K, such that

limsupelog pe(KS) < —a, (2.39)

e—0

meaning that the complement of K, “is not seen” on a logarithmic scale.)
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Example 2.9. Let us give an example of a family of measures satisfying a weak LDP
but not satisfying a full LDP. Simply choose u, = 6, on B(R), that is, p, is the Dirac
measure concentrated in n € N. The {u, }, satisfies a weak LDP with scale ¢ = 1/n and
a good rate function /. Indeed, for a compact set F' and sufficiently large n, un(F) = 0,
so that for compact sets, the upper bound in (2.37) holds with I(z) = oo for all z. But
for I(z) = oo, the lower bound is trivial.

A full LDP cannot hold, as the choice F' = [1, c0) shows:

1
lim sup ;log pn([1,00)) =0 > —oco = — inf I. (2.40)

n—oo [1,00)

In the previous section, we have already seen that there are equivalent formulations
for the upper and the lower bound in (2.37), which are more convenient to establish.

Lemma 2.10.
e The upper bound in (2.37) is equivalent to the following statement:
Va<oo VI € £ withT C ®(a)°={z € E: I(z) < a}°,

limsupelog . (I') < —a. (2.41)

e—0

e The lower bound in (2.37) is equivalent to the following statement:

Vo with I(z) < oo VI' € € with z € T,

lim i(I)le log pe(T') > —I(z). (2.42)
e—>

Corollary 2.11. For any good rate function I, for all z, I(z) can be calculated using

I(z)=— (lsiir%)lirgl_}(r)lfslog pe(B(z,0)) = — }i{‘%lir?jélpelog pe(B(z,9)), (2.43)

where B(z,§) denotes the ball of radius § around z.

ProoF: Fix z. Then on the one hand, (2.42) shows that
lim inf ¢ log pe(B(z,6)) > —1(z) (2.44)
e—>
for all §. On the other hand, the usual large-deviation upper bound shows

limsupelogp.(B(z,8)) < — inf I < — inf I — —I(z) (2.45)
e—0 B(z,8) {z}(29)

as & — 0, where we used that good rate functions satisfy

I(z) =inf I = lim inf I. (2.46)
{=} N0 {x}(29)

O

Here a word of warning is due. The validity of (2.43) for all z does not imply a LDP.
A counterexample can be found in [15, p. 90], for example.

The preceding lemma shows a way to find the rate function, if the limits can be
calculated. Another approach which is known to be successful for a large class of problems
uses convex analysis:



SAMPLE-PATH LARGE DEVIATIONS 21

Definition 2.12. Let E be a separable Banach space.* For a probability measure u on E,
the logarithmic moment-generating function is the map

B3 A Au(\) = log/ ) 1(da) € (—o0,00), (2.47)
E

where E* is the topological dual of E and (X, z) denotes the duality relation.

Assume that
AN = lin%) e, (N/e) (2.48)
E—>

exists in [—o00, 00], for all A € E*. Then A is a convex function on E*, and its Fenchel-
Legendre transform

E >z A*(z) =sup {(},z) — A(N)} (2.49)
AeE*
is non-negative, lower semi-continuous and convex. For all compact F' C E, we have the
upper large-deviation bound

limsupelog pe(F) < —inf A*. (2.50)
e—0 F
(Recall that for an exponentially tight family of measures, (2.50) will hold for all closed F'.)
Thus, A* is a candidate for the rate function. But note that rate functions are not
necessarily convex. In that case, A* cannot be the rate function. But if a rate function is
good and convex, and some moment condition is satisfied, then the limit (2.48) defining
A exists, and A* is the rate function. For details, see for instance [13, Section 2.2].
Let us conclude this section with Varadhan’s Lemma.

Theorem 2.13 (Varadhan’s Lemma). Let E be a separable metric space and assume
that {u.}. satisfies a LDP with a good rate function I and that the function ¢ : E — R is
continuous. Assume further that the following tail condition holds

lim lim supelog/ e?@)/e y (dz) = —o0. (2.51)
Lo o0 {z: ¢()>L}
Then
lim € log / e?@)/e 4, (dz) = sup[p — I]. (2.52)
e—0 E

In particular, if the following moment condition holds for some a € (1, 00),

sup (/ ea¢(z)/5u5(dm)) < oo, (2.53)
0<eg1

then the tail condition (2.51) is satisfied.

Varadhan’s Lemma can be seen as an infinite-dimensional version of the Laplace
method. In order to see this, we assume for the moment that £ = R and that the

measures y, have densities du./dz ~ e 1(=)/¢ with respect to Lebesgue measure. Then
/ e2(@)/e y_(dz) ~ / 8@~ I(@))/e g ~ osuPa[@(z)-I(2)]/e (2.54)
R R

by the Laplace method, which is the statement of Varadhan’s Lemma.

*This condition can be relaxed, see [13, Section 2.2].
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2.4 The contraction principle

The contraction principle is a tool to obtain new LDP’s from an established one. There
is a trivial version, which we state first.

Lemma 2.14 (The contraction principle — trivial version). Let X,Y be regular
Hausdorff spaces, I : X — [0,00] a -/good rate function and f : X — Y a continuous
function. Define

I'(y) =inf{I(z): z € X withy = f(z)}. (2.55)
Then

e I' is a good rate function on Y.

e If I governs a LDP for {uc}eso, then I' governs a LDP for the induced measures
{ef}es0.

Remark 2.15.

e The contraction principle can in particular be applied for X and Y being the same
space but equipped with different topologies.

e If the rate function [ is not good, then upper and lower bound as stated in the LDP
for {p.f'}. still hold, but I’ can fail to be lower semi-continuous and thus fail to
be a rate function, as the example X =Y =R, I(z) = 0 and f(z) = e* shows. (The
level sets of I are obviously not compact, and I'(0) = 400 £ 0 = liminf,,_,o I'(1/n)
shows that I’ is not lower semi-continuous.)

The general version of the contraction principle allows to replace the continuous func-
tion f by an “almost continuous” function, namely by a function which can be approxi-
mated sufficiently good by continuous functions. We state the result without a proof as we
are not going to use its general form. Instead we will emulate the proof in the particular
situation needed in the subsequent section.

Theorem 2.16 (The contraction principle). Let X a regular Hausdorff space, I :
X — [0,00] a good rate function, and f : X — Y a measurable function from X into a
separable metric space (Y,d). Assume that f can be approzimated by continuous functions
fn: X =Y, satisfying

lim sup sup d(fu(z), f(2))=0  forall a < 0. (2.56)
n—o0 {zeX: I(zx)La}

Then
I'(y) =inf{I(z): z € X withy = f(z)} (2.57)

is a good rate function.
If I governs a LDP for {uc}e>0 and

lim limsupelogu.{z € X: d(fn(z), f(z)) 2 6} = —00 for all § >0, (2.58)

n—oo 0

then I' governs a LDP for the induced measures {u.f 1 }eso.
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2.5 Sample-path large deviations for strong solutions of stochastic
differential equations: Wentzell-Freidlin theory

Let us return to our original problem. We are interested in the behaviour of the strong
solution z° of a SDE

dzi = b(z]) dt + veo(zf) dW,, T =z, (2.59)

in R¢ where we assume that b and o satisfy the usual Lipschitz and bounded-growth
conditions, so that a unique strong solution exists, cf. Theorem 1.11.

We first consider the special case o(z) = Id, which is much simpler than the case of a
general o as the trivial version of the contraction principle can be used to obtain a LDP
for z° from Schilder’s Theorem as follows.

Define F' : Co — C by g — F(g) = f, where f is the unique solution in C of the integral
equation

sy =ot [ ) s+ () (2.60)
Note that F(\/eW) = z°.

The Lipschitz continuity of b implies via Gronwall’s lemma that F' is continuous. In-
deed, for g1, g2 € Co,

t
1F(g1) — F(g2)ll[o,5 < Lb/ 1F(g1) — F(g2)llo,s1ds + llg1 — 92llpo,;y  for all ¢ € [0, T,
0

(2.61)
which yields by Gronwall’s lemma

|1F(91) — F(g2)llom < el Tgy — g2ll[o,1)- (2.62)

Thus the continuity of F is proved and we can apply the contraction principle.
By Schilder’s theorem, {4/eW }.50 satisfies a LDP with the good rate function

%HQDH%IU 1f‘PEH1:
400, otherwise,

I®M(p) = Iigiole) = { (2.63)

and the contraction principle implies that z° = F(1/eW) satisfies a LDP with the good
rate function

I(f) = Tomo(£) = inf{I5.17,0(9): g € Co with f = F(g)}. (2.64)

It remains to identify I. First note that if ¢ ¢ Hy, then f = F(g) ¢ H;. Assume
now that there exists at least one g € H; such that f = F(g). Then f is almost surely
differentiable, )

Je=0(f2) + g, (2.65)

and f € H; follows. Solving (2.65) for g,

1T
5 [ N—br)Pds, i £ e
I(f) = 0 (2.66)

400, otherwise,

follows.
Let us now return to the case of a general diffusion coefficient 0. We are going to prove
the following result.
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Theorem 2.17. Assume that b and o are Lipschitz continuous and that there ezists a
constant M > 0 such that ||b(z)|| < M and 4 1d < o(z)o(z)T < M 1d hold for all z, the
latter in the sense that all eigenvalues of the symmetric matrices

a(z) =o(z)o(z)T (2.67)

lie in the interval [1/M, M].
Then {P(z°)"'}c50 satisfies a LDP with the good rate function

T .
5 [ la(r) 2~ b ds, i £ - e By
I(f) = Ipm(f) = 0 (2.68)
+o0

, otherwise.

Remark 2.18.

e While we will only prove the result stated above, the conditions on drift and diffu-
sion coefficient can be relaxed. The boundedness assumptions can be replaced by

|6(z)|| < M(1+ ||z]|?)'/2 and 0 < a(z) < M(1+||z||>)Id for all z. Then the LDP as
stated above still holds, and the rate function I is good.

e Even if we drop the lower bound on the eigenvalues of a(z) and only require a(z) <
M(1+ ||z||?)Id, the LDP remains valid with a good rate function. But note that in
this case the identification of the rate function may fail, and we only know that

t t
I(f) = inf{IBM(g): g € Hy with f, = m+/0 b(f,) ds—|—/0 a(f,)2g,ds, t ¢ [o,T]}.

(2.69)

PrOOF OF THEOREM 2.17. As we cannot apply the trivial version of the contraction
principle directly, we first approximate z° by Euler approximations

t t
;" =+ / b(zg™) ds + \/E/ U(m;"’:(s)) dws, (2.70)
0 0
where
T(s) = @ (2.71)

obtained by “freezing” the diffusion coeflicient locally. By doing so, we may proceed as
before and define continuous functions F,, : Co — C, by setting F,(g) = f where f is the
unique solution of the integral equation

[nt]

fO =2+ [ W) ds+ Y alhymlolk/nat) — g((k-D/m).  (272)
0 k=1

We haven chosen F, in such a way that F,(y/eW) = z5™. By Schilder’s Theorem and
the contraction principle, we know that P{z®"}.5o satisfies a LDP with the good rate
function

(2.73)

otherwise.

T .
3 [ el o) 21— b ds, it £ o € Hy,
I"(f) =4 %Yo
+o0,

Now we have to show that I™ indeed converges towards I, uniformly in the sense that
for any set I', infr I™ converges towards the corresponding infimum for 1.
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Lemma 2.19.
lim inf I™ = irllf I VL. (2.74)

n—oo

Next, we need to show that z™°¢ is a sufficiently good approximation to z?, so that the
difference between the two processes becomes negligible on the large-deviations scale as
n — 00.

Lemma 2.20.

limsupelog P{||z°" — 2°||cc > 6} — —00 as n — oo. (2.75)
e—0
As soon as these results are established, the upper and the lower bound in the LDP
can be shown by easy arguments.

Upper bound:

Let F' be an arbitrary closed set in Cq. Then z® € F implies that either the Euler
approximation z®™ is at least in the closed d-neighbourhood of F or that the distance
between path and its Euler approximation is larger than 4:

P{z® € F} < P{z*" < FO)} + P{||z° - 2°"||c > 8}  Vn € N V6> 0. (2.76)
By the LDP for the Euler approximations and the preceeding lemmas we find that

limsupelogP{z® € F}

e—0

< lim lim supelog(2 ma,x{]P’{:cE’" < m},]f”{”:f — %" > 5}})

n—® 240

< max{— inf T, —oo} = —inf [ (2.77)
F(9) ()

for all 4 > 0. Finally, taking the limit N\, 0 completes the proof.

Lower bound:

To establish the lower bound, we take an arbitrary open subset of Cy and choose an
arbitrary element z € G as well as a § > 0 such that the open ball B(z,26) is contained

in G. Then, as before, we split the event we are interested in according to whether the
Euler approximation is close to % or not. Thus we find that

P{s"" € B(s,0)} < P{a* € G} + P{|a* — 2*"|w > 6}  VmeEN.  (278)

Again employing the LDP for the Euler approximations and the two preceeding lemmas,
we obtain

—I(z) < — inf I < lim liminfelogP{z®™ € B(z,4)}

B(z,5)  n—oo €0

< ma,x{lim inf e log P{z® € G}, lim limsupelogP{||z® — z°"||c > 5}}
e—0 n—ooo . 40

= lim i(r)lfslog P{z° € G}. (2.79)
e—>
As z € G was chosen arbitrarily, the lower bound follows. O

We omit the proof of Lemma 2.19, as it is not difficult and only sketch the proof of
Lemma 2.20.
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Proor oF LEMMA 2.20. For simplicity, we assume that £ = 0 and 7 = 1. We want to
show that the deviation

Y=y — T (2.80)
is typically small in the sense that for any § > 0,

lim limsupelog P{||z®" — z°||oc > 8} = —o0. (2.81)
e—0

n—oo
We fix § > 0, choose an arbitrary p > 0 and introduce the stopping times
7" =inf{t > 0: ||z;" — :c;l:(t)|| > o} A1, (2.82)
¢ =inf{t > 0: ||y;™]| > S} AT (2.83)

We want to show that (¥ = 1 with high probability, and consider 7™ as an auxiliary
stopping time, in order to deal with the unlikely event that z®™ changes by more than p
on a short time interval. We estimate the probability we are interested in by splitting the
event as follows:

P{|ly*™|oo > 6} < P{r°" < 1} + P{||t*"||c0 > 6, 7™ > 1}. (2.84)

The first term on the right-hand side can be estimated using standard estimates. First a
crude estimate shows that

n—1
P{r*" < 1} IP’{ sup 25" — 257 || > Q}
g k/ngt<(k+1)/n t Tn(t)

<nP{ sup Wil > (e~ M/n)/vEM}, (2.85)
0<t<1/n

where we denote by M the bound on ||b(z)|| and ||o(z)||. Now, a standard estimate shows
that
2 2
P{r®"™ < 1} < 2nd e"™(e~M/n)"/2deM" (2.86)

and
lim limsupelogP{7*" < 1} = -0 (2.87)

n—oo 0
follows for any ¢ > 0.
The estimation of the second term is more involved and we will only sketch it. First
note that

2 em 124 1/e
e,n e,n e+ ||y(5’n||
P{ly™™ oo > & 75" > 1} < E{l{nyf:nnm»}( % 1 62 ) }

<) B{@ 4 1gmi) es

Defining f(y) =(0® + ||y||*)'/¢ and u(t) = E{f(Yingem)}, We need to estimate u(1l). u(t)
can be estimated using Itd’s formula for f(y;"") and then taking expectations. Finally

applying Gronwall’s lemma,
’U,(t) < 92/5 econst(d)t/e (289)

follows for all ¢ < 1. Thus,

e,n e,n 1 1/5 1 1/5 [ cons [
P{|ly*"|o0 > &, 7™ > 1} < (m) u(1) < (m) 92/ econst(d)/ , (2.90)
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yielding

lim supsup limsup e log P{||y*"||oc > 6, 75" > 1}
e—0 n2l &0

which completes the proof.

—00,
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3 Diffusion exit from a domain

3.1 Introduction

In this section we want to study the noise-induced exit from a neighbourhood of an equi-
librium point of the corresponding deterministic system. We study mean exit times, the
asymptotic behaviour of exit times as well as exit locations. Our presentation follows [12].

We continue to assume the usual conditions which assure the existence and uniqueness
of a strong solution of the SDE

dzi = b(z]) dt + veo(zf) dW,, Ty = T, (3.1)

in R? on the time interval [0, 7], i.e., we assume that b and ¢ are Lipschitz continuous
and grow at most linearly for large ||z||. We denote by P,(z°)~! the distribution of the
sample path z°, solving (3.1) with initial condition z.

Throughout the whole section, we assume that D is a bounded (open) domain.

Let us recall that the information on first-exit times and exit locations can in principle
be obtained exactly in form of solutions to partial differential equations (PDEs) involving
the generator of the diffusion process z®:

Theorem 3.1. Assume that 8D is smooth and that a(z) = o(z)o(z)T > (1/M)1d in
the sense that the smallest eigenvalue of a(z) is uniformly bounded away from zero as z
varies. Denote by L®,

d
Lou(t, ) = % > aii(a) 5 amjv(t,:c) + (b(z), Vo(t, z)), (3.2)

the infinitesimal generator of the diffusion z¢. Finally, fix an initial condition x € D and
let
7¢:=inf{t > 0: z{ ¢ D} (3.3)

denote the first-exit time from D. Then the following assertions hold.

o P {7° < t} is the unique solution of the PDE

avgjt’ 2) = L% forze D, t>0, (3.4)
’U(O;m): I} fO’f‘CEED,
v(t,z) =1 forzedD, t>0.

o E, {r°} is the unique solution of the PDE
Lfu= -1 in D, (3.5)
©u=20 on 0D.

e For a continuous function f on the boundary of D, E,{f(z5:} is the unique solution

of the PDE

Lfw =0 in D, (3.6)
w=f on 0D.
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Remark 3.2.

e Note that the boundary conditions can easily be understood. For instance, © = 0 on
0D just tells us that the mean exit time from D, when starting on the boundary, is
zero, 1. e., the process exits immediately.

e The assumption of 8D being smooth can be relaxed. Some regularity of 8D is
needed, such as the “exterior-ball condition”, which states that for any point y € 8D
there exists a ball B C D¢ such that the closure of D and the closure of the ball
intersect and only intersect in y. This excludes that y is such that the diffusion
starting in y on the boundary of D does not exit from D immediately.

e The assumption on a(z) guarantees that the infinitesimal generator £¢ of the diffu-
sion process is uniformly elliptic.

Let us consider a simple one-dimensional example.

Example 3.3. Let d = 1 and assume 5(0) = 0, b(z) < 0 for z > 0, b(z) > 0 forz < 0
and o(z) = 1. Thus we are considering the overdamped motion of a Brownian particle in
the one-dimensional potential U(z) :=— foz b(y) dy, which has exactly one potential well,
containing 0, and no saddles. The drift will always push the particle in the direction of
the bottom of the well. Let D = (a1, as) 3 0. We want to calculate the probability that
z° leaves D, say at a;. Thus we solve the (one-dimensional) Dirichlet problem

Lfw=0 in D, (3.7)
w=f on 0D,
with
1, forz = ay,
f(z) = : (38)
0, forz = as.
The solution is given by
s — ol ey oW dy
w(z) =Po{zle =} = Ko f(27e) = W- (3.9)
Thus, for z € D,
lim Py{zf. = on} =1, if U(az) < U(aa),
°0 ' (3.10)
hné]f”z{:cf_s =oy} =0, if U(az) < U(e),
e—>
and an application of Laplace’s method also shows
1
lim Po{zfe = 0y} = — 12 ()] if U(oy) = Ulaw). (3.11)

e—0

1 H
Ta] T [07as)]

Thus, in principle, the above equations provide all the information. In practise, in
the multidimensional case, the corresponding PDEs cannot always be solved and even
a computational approach is not necessarily feasible. Here the LDP from the previous
section comes into play as it will provide us at least with the asymptotic behaviour of
first-exit times and exit locations, although the results will be less precise than those in
the preceding example.
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3.2 Quasipotentials

Recall that the family {P(z°)~'}.50 satisfies a LDP, the rate function of which we denote
by I = Ijp7y,- Recall from the previous section that if a(z) = o(z)o(z)T is positive
definite, then

(3.12)

T .
5 [ el 2L~ w(Pds, it £ - o€ B,
1) = LomalH) = § 2%
+o0

, otherwise.

As a corollary to the LDP for {P,(z°)"1}.50, we obtain a first result on the diffusion exit
from a domain.

Corollary 3.4. Assume that the smallest eigenvalue of a(z) is uniformly bounded away
from zero. Choose an initial condition z € D. Then the first-exit time

7¢:=inf{t > 0: z{ ¢ D} (3.13)
of ¢ from D satisfies
li_r)r})slogIPz{TE <t} =—inf{V(z,y;s): s € [0,t],y ¢ D}, (3.14)
where
V(z,y;s) =inf{Io,q0(¢): ¢ € C([0,5],R), 0o = 2,05 = y} (3.15)

denotes the cost of forcing a path to connect z and y in time s.
Remark 3.5.

e The statement of the corollary includes in particular the existence of the limit ¢ — 0.
We skip its proof.

e Observe that the calculation of the asymptotical behaviour thus reduces to a vari-
ational problem. V(z,y;s) can be obtained as the solution of a Hamilton-Jacobi
equation and the extremals from an Euler equation.

Already the preceding corollary shows the importance of
V(CE, Y; t) = inf{I[O,t],z(‘p): pc C([O: t]:Rd): Yo=T,Pr= y}

1 t
= inf{i/ llus||®ds : u € £5([0,], R?) such that (3.16)
0

%:m+/ b(sos)ds+/ o(ps)usds, s €0,¢], and ‘Ptzy}-
0 0

We define
V(e,y) =inf V(z,y;1), (3.17)

denoting the cost of forcing a path starting in z to reach y eventually. In the case of
the deterministic dynamics possessing a unique stable equilibrium point at the origin,
y — V(0,y) is called quasipotential. If D contains this equilibrium point, the initial
condition becomes increasingly unimportant as € — 0, as sample paths will generally visit
a neighbourhood of the origin before attempting to exit from D. Thus the quasipotential
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which measures asymptotically the difficulty or cost of leaving D does not depend on the
initial condition.

The following lemma relates the quasipotential to the potential in the case the drift
coefficient actually derives from a potential.

Lemma 3.6. Assume ¢ = Id and that there exist a continuously differentiable potential
U on D and a transversal term [ satisfying the following conditions

U(0) =0,

U(z) >0 for allz #0,

VU(z)#0 for allz #0, (3.18)
U(2), VU(2)) = 0,

(
b(z) = —VU(z) + l(z).

Then the quasipotential V(0,y) satisfies V(0,y) = 2U(y) for all y € D such that U(y) <
Up :=min,esp U(2).

If U 1is twice continuously differentiable and [ is continuously differentiable, then the
rate function I has a unique extremal ¢ on the set

{eec((~00, T, RY: lim ¢, =0,07 =2}; (3.19)

this extremal is the solution of the ODE
.s =4V ] l s - )
{(p +VU (ps) + U(ps) s € (—o0,T] (3.20)

pr =1.
Remark 3.7.

e Note that the relation “the quasipotential is twice the potential” holds only for y such
that U(y) < Uy, where Uy is the lowest value U takes on along the boundary of D.
The reason becomes clear if we again think of the quasipotential as representing
the “cost of forcing the process” to reach a certain point on the boundary. As the
process will leave D where it is most easy, the process will not feel regions where
U(y) is larger than Uy but simply exit near a point z € 8D with U(z) = Up. Thus
the quasipotential does not know about the potential U in regions where U(y) > U,.

e If [(y) =0, (3.20) reflects that “the best way” for the process to reach some point y
is to “climb directly towards the exit point” in the sense that it is cheapest in terms
of the rate function to go from 0 to y along the path the deterministic motion would
take from y to 0. If the transversal term {(y) # 0, then the direction of the resulting
cycling is retained.

Proor oF LEMMA 3.6. For the sake of simplicity in the presentation, let us assume that
I(y) = 0. (The necessary changes in order to incorporate general [ are obvious, we only
need to take into account that [ is vertical to VU.)

Fix an arbitrary z € D such that U(z) < Up. If a path ¢, does not leave D during a
time interval [T7, T3], then the mean-value theorem shows

Ty
Ulyn) - Uler) = [ (VU(pd), pu)d. (3.21)
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Thus

1 [T
Tirrol@) = 5 [ 160+ VU(p) P ds
1

1 (% 2 gt ,
=5 [l - vU@aPds+2 [ (vue), g ds
T1 Tl

> [U(er,) — Ulern))]- (3.22)

Choosing a ¢ such that ¢ remains in D during the time interval [Ty, Ts] and satisfies
o1, =0 as well as 1, = z, shows that

I, 1y),0() 2 2U(z). (3.23)

Now, if ¢ does leave D during [T}, T5], then there exists a T € [Ty, T3] such that Ulps) =
Uy and

Itz 130,0(9) 2 Iy, 770(9) 2 2U(95) = 2Uo > 2U(z) (3.24)

establishes the lower bound for general .

In order for equality to hold in (3.22), we need ¢ to satisfy ||¢, — VU(y,)|| = 0 for
all s. Note that VU(0) = 0 excludes the possibility of a solution to (3.20) going from 0
to z in finite time, but all solutions to (3.20) satisfy lim,, o @s = 0. Therefore, for such
a p, we obtain

T
Heoomol) =2 [ (VU(p), 0 ds =20U(0) ~UO)] = 20(0).  (325)

— o0

Here we used that we have already seen that an optimal path cannot leave D before
reaching z. By the definition of the quasipotential, V' (0, z) = U(z) follows.

For twice continuously differentiable U, the solution to (3.20) is unique and thus the
uniqueness of the extremal follows. O
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3.3 Diffusion exit: Classical results

Let us know turn to the main result of this section. We start be stating our assumptions
in addition to those guaranteeing existence and uniqueness of a strong solution to the
SDE (3.1). Our presentation follows [12].

Let D be a bounded domain with a smooth boundary 8D, and assume that the fol-
lowing assumptions hold.

Assumption 3.8. The deterministic dynamical system #; = b(z;) has a unique stable
equilibrium point z* = 0 in D, and if g € D, then z; € D for all ¢t > 0 and lim;_,o z; =
z* = 0.

Assumption 3.9. If zq € 8D, then lim;_,, z; — z* = 0.

Assumption 3.10.
V:=inf V(0 . 3.26
Jnf V(0,2) < oo (3.26)
Assumption 3.11. There exist a constant K > 0 and a maximal radius go > 0 such that
for all o < go and all zg, y satisfying ||zo — 2|| + ||z — y|| < o for some 2 € DU {z*}, there
exist a “control” u € Ls, ||u|leo < K, and a time T'(p) such that the path ¢, defined by

¢ ¢
¢y = zo + / b(¢ps)ds + / o(¢s)usds, (3.27)
0 0

satisfies ¢7(,) = y, where T'(0) — 0 as ¢ — 0. (Note that zo and y are not assumed to lie
in D.)

Let us comment on these assumptions.
Remark 3.12.

e Assumptions 3.8 and 3.9 are assumptions on the deterministic dynamics only and
state that D is positively invariant and that z* is asymptotically stable: When
the deterministic process starts in D or on its boundary, then the process cannot
leave D and will approach the stable equilibrium point z*. Note that we are only
interested in the situation described in Assumption 3.8, because if the deterministic
dynamics leaves D in finite time, then we already know that the random process,
which stays close to its deterministic counterpart on time scales of order 1, will with
overwhelming probability also leave D within a time of order 1. Thus we study the
case of the deterministic dynamics not leaving D. Naturally noise will nevertheless
cause the random process to leave D occasionally. Let us remark that exit time and
location will not be determined by the deterministic dynamics.

e Assumption 3.9 excludes a characteristic boundary®, i.e., the boundary between
different domains of attraction for the deterministic dynamics is excluded from D.
This means, for example, if the drift coefficient derives from a potential, then D
cannot contain a saddle between potential wells, so that the results we are going to
prove below can a priori not be used to study transitions between wells. Fortunately,
this assumption can be relaxed, at the price of much more involved proofs.

88D is called characteristic, if (b(z),n(z)) = 0 for all z € 8D, where n denotes the outer normal vector

to 8D.
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e Assumption 3.10 assures that the random process has a chance to reach the boundary
on the scale we are considering. Were V = oo, all possible exit points would be
equally unlikely.

e Finally, Assumption 3.11 is a controllability condition and states that there exists
a bounded control such that the controlled process connects the initial condition zq
and y within time T'(p). In particular, we require that the closer zg and y are either
to the boundary of D or to the equilibrium point z* and to each other, the less time
the controlled process needs to connect the two points.

While Assumption 3.10 assures that the boundary of D is accessible on the large-
deviation scale, Assumption 3.11 guarantees that moving away from z* or crossing
the boundary it is not “too expensive” in terms of the quasipotential. This as
expressed in Lemma 3.13 below.

It is not difficult to show that Assumption 3.11 is trivially satisfied if a(z) =

o(z)o(z)T is positive definite for z = z* = 0 and uniformly positive definite for
€ 0D.

We will use the following consequence of Assumption 3.11, which can be considered as
a continuity property for the quasipotential near z* = 0 and near the boundary of D.

Lemma 3.13. For all § > 0 there exists a o > 0 such that

sup inf V(z,y;t)<$ (3.28)
z,y€B(0,0) te[0,1]

and

sup inf V(z,y;t) <. (3.29)
|e—2||+]|z—yl)<e €]

z,y:inf,cop(

The main result of this section is the following.

Theorem 3.14. Suppose that Assumptions 3.8 to 3.11 are satisfied. Then the following
assertions hold true.
First-exit time: For all initial conditions z € D and all § > 0,

lim Py{e(V-0)/° < 7¢ < e(VH)/e} — 1 (3.30)

e—0

and
limelogE, {r°} = V. (3.31)
e—0

First-exit location: For any closed subset N C 8D satisfying inf,en V(0,2) > V, and
all initial conditions ¢ € D,

;ig%m{m; €N} =0. (3.32)

If V(0,-) has a unique minimum z* on 0D, then for all initial conditions ¢ € D and all
d>0,

lg%m{ms -z <6} =1 (3.33)
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Remark 3.15.

e The theorem shows that the asymptotic behaviour of the mean exit time is the one
predicted by physicists in the case of a drift coefficient deriving from a potential U.
Namely, Arrhenius’ law [1] states that the logarithm of the mean exit time behaves
like twice the hight to be surmounted divided by the noise intensity, that is 2Uy/e,
where Uy = min,esp U(z). In the light of Lemma 3.6, this is precisely (3.31). In
addition, we find that not only the mean of the first-exit time asymptotically equals
eV/¢, but that the first-exit time is actually concentrated around its mean as made
precise by (3.30).

e The results on the exit location show what we expected. The diffusion process
favours an exit near boundary points where V(0,-) is minimal. More precisely,
only neighbourhoods of points where V(0,-) attains its minimum play a role. In
the limit € — 0 of vanishing noise intensity, these neighbourhoods can be chosen
arbitrarily small. If V(0,-) has multiple minima on 8D as in Example 3.3, the
weights in (3.33) corresponding to the different minima cannot be obtained by large-
deviation techniques.

e As already mentioned, Assumption 3.9 can be relaxed and 0D being a characteristic
boundary can be allowed for, see [11].

The proof of the theorem relies on a series of lemmas which we are going to state now.
Let us remark once and for all that we will always assume that the radii of balls are chosen
small enough for the balls to be contained in D.

Lemma 3.16 (Lower bound on the probability of an exit when starting near
z*).

Vn > 0 3go Vo € (0, 00) ITo liminfelog inf P.{r° < To} > —(V+n).
e—0 EEB(O,Q)
(3.34)
We introduce another stopping time
oo :=inf{t > 0: z; € B(0,p)U 8D}, (3.35)

which describes the first hitting of either the boundary of D or of a small neighbourhood
of z*.

Lemma 3.17 (z° cannot remain in D arbitrarily long without approaching z*).

Vo> 0 lim limsup e log sup Py{o, >t} = —c0. (3.36)
zeD

t—o0 0

Lemma 3.18 (Probability of leaving D before hitting a neighbourhood of z*).
For any closed N C 8D,

lim limsupelog sup P,{zi € N} < — inf V(0,2), 3.37
dm limsupelog sup %o, € N} < — inf V(0,2) (3.37)

where S(0,2p) denotes the sphere of radius 2p, centred in * = 0.
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Lemma 3.19 (Probability of returning to a neighbourhood of z* before leaving

D).

Vo>0Vz e D lin%)IP’z{:cf,Q € B(0,0)} = 1. (3.38)
e—>

Lemma 3.20 (Bound on the distance covered by z° during short time).

Vo>0Ve>03T =T(c,p) < o0 lim sup € log sup IE”E{ sup ||z; — z|| > g} < —c.
e—0 zeD te[0,7T]
(3.39)

The basic idea of the proof of Theorem 3.14 is the following: If our initial condition
is close to z*, Lemma 3.16 provides a lower bound on the probability that z¢ leaves D
within finite time, and we use Lemma 3.17 to estimate the time needed for excursions
away from z*. We will iterate this argument below, thereby obtaining a lower bound on
the first-exit time. The proof of the corresponding upper bound is slightly more involved,
as we will need to keep track of return times to the sphere S(0,2p) and to the ball B(0, p).
The results on the exit location can be obtained by similar arguments.

ProoF oF THEOREM 3.14. We will only prove the results on the first-exit time 7°. Fix
an initial condition z € D and an arbitrary § > 0. Without loss of generality, we may
assume that V' > 0.

Lower bound:
Let 7= 6/8 and choose an ¢ > 0. If z € B(0, ), Lemma 3.16 guarantees the existence of
a time To = To(7, 0) and an €9 > 0 such that

Po{7° < To} > e~ (Vi2n)/e (3.40)
for all € < €9, uniformly in z. By Lemma 3.17, we find a T} = T1(7, ¢) satisfying
P{o, > T1} < e ™°, (3.41)

for all € £ €9, and holding uniformly in z € D.
We set T':=Ty + T1. Then, for ¢ < €g, z° has probability

= inf P{r* < T} > inf P {0, < T inf P {r° < Tp} > e~ (VHin)/e 3.42
¢:= inf Po{r } > inf Poiog 1}z€g1(0,9) {T"<To} > e (3.42)

of having left D before time T'.
Iterating with the help of the strong Markov property shows

sup P.{r° > kT} < (1 — ¢)¥, (3.43)
zeD
which in turn yields
oo T _
sup B {T°} <sup T ¥ Po{r® > kT} < = < TelVH¥/2)/e (3.44)
z€D zeD k=0 q

by (3.42). This shows the upper bound on the mean first-exit time. By Tchebychev’s
inequality, we obtain in addition that

sup PE{TE > e(v+5)/5} < e~ (VHd)/e sup E, {7} = Te_‘s/ze, (3.45)
z€D zeD
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which proves the first part of (3.30).

Upper bound:
As already mentioned, the proof of the upper bound requires a little bit more care. We
start be introducing a sequence of alternating stopping times.

00 :0
Tm =inf{t > 0,,: z; € B(0,0) U 8D}, (3.46)
Omt1 :=inf{t > 7, : z{ € S(0,20)},

for all m > 0, where we set 8, = oo if 7,,, = 7%, i.e., if ° has left D. These stopping
times keep track of the time when z° first reaches either the neighbourhood B(0, ) of z*
or the boundary of D, and as long as z® does not leave D, alternating visits to the sphere
§5(0,2p) and to B(0, p) are recorded, so that we can use these stopping times to measure
the excursions away from z*.

In order to obtain an upper bound for P, {7¢ < kT,}, we first choose a suitable T5.
By Lemma 3.20, we can choose T3 so that the probability that time 7% is sufficient to go
from the sphere of radius g to the sphere of radius 29 is small. Namely, we bound the
probability of going from the smaller to the larger sphere by the probability of covering
distance p anywhere, and require T5 to be chosen such that

sup Pp{bm — Tm—1 < To} < sup P, { sup ||z° — z||oo > Q} Le” (V—8/2)/e (3.47)
zeD zeD te[0,T5]
is satisfied for all sufficiently small ¢.

Assume 7° < kT,. Then, if z° leaves D, there must be an index m such that 7° = 7,,.
We want an estimate for 7,,,. The value of 7, will naturally depend on the length of the
previous excursions. If all excursions between subsequent visits to B(0, ¢) have been at
least of length 75, then there cannot have been many, so that m < k& must hold. Thus we

find that
PAm* < EkTo} K P{Im < k: 78 =1} + Po{3Im < k: 0y — Tr1 < T2} (3.48)
By the definition of T5, the second term satisfies
Po{Im < k: O — Tt < To} < ke~ (V-3/2)/¢, (3.49)

so that we are left with bounding the first one. For m > 1, we can restart upon hitting the
sphere of radius 2p and check whether we reach 8D before B(0, p), while the case m =0
can be dealt with by Lemma 3.19:

k

PAdm < k: 78 =7} S P{r® =70} + Z sup Py{z7, € dD}. (3.50)
m= 1’.‘!68(0 29)

By Lemma 3.18, applied for N = dD, fixing a small enough g and choosing ¢ also small
enough, allows to estimate

sup Py{z. € 0D} < e~ (V=4/2)/e (3.51)
¥€S(0,20) ¢

Finally, Lemma 3.19 shows that for small enough ¢,

Po{r® =10} =P.{z;, ¢ B(0,0)} - 0 as € — 0. (3.52)
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Choosing k = [e(V=9)/¢ /T,] + 1 shows

: € V-8§)/e1 _

lim Po{7* < eV=9)/el — o, (3.53)
cf. (3.30). It would remain to establish also the other bound on the mean first-exit time,
via Tchebychev’s inequality, but in order to do so, we would first need to obtain the rate
of convergence in (3.52), and we will skip that part of the proof here as we will skip the
proof of the results on the exit location. The latter are obtained by splitting the event of
interest according to 7¢ 2 7,,,, m € N. O

We will not give the complete proofs of all five lemmas. After proving Lemma 3.16 we
will only comment on the proofs of the other four lemmas.

Proor oF LEMMA 3.16. Fix 7,0 > 0 and recall that we want to find a Tp such that we
have at least a certain probability that z° leaves D up to time Tp. We want this estimate
to be uniform in z from a neighbourhood of z*:

lim inf ¢ log zegl(% ,Q)PE{TE <To} > —(V +1). (3.54)

The basic idea is to construct a deterministic exiting path ¢* with I(¢*) < (2/3)n,
leading from z first to z*, then further on to the boundary of D, and finally we extend
this path to a prescribed length.

e First note that by Assumption 3.11 (Lemma 3.13), for small enough g we can find a
continuous path %%, leading from z to z* = 0 in time ¢, < 1, satisfying

Tio,t,],2(%%) < n/3. (3.55)
(Note that for 0 = Id, we can simply choose ¥*(s) = ¢ — sz/||z|| and t; = ||z||.)

e Next, by the definition of V and the general assumption of V being finite, we know
that there exists a continuous path ¢, leading from 0 to some z € 8D (of course
independent of ), with

Ttg tottalo(¥) <V +1/3. (3.56)

e Again using Assumption 3.11, we can can choose a point y ¢ D at a distance, say
o, from z € @D and find a corresponding continuous path ¢*, leading from z to y in
time ¢, < 1, with

Tltatto tottotta],2(¥7) < 1/3. (3.57)

e Finally, we denote by ¢¥ the path starting in y and following the deterministic
dynamics ¢§ = b(¢¥) during the time interval [t; + to + ¢.,t0 + 2]. Note that

Tt tto+t, 042,y (¥7) = 0 (3.58)

and that this path may return to D (and will do so, unless the time interval during
which it is defined is very short).

e Now we concatenate these paths, obtaining a continuous path ¢® : [0,t,+ 2] = R ¢,
leading from z to some unspecified point, but leaving D and satisfying

To,to+2),2(¢%) <V + 1. (3.59)



DIFFUSION EXIT FROM A DOMAIN 43

It remains to compare z¢ to the so constructed exit path. To do so, we define a set of
functions
U= | {#eC:|v-¢llo <o/2}, (3.60)

z€B(0,0)

which consists of a g/2-neighbourhood of the union of all exit paths. Note that these exit
paths all agree once they have reached z* = 0. Any path in ¥ must leave D, as all exit
paths reach y which has distance p from D, so that any paths in ¥ has at least distance
0/2 from D at some point. We use this observation to estimate the probability that z°
leaves D before time Ty:=ty + 2: If z° € V¥, then we also know that 7 < T;. Thus we
can obtain the desired lower bound from the LDP® for z°:

liminfelog inf P,{r° < To} > lim i(r)lfslog inf P, {zf € ¥}
£—>

e—0 xz€B(0,0) L
Z> — su inf I .
zEB(g,g)¢eq: [0,To),2(¥)
2 - Sup I[OyTO]ﬁE(Il)[}z) 2 —(V_I_,r’) (361)
z€B(0,0)
Thus the proof of the lemma is complete. O

Let us briefly mention the key ingredients to the proofs of the other lemmas. The
proof of Lemmas 3.17 and 3.18 also rely on the LDP for z°, while Lemma 3.19 is based
on comparison with a deterministic path and Gronwall’s lemma. Finally, Lemma 3.20 can
be shown with the help of standard martingale arguments.

8Note that we use uniformity of the LDP in the initial condition—which we have not proved in the
previous section. We refer to the literature.
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3.4 Refined results

The classical results presented in Theorem 3.14 provide a rigorous version of Arrhenius’
law in physics, extended to drift coeflicients not necessarily deriving from a potential and
allowing for a rather general class of diffusion coeflicients. Since the work of Eyring and
Kramers [14, 20], also the prefactor in the asymptotic behaviour of the mean exit time
is known in the case of the drift coefficient deriving from a potential. A rigorous proof
in the multi-dimensional case was apparently not known until the recent work by Bovier,
Eckhoff, Gayrard and Klein [9, 10]. Their proof relies heavily on potential theory and the
notion of capacities. Here, we will only summarize the main results.

We consider a (sufficiently smooth) potential U : R?— R and study the overdamped
motion of a Brownian particle in this potential, i.e.,

dz{ = —VU(z§) dt + e dW;. (3.62)
For a given set D, we denote by
mp = inf{t > 0: z; € D} (3.63)

the first-hitting time, i.e., the time when the diffusion z® first hits D.

We are interested in the mean passage time from a minimum z of U to a neighbourhood
of those minima of U which lie lower. Let us first assume that U has precisely two minima z
and y and that U(z) > U(y) and that there is a unique lowest saddle point between the
corresponding wells. As we cannot expect z° actually to hit the point y, we consider
a (sufficiently small) neighbourhood of y. (D should neither contain z nor the saddle
between z and y.) The classical Eyring-Kramers formula states that

o |det V2U (2*)| ip (24— (a))/e

LD~ e\ det veU(s) © !

(3.64)

where V2U (2*) denotes the Hessian of U at the saddle z*, V2U(z) denotes the Hessian of
U at the minimum  in which we start, and, finally, A](2*) denotes the unique negative
eigenvalue of the Hessian at the saddle. Note that 2[U(2*) — U(z)] is precisely twice the
height to be surmounted in order to get from the minimum z to the saddle z* and that
this equals the value of the quasipotential V' (0,2*) = V as introduced above. We remark
that the curvature at z and at the saddle play a role, but not the curvature at the other
minimum y as it is sufficient to pass over the saddle. Once the saddle is surmounted,
dropping into the well is essentially “for free”.
From now on, we will use make the following assumptions:

Assumption 3.21.

e U:R?— R is three times continuously differentiable and —VU satisfies the usual
bounded-growth condition for the SDE (3.62).

e The potential U has a finite set of minima M = {zy,...,z,}.

Remark 3.22. These assumptions can be relaxed, for instance U may depend on ¢ in a
controlled way, and we may as well study the SDE (3.62) in a regular domain.

To formulate the generalization of the Eyring-Kramers formula (3.64), to the case of
more than two minima, we need some notations which we are going to introduce now.
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Notations 3.23.

e Fix a minimum z; € M. Then we denote by M; = {y1,...,ye} C M\ {z;} all
minima of U which “lie lower than z,”, i.e., satisfy U(y;) < U(z;) for 5 =1,...,k.

e A point z* = z*(4, B) is called a saddle between the sets A and B if

U(z*) = U(z*(4,B)) = _ inf U(epy)- 3.65
(") = U(2"(4, B)) st pen S2F) (¢¢) (3.65)

Thus a saddle is the highest point one has necessarily to cross in order to go from
set A to set B. We consider all possible path. Each path has at least one “highest
point”, and among all paths we choose one such that its highest point is as low as
possible. Of course, the path is not uniquely determined as we may always linger
around somewhere for a while. In addition, in general the saddle itself is also not
unique. There might be several paths leading over different highest points which
happen to be of the same height. And a single path may lead over more than one
saddle of the same height, looking like a camel’s back. We denote by S(A4, B) the
set of all saddles between A and B and remark in passing that U is constant on
S(A, B), so that we may write U(z*) without specifying z* € S(4, B).

We will make the following assumption.
Assumption 3.24 (Non-degeneracy assumption (for given sets A and B)).
e The Hessian of U is non-degenerate at all saddle points between A and B.

e Along any optimal path ¢ contributing to the definition of a saddle between A and
B, t — U(y:) has a unique maximum.

The assumption of a unique maximum of the map ¢ — U(y;) means that an optimal
path has only one “highest point”, thus the camel’s-back picture is excluded. In principle
such a situation could be dealt with, but the presentation would become more complicated.

Let us now state the main results from [9, 10]. The theorem below gives a general form
of the Eyring—Kramers formula with an multiplicative error term.

Theorem 3.25. Fiz a minimum z; € M, and assume that the (closed) set D has a smooth
boundary and satisfies the following conditions:

e D contains neighbourhoods of all “lower lying minima”:

k
| B(y;,¢) c D. (3.66)

i=1

e D does not contain neighbourhoods of the other minima, nor does D contain a neigh-
bourhood of z;:

U Be)nD=0. (3.67)
Ji; EM\M;

o All saddles between z; and the set of lower-lying minima M; are bounded away
from D: There exists a § > 0, independent of €, such that

dist(S({z;}, M;), D) > 6. (3.68)
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Suppose the non-degeneracy assumption holds for all saddles S({z;}, D) = {z1,..., 2.}
between z; and D, and in addition, the Hessian of U at the minimum z; s also non-
degenerate. Then the mean first-hitting time Tp satisfies

om 2V ()-U@l/e (1 4 O(+/Elloge])

= P Xe I
det V2U(z;) >, |det1V72]U(z;‘)|

Remark 3.26. The assumption of 8D being smooth can be replaced a regularity assump-
tion.

Fe: D (3.69)

This result is augmented by [10, Theorem 1.1] which relates the exponentially small
eigenvalues of the generator of the diffusion z° to the hitting times of nested neighbour-
hoods describing how the neighbourhoods of deeper and deeper minima of U are reached.
Without giving the precise assumptions, we can roughly summarize this by saying that
the kth of the n exponentially small eigenvalues of the generator satisfies

Ak (1+ O(e=comst/ey), (3.70)

]Ezk TUi'cz_ll B(zi,e)

where we assume that the minima z; are ordered in such a way that the barrier height
to be surmounted in order to go from z; to a neighbourhood of any of the z;, 7 < k, is
lower than the barrier heights involved in passing from any z; with 7 < k to any other
well corresponding to z; for some [ < k.

Finally, [10, Theorem 1.3] shows that the first hitting times are asymptotically expo-
nentially distributed. Under suitable assumptions,

Pzi{TD > thiTD} — e—t(l-I-O(e—const/E)) (]_ + O(e—const/e))

T Z O(e—const/&‘) e tAiEe; T —I-O(l) e_to(Ed_l)EmiTD ‘ (3.71)
>t
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4 Singularly perturbed random dynamical systems

4.1 Introduction

In the last section we finally want to discuss what happens when the potential is not
static or, more generally, when the drift and diffusion coeflicients are time-dependent. The
method presented below can be applied to multidimensional slow—fast systems (see [8])
and we do not need to assume that the drift coefficient derives from a potential, but in
order to ease the presentation, we will restrict ourselves to one-dimensional systems, where
we always may assume that the drift coeflicient derives from a potential, and to constant

diffusion coeflicients.
We study SDEs of the form

dz, = f(zs,es)ds + o dWs, f(z,es) = —a%V(:c,ss), (4.1)
in R, where ¢ — V(z,es) is the potential at time s, and € <« 1 is the speed at which
the potential varies. We think of a potential 17(33, A), depending on a parameter A which
changes slowly as time evolves, i.e., A = A(es), and V (z,es) = V (2, A(es)).

The SDE describes the overdamped motion of a Brownian particle in the potential V,
the potential changing its shape slowly in time. For the potential to change noticeably,
we’ll need to wait a time of order 1/e. We think of the speed ¢ being “moderate”. By
that we mean that the time Tiorcing = 1/€ at which the change in the potential becomes
noticeable, is larger than the “minimal relaxation time” Tyelax = 1/2a, where a denotes the
maximal curvature of the potential during the time interval under consideration. When we
study transitions from one potential well to another, ¢ will typically be smaller than the
“maximal Kramers time” Tkramers = ezH/"Z, where H denotes the maximal value of the
barrier height during the time interval under consideration. So we are mainly interested
in the case

Trelax <K Tforcing <K TKramers; (42)

i.e.,
e 2H/7* « & « 2a, (4.3)

where ¢ and H depend on the concrete problem we are interested in.
It will prove useful to make a time change in Equation (4.1) by introducing the so-called
slow time t = €s. By doing so, we obtain the equivalent SDE

1 o

which we will study below. Note that the scaling factor 1/4/¢ in the noise term is a direct
consequence of the Brownian scaling W, = /cW; (in distribution), for all ¢ > 0.
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4.2 The deterministic case

As a first step, we need to understand the behaviour of the solutions of the deterministic
equation corresponding to (4.4), which is a special case of a singularly perturbed ODE:

eidet = f(zd*t, 1), 28 = . (4.5)

We want to study the case where the motion starts near the bottom of one of the
wells of the potential V', and for the moment, we will assume that this well remains well-
separated from any other well V' might have, while V changes slowly in time. Thus, no
(almost-)bifurcations may occur. Let as formulate our assumptions on f which guarantee
that we are in such a situation.

Assumption 4.1. There exist an interval I = [0,7] or I = [0,00) and a constant d > 0
such that the following properties hold:

e there exists a function z* : I — R, called equiltbrium branch, such that
fe@e,=0 Vel (4.6)

e f is twice continuously differentiable with respect to z and ¢ for |z — z*(¢)| < d and
t € I, with uniformly bounded derivatives. In particular, there exists a constant
M > 0 such that |0z f(z,t)| < 2M in that domain;

e the linearization of f at z*(¢), defined as

a’*(t) = 3zf(33*(t), t): (4'7)

is negative and bounded away from zero, that is, there exists a constant ag > 0 such
that

a*(t) < —ap Vtel (4.8)

The assumption that a*(¢) is negative assures that the equilibrium branch is stable.
Note that the equilibrium branch z*(¢) consists of equilibrium points z*(to) of the
frozen deterministic system

et = f(z¥,t0), t>0. (4.9)

fr

/

/

FiGUrRE 1. Solutions of the frozen deterministic system (4.9) for different values of i,
presented in the (o, #)-plane. Solutions approach their equilibrium point exponentially
fast. An equilibrium branch #*(¢) of (4.13) consist of the equilibrium points z*(to) of (4.9).
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FIGURE 2. Solutions of the slowly time-dependent equation (4.13) represented in the (¢, z)-

plane. A stable equilibrium branch z*(¢) attracts nearby solutions zg*t. Two solutions

with different initial conditions are shown. They converge exponentially fast to each other,
as well as to a neighbourhood of order € of z*(1).

z*(to) corresponds to the bottom of a well, and a*(¢p) is the curvature at the bottom.
Assuming that a*(¢g) # 0 amounts to excluding a flat bottom. When starting the frozen
system (4.9) in a neighbourhood of z*(%y), it approaches z*(¢) exponentially fast (in t/e),
see Figure 1.

In fact, for zg > z*(to),

d . . Y T * T * 2
ga(mi —z*(to)) = E:BE =a (to)(:c£ — z*(to)) + (9((3:£ — 2" (to)) ) (4.10)

1 * T *
< 2a*(t0) (& — 2*(t0)),
provided zif — z*(to) < const|a*(to)|. Therefore,

mir . m*(to) < e—la"(o)lt/2e (4.11)

follows, provided the initial condition zq satisfies zg — z*(¢9) < const|a*(¢o)|.
If o < z*(to), a similar estimate can be obtained, yielding

2§ — 2 (t0)] < o™V, (4.12)

whenever |zg — z*(t0)| < const|a*(to)|.
Let us now discuss the non-frozen, deterministic system

eidet = f(zd*t,t). (4.13)

Condition (4.8) guarantees that the curvature at the bottom of the well is uniformly
bounded away from zero at all times, so that there is always a unique “deepest point”
in the well. Figure 2 shows solutions of the non-autonomous equation (4.13) for different
initial values. The following theorem which is due to Tihonov [27] and Gradstein [17],
describes the dynamics of (4.13).

Theorem 4.2. There are constants €9, cg,c1 > 0, depending only on f, such that for
0<e<eg,

e (4.13) admits a particular solution TE®* such that

B8 —2*(t)| < e VEE T (4.14)
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o if |zo — z*(0)| < co, then the solution zd®* of (4.13) with initial condition =g = z¢
satisfies
|of" — 8| < |zo — B85 7@ Vel (4.15)

Remark 4.3. The particular solution Z8° is often called slow solution or adiabatic solu-

tion of Equation (4.13). It is not unique in general, as suggested by (4.15).

PROOF OF THEOREM 4.2. Let z®* be any solution of (4.13), and consider the deviation

ye =zt — z*(¢) of zd° from z*(¢). Using the first-order Taylor expansion
F(f,t) = F(2*(t),8) + 0o f(2* (), t)ye + b(ye, t) = O+ @™ (£)ye + b(ye, t), (4.16)

where |b(y,t)] < My? forall t € I, |y| < d, we find that
ey = f(2d®t) — e2*(t) = a* (t)ye + b(ys, t) — e*(¢). (4.17)

Next we need to show that |2*(¢)| is bounded. In fact,

0= d—if(:c*(t), £) = a*(£)z*(t) + 8 f(z* (L), 1) (4.18)

yields

:&*(t) __ atfgji*(g): t) ‘

Since we assumed that all derivatives of f are bounded and a*(t) < —ag, this shows the
existence of a constant W > 0 such that |2*(¢)| < W.
Therefore, we can estimate

(4.19)

ey < —aoys + My? +eW for y; > 0, (4.20
€U > —aoys — My? —eW  for y; < 0. (4.21)
Let us consider the case y; > 0, the other case being similar. We define v; by
€Uy = —agus + Mvl +eW = g(vy). (4.22)
Now, g(v) = 0 if and only if
* ag a(2) W
v=vl=— —E—. (4.23)

2M 4M? M

Thus, for small enough €, vi are particular solutions of the equation ev; = g(v;). By the
definition of v;, we know that v; dominates y;, provided vg > yo. So we have shown that

ap ap WM w 2
vr=—" - —,/1l—-4de———=¢— , 4.24
WSU-T oM oM ¢ al £ ag + 0@ ( )

*

provided 0 < yo < v*.
obtain

Together with the analogous argument for the lower bound we

w
|y < ot O(e?). (4.25)

Therefore, choosing any initial condition yo satisfying |yo| < eW/ao yields a solution y;
satisfying |y:| < ci€ for all £ € I. This proves (4.14).
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Let us now prove that all solutions z{t, starting in a neighbourhood of z*(0) approach

each other exponentially fast. It suffices to prove (4.15). Let Z2°t be a particular solution
satisfying (4.14), and denote by z; = z** — gt the deviation of z{** from that adiabatic
solution. Again using a Taylor expansion for f, we find that

€ = a(t)z + b(z, t), (4.26)
where

a(t) = O, f( 1) < a*(t) + M(B3 — z*(t)) = a*(t) + O(e) < Za*(¢) (4.27)

|

for sufficiently small e. Here we used that Z8t is a particular solution satisfying (4.14).
In addition, we know that b(z,t) < Mz2. Thus, for 0 < 2 < ag/4M,

3 1
EZ:'t < —Z(Lozt + Mth < —anzt (428)
follows. Now, z; < 2o e a0t/2¢ ig immediate, provided 0 < 2z < ag/4M. Otherwise,

a similar argument can be applied, showing that actually |z;| < |z0| e~®0%/?¢, whenever

|zo| < ap/4M. This concludes the proof of Theorem 4.2. O
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4.3 Near stable equilibrium branches

Let us return to the random case (4.4), where we shall assume that Assumption 4.1 is

satisfied. We remark in passing that we may assume that the usual existence and unique-

ness conditions are satisfled, because we are only interested in the local behaviour in a

neighbourhood of an equilibrium branch where f is sufficiently smooth by this assumption.
We want to investigate the fluctuations

Yi = Ty — :c?“, Yo = 0, (4.29)

of the solution z; of the SDE (4.4) around the corresponding deterministic solution zget.
We assume that z; starts at time 0 in some deterministic initial condition zg, satisfying

|zo — z*(0)| < co, compare Theorem 4.2. The stochastic process {y;}:>0 satisfies the SDE

1 R R o
dy; = g[f(iﬂ? t-|-yt,t)—f(:c§1 t,t)] dt + %th

dws, (4.30)

(22

N

a0+ bloe, 1) dt +

where

a*(t) + O(|ef® — z* (1))
a*(t) + O(e) + O(|zo — z*(0)] et/ %) (4.31)

a(t) = 8, f(zg, 1)

by Theorem 4.2, and |l~)(y,t)| < My? in a neighbourhood of the origin. Note that there
are constants 0 < a_ < ay < oo such that —ay < a(t) < —a_ for all t € I, provided ¢
and cg are small enough.

We will prove that y; remains in a neighbourhood of the origin with high probability.
It is instructive to consider first the linearization of (4.30) around y = 0, which has the

form
o

VE
As we shall see below, y gives the main contribution to y;, so that the Gaussian process

obtained by this linearization is indeed a good approximation to y;. The solution of (4.32)
with an arbitrary initial condition yJ (independent of to the Brownian motion) is given by

1
dy} = —a(t)yfdt+ —=dWy, 33 =0. (4.32)

t
R /o et)eaw,, (4.33)

where we use the notations
t
at,s) = / a(u)du and a(t) = aft, 0). (4.34)

Note that a(t,s) < —a_(t — s) whenever ¢ > s. If y§ has variance vy > 0, then y? has
variance

0'2 ¢
(1) = v oo T [ ellegs, (4.35)
0

Since the first term decreases exponentially fast, the initial variance vg is “forgotten” as
soon as e2(t)/e ig gmall enough, which happens already for ¢ > €. For y§ = 0, (4.33) and
the usual tail estimate for Gaussian random variables imply that for any é > 0,

Pooflvf| > 6} < e /20, (4.36)
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and thus the probability of finding y?, at any given time ¢ € I, outside an interval of width
much larger than /2v(¢) is very small. We summarize this by saying that the typical
spreading of y? at time ¢ is \/2v(t).

Our aim is now to extend the concentration result (4.36) to the whole sample path of
the original nonlinear process {y; }:>0. We want to define a “strip”, i.e., a space-time set,
scaling with 1/v(¢), such that y; is likely to remain in that strip. We start by investigating
the variance v(t). Integration by parts shows that

0.2 t
’U(t) = Vg e2a(t)/5 +— / eza(t,s)/e ds
0

>
2 t !
o2 T | _E € aa()e /—a(s) 2a(t,s)/e
e *a[mao| a0 T 2o 43T

It remains to bound the integral. First note that

d
@/(5)] = . Baf(25,5)
d

= Oua f (25, 8) + Oue f (25, 8)

1
23t < const [1 + = f(zd, s)] . (4.38)
€

To show that f(z2®*, s) is not too large, we again compare f at (z9°, s) with f at the point
(z*(s), s) on the equilibrium branch. Using a first-order Taylor expansion and Theorem 4.2,
we find that

(@5, )| < |£(2*(s), 8)| + O(|e5*" — z*(s)]) = O(|z5*" — 2*(s)])

< conste [1 + M e_aos/ze] . (4.39)

Plugging this estimate into (4.37), we find that

o(t) = o2 [2|a;(t)| + (% _ 2I%UJ)I) e2a(t)/5+0(5)] . (4.40)

When starting in yJ = 0 at time 0, the process {y?}tZo has initially variance 0 and
it takes a time > ¢ for the process to relax to metastable equilibrium. When defining
the strip, we will pretend that y? has already relaxed to metastable equilibrium. This
amounts to choosing vg = 02/2|a(0)] in (4.35) or (4.40), respectively. Thus we set

L sa(e)/e 1/t 2a(t,s)/e
t) = e 4+ - e“M\h ds, 4.41

and define the corresponding strip by

Bs(h) = {(z,t) €R x I: |z — z§°*| < h/((t)}. (4.42)

Note that in the case of a static potential, i.e., a(t) = —ag, we find ((¢) = 1/2a0, and
the strip B,(h) is of constant width, namely a h/1/2ao-neighbourhood of zget.
Let
Ta,(r) = Inf{t > 0: (z4,t) ¢ Bs(h)}, (4.43)
denote the first-exit time of {z;};50 from Bs(h).” Before estimating T8,(h): We shall sum-
marize some properties of the width 1/((¢) of the strip.

"More precisely, T, (n) is the first-exit time of {(z¢,t)}:»0 from the space-time set Bs(h).
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F1GURE 3. A sample path of the stochastic differential equation (4.4). Tt is likely to remain
in the set Bs(h) which is centred at z3®t, up to exponentially long times ¢.

Lemma 4.4. The function ((t) satisfies the following relations for allt € I.
1

€)= gy + OO + Ollao — 2 (0)e7/%), (4.44)
1 1

5a; SO <5 (4.45)

< (4.46)

Proor: The proof of (4.44) is a direct consequence of (4.40) and Theorem 4.2, and it
remains only to show (4.45) and (4.46). Observe that ((¢) is a solution of the linear
ordinary differential equation (ODE)

d¢ 1 1
dt ¢ 2]a(0)|’
Since ¢(t) > 0 and a(t) < 0, we have ('(¢) < 1/e. We also see that ('(¢) > 0 whenever

¢(t) € 1/2a4 and ('(t) < 0 whenever () > 1/2a_. Since ((0) belongs to the interval
[1/2a4,1/2a_], ¢(t) must remain in this interval for all ¢. O

(2a()C +1),  ¢(0)= (4.47)

Notation 4.5. We write P, , to indicate that we consider the solution of (4.4) with
initial condition zq, starting at time ¢{y;. The associated expectation is denoted by K .

Now we are ready to state and proof our main result for the stable case, see also Fig-
ure 3. We will follow the presentation in [8].

Theorem 4.6 (Stable case). There ezisteg > 0, cg > 0, hg > 0 and L > 0, depending
only on f, such that for 0 < € < €9, h < ho and |zg — z*(0)| < co,

1 h?
Poeo {780 < t} < C(t,€) exp{—iﬁ [1-Le - Lh]}, (4.48)

where

1 (]a@)|
Clt,e) = ﬁ( 5+ 1). (4.49)
Remark 4.7. The result of the preceding theorem remains true when 1/2|a(0)| in the
definition (4.41) of {(¢) is replaced be an arbitrary (o, provided (o > 0. The constant L in
the exponent may then depend on (y. Note that ((t) and v(t)/c? are both solutions of the
same ODE ez’ = 2a(t)z+1, with possibly different initial conditions. If |zg—2z*(0)| = O(e),
then ((t) is an adiabatic solution (in the sense of Theorem 4.2) of the differential equation,
staying close to the equilibrium branch z*(¢) = 1/|2a(t)|.
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Estimate (4.48) has been designed for situations where ¢ < 1, and is useful for o <
h <« 1. The exponent is optimal in this case (see Lemma 4.8), but we do not attempt to
optimize the prefactor C(¢,¢€), which leads only to subexponential corrections.

The t-dependence of the prefactor is to be expected. It is due to the fact that as time

det also increases. Let

increases, the probability of z; escaping from a neighbourhood of z
us compare (4.48) with the results in the static case, cf. Theorem 3.14. For simplicity, we
assume that V(z,t) = V(z) = aoz?/2 and that we start in zg = z* = 0. Then {; = 1/2ao

and (4.48) shows that®

1 (Lot 1h
Poeo{Ta.m) < t} < %(6_2 +1) exp{ -2 % [1 - Le] }. (4.50)

Thus, the probability that z, reaches the level h/y/2ag before time ¢ is small as long as

t < 52‘0/5 exp{lh—z[l - Le] }. (4.51)

a 2 g2

The boundary +h+/(, of the strip Bs(h) corresponds to the height

h2

H =V (h/v/2a0) = V(0) =

(4.52)

in terms of the potential V. The quasipotential of the LDP is constant on the boundary,
and an application of Theorem 3.14 shows that

lin%) IF”o,o{e(hZ_‘s)/z‘72 < €TB,(h) < e(h2+5)/2"2} =1 Vé > 0. (4.53)
og—

Here the factor € is due to the fact that we are working in slow time. In particular, we
see that z; is unlikely to exit from Bg(k) as long as t < e(h’~9)/2¢*/¢ for some § > 0. Thus
a comparison with (4.51) shows that (4.48) generalizes the lower bound in (4.53) to the
case of non-static potentials.

PROOF OF THEOREM 4.6. First of all, check (via It6’s formula) that y; = z;—z{ satisfies

1 ft. o ¢
alt)/e | — a(t,s)/e a(t,s)/e
Yt = Yo € + /bys,se ds + /e dW,
t 0 € Jo ( ) \/E 0

1 [t
zy?+g/0 b(ys, s) e*4*)/e ds, (4.54)

where yo = 0, and, therefore, y? starts in 0 at time 0.
We begin by considering an arbitrary interval [s,¢] C I. Then

Po,zo{TBs(h) € [s,t)} < ]P’o,zo{Elu € [s,t) 2y & Bs(h)} = Po,zo{ sup 9| > h}.
uelst) v/ €(w)
(4.55)

We would like to estimate the probability on the right-hand side by Doob’s submartingale
inequality, but neither y, nor y,/+/((u) is a (sub-)martingale. The remedy here is to
consider only short intervals [s,t), where y,/+/((u) can be approximated locally by a

8In the proof of Theorem 4.6 we shall see that in the case of a linear drift coefficient, the h-dependent
error term in the exponent is not present.
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martingale. Thus we assume for the moment that ¢ and s are such that A = |a(¢, s)|/¢ is
small.
For brevity, we shall write 7 for 75, ().

Reduction to the linearized process:
Let us first convince ourselves that y? gives the main contribution to y; whenever 7 > ¢.
In fact, for 7 > ¢,

1 [t
|ye — yt\—‘—/ b(yu, u) ¥)/edy ‘<M /y ex(tm)/e dy

th / C a(t,u) /5 u < _2h2 [1 ()/5] < £h2 (456)

2a° 2a2

where we used the upper bound on ((u) that is provided by (4.45) and estimated |a(u)]
below by a_. Therefore, again using (4.45), we find that for 7 > ¢,

_ 0 a
% < M\\//;; h?, (4.57)

which implies that

0 ~
Powo{78,(n) € [5,8)} < POEO{ sup Il > h}, (4.58)
UE[s,tAT) C(’U,)

where h = h[1 — M(a 1/2/2(1 )h].

Estimating the linearization:
The right-hand side of (4.58) can by estimated by

0 ~
IEI>0,:1:o{ sup |yU| 2 h}
UE[s,tAT) C('U:)

< ]P’O,:Eo{ Sup
uE s t

|24}

ﬁ inf /((w) ea(t’“)/e}. (4.59)

i
f/ e

Now, the stochastic integral Y, fu a(tv)/e qW, in the last line is a martingale, so

< ]P’O,:Eo { Sup

uEst

that e'¥ is a submartingale, for any v > 0. Thus we can apply Doob’s submartingale
inequality (see for instance [19, Theorem 1.3.8]), which yields

1
—Y,
Ve "
for any H > 0. Since Y; is a Gaussian random variable, the expectation can be calculated
using completion of squares. As Y; has mean zero and variance v(t)/o?, we find

> H} = Po,zo{ sup e"¥e/e > e”’HZ} < e 7H Eo,z, {e”’YfZ/E} (4.60)

Po,zo{ sup 2
uE|s,t

u€l[s,t)

2/, 1
Bos {6771} = ey (4.61)

and from (4.40) (with vg = 0) we know that v(¢)/c? < ((¢).
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It remains to estimate

h
H:== inf +/C(u)ext¥)/e, (4.62)
O u€ls,t)
As o(t,u) is negative and monotone in u, a(t,u) > at,s) = —Ae for all u € [s,t).

By (4.46), the width /((u) of the strip satisfies

(> - 2w - S (- o)), (4.63)
Now, )
H> 200 - 0ae) e = L@ - o) - o) (4.64)
follows, and writing 2¢(¢)y = 9, we find
Poes {75, € [5,8)} < . e g L REl-0)-0m] (4 65)

1 —2yu(t)/o? RV

Somewhat arbitrarily, we opt for 4 = 1 — ¢ and choose A = ¢. (Note that A = h would
also be appropriate, unless h is very small.) Thereby we obtain

1 _1r2 &)
Powo{78,(n) € [5,8)} < 72 2211-0()-0(h)] (4.66)

Longer time intervals:

So far, we have only dealt with a short interval [s,t), where “short” is characterized by
the requirement A = |a(t, s)|/e = €. To handle arbitrary intervals [0, ¢), we now introduce
a partition 0 = ug < u; < --- < ug = t, where we require that A = |a(ug, ugt+1)|/e = €
forall £ =0,..., K — 2. Therefore,

K = [Mw (4.67)

£2

is the smallest integer equal or larger than |a(t)|/e2. Since |a(u)| is bounded above and
below, K is of order 1+ t/ez. The trivial estimate

K-1
Powo{Ts,m) € [0,8)} < ) Poae{7s,(n) € [uk, uks1)}
k=0
[a(t 5B 1-0(e)-0(R)]
52
L 3 55(1-0(c)-0(h)]
— 3 01 4.68
<= ] (4.68)
completes the proof. O

The following lemma augments Theorem 4.6 by providing a lower bound for the prob-
ability that z; leaves the set B,(h) before time ¢.
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Lemma 4.8. There exist numerical constants ¢,C > 0 such that

Po.zo{TB,(h) < t} > Cexp{—%g—z [1+O(e) + O(h)] } (4.69)

holds for all 0 < € < €0, co < h < ho, |zg—2*(0)| < ¢o and all t such that |a(t)| > elloge].

This estimate is rather crude and can certainly be improved. In particular, the pre-
factor should by an increasing function of time. Here we restrict ourselves to the simplest
statement which shows that the exponent in (4.48) is optimal.
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4.4 Near bifurcation points: Stochastic resonance, hysteresis, and bi-
furcation delay

Let us finally summarize some results on the case when Assumption 4.1 is violated and
the curvature of the potential near its wells does not remain bounded away from zero,
so that wells may become flat. We are interested in what will happen when either a well
becomes flat and simultaneously the barrier between potential wells becomes low or when a
potential changes from one-well to double-well. We only discuss standard examples, as the
generalization to more general potentials with possibly more than two wells is immediate
(in one-dimensional systems). Our presentation mainly follows [4], and the proofs of the
various results can be found in [6, 7, 5].
We consider the Ginzburg-Landau potential

V(a,t) = %m‘l _ %,u(t)ccz +FA®)e, (4.70)

where p = p(t) and A = A(t) are parameters. This potential has two wells if 2722 < 43
and one well if 2722 > 4p®. Crossing the lines 27)% = 4u3, u > 0, corresponds to a
saddle-node bifurcation, and crossing the point A = u = 0 corresponds to a pitchfork
bifurcation. Equilibrium points are solutions of the equation z3 — u(t)z — A(t) = 0; we
will denote stable equilibria by z% (), and the saddle, when present, by z§(¢).

4.4.1 Stochastic resonance

Let us first consider the case where p is a positive constant, say u = 1, and A(¢) varies
periodically, say A(t) = —Acos(2mt). If |A] < A = 2/(3v/3), then V is a double-well
potential. We thus assume that A < A.. The SDE (4.4) then becomes

1 o
de, = [z — @ — Acos(2nt)] dt + 75 W (4.71)

In the absence of noise, the existence of the potential barrier prevents the solutions
from switching between potential wells, see Figure 4. If noise is present, but there is no
periodic driving (A4 = 0), solutions will cross the potential barrier at random times, and
whose expectation is given by Kramers’ time ¢ ezH/"Z, where H is the height of the barrier
(H = 1/4 in this case), cf. the classical Eyring—Kramers formula (3.64).

Interesting things happen when both noise and periodic driving A(¢) are present. Then
the potential barrier will still be crossed at random times, but with a higher probability
near the instants of minimal barrier height (i.e., when ¢ is integer or half-integer). This
phenomenon produces peaksin the power spectrum of the signal, hence the name stochastic
resonance (SR).

If the noise intensity is sufficiently large compared to the minimal barrier height,
transitions become likely twice per period (sample paths switch back and forth between
wells), so that the signal z; is close, in some sense, to a periodic function (Figure 5).
The amplitude of this oscillation may be considerably larger than the amplitude of the
forcing A(t), so that the mechanism can be used to amplify weak periodic signals. This
phenomenon is also known as nowse-induced synchronization. Of course, too large noise
intensities will spoil the quality of the signal.

The mechanism of stochastic resonance was originally introduced as a possible ex-
planation of the close-to-periodic appearance of the major Ice Ages [3, 2]. Here the
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FiGURE 4. The potential V(z,t) = %x‘l - %xz — Acos(2mt)x. TFor cos(2mt) = 0, the

potential is symmetric (middle), for integer times, the right-hand well approaches the
saddle (left), while for half-integer times, the left-hand well approaches the saddle (right).
If the amplitude A is smaller than the threshold M., there is always a potential barrier,
which an overdamped particle cannot overcome in the deterministic case. Sufficiently
strong noise, however, helps the particle to switch from the shallower to the deeper well.
This effect is the stronger the lower the barrier is, so that switching typically occurs close
to the instants of minimal barrier height.

(quasi-)periodic forcing is caused by variations in the Earth’s orbital parameters (Mi-
lankovich factors), and the additive noise models the fast unpredictable fluctuations caused
by the weather. Meanwhile, SR has been detected in a large number of systems (see for
instance [21, 29, 16] for reviews), including ring lasers, electronic devices, and even the
sensory system of crayfish and paddlefish [22].

Recall that we assume that A < A, so that there are always two stable equilibria at
z% (t) and a saddle at z3(t). We introduce a parameter ap = Ac — A which measures the
minimal barrier height: At ¢ = 0, the barrier height is of order ag/z for small ag, and the
distance between z% (t) and the saddle at z(t) is of order ,/ap. At t = 1/2, the left-hand
potential well at z* (¢) is likewise close to the saddle. In order for transitions to become
possible on a time scale which is not exponentially large, we allow ag to become small
with €.

Assume that we start at time ¢c = —1/4 in the basin of attraction of the left-hand
potential well. Theorem 4.6 shows that transitions are unlikely for ¢ <« 0. Also, for
0 <« t < 1/2, paths will be concentrated either near z% (¢) or near z* (). This allows us
to define the transition probability as

Pirans = Ptz {2, <0}, to=—1/4, t =+1/4. (4.72)

The properties of Pipans do not depend sensitively of the choices of ¢g and £;, as long as
—1/2 €t K 0 K t; € +1/2. Also the level 0 can be replaced by any level lying between
z* (t) and z% (¢) for all .

Theorem 4.9 ([7, Theorems 2.6 and 2.7]). For the noise intensity, there is a threshold
level 0. = (ag V 5)3/ 4 with the following properties:

1. If 0 < o, then

C
Ptrans < - e—mrg/a-Z (473)
£

for some C,k > 0. Paths are concentrated in a strip of width o/(+/|t| V acl/?’) around
the deterministic solution tracking z* (t) (Figure 5, upper figure).
2. If o > o, then
Ptrans 2 1- Ce—na-4/3/(e|loga'|) (474)
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F1GURE 5. Sample paths of the SDE (4.71) for ¢ = a9 = 0.005, and o = 0.02 (upper
picture) and o = 0.14 (lower picture). Full curves represent the location of potential wells,
the broken curve represents the saddle. For weak noise, the path z; is likely to stay in the
shaded set B(k), centred at the deterministic solution tracking the right-hand well. The
maximal width of B(h) is of order ha/(ao V €)!/* and is reached at half-integer times. For
strong noise, typical paths stay in the shaded set which switches back and forth between
the wells at integer and half-integer times. The width of the vertical strips is of order
o?/3. The “bumps” are due to the fact that one of the wells becomes very flat during the
transition window so that paths might also make excursions away from the saddle.

for some C,x > 0. Transitions are concentrated in the interval [—02/ 3 o2/ 3]. More-
over, for t < —o2/3, paths are concentrated in a strip of width o/ \/m around the
deterministic solution tracking z* (t), while for t > 02/3 they are concentrated in a
strip of width o/+/t around a deterministic solution tracking z* (t) (Figure 5, lower

figure).

The crossover is quite sharp: For ¢ < o, transitions between potential wells are very
unlikely, while for ¢ > o, they are very likely. By “concentrated in a strip of width
w”, we mean that the probability that a path leaves a strip of width hw decreases like
e=*" for some k > 0. The “typical width w” is our measure of the deviation from the
deterministic periodic function, which tracks one potential well in the small-noise case,
and switches back and forth between the wells in the large-noise case.

Theorem 4.9 implies in particular that for the periodic signal’s amplification to be
optimal, the noise intensity o should exceed the threshold o.. Larger noise intensities will
increase both spreading of paths (especially just before they cross the potential barrier)
and size of transition window, and thus spoil the output’s periodicity.

We observe that for . € ¢ < 1, paths are concentrated in the right-hand well when
sin(27t) < 0, and in the left-hand well when sin(27¢) > 0. They switch between wells near
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integer and half-integer times, when the barrier is lowest. The distribution of z; is thus
shifted in time with respect to the stationary density e~ 2V(=t)/o? /N of the frozen system,
which has most of its mass concentrated in the deeper well and therefore favours the left-
hand well whenever cos(27t) > 0, and favours the right-hand well whenever cos(2nt) < 0.
Since paths may jump from the shallower to the deeper well at a time of order o2/3 before
the instant of lowest potential barrier, increasing ¢ reduces the time during which the
system is in metastable equilibrium in the shallower potential well. For sufficiently strong
noise, the density tracks the instantaneous stationary density, but it lags behind for weaker
noise intensity.

Part of our results should appear quite natural. If ag > €, the threshold noise level
Oc = a,g/4 behaves like the square root of the minimal barrier height. However, o, saturates
at €3/ for all ag < €. Hence, even driving amplitudes arbitrarily close to A, cannot increase
the transition probability. This is a rather subtle dynamical effect, mainly due to the fact
that even if the barrier vanishes at ¢ = 0, it is lower than €3/? during too short a time
interval for paths to take advantage. The situation is the same as if there were an “effective
potential barrier” of height proportional to ¢2. Another remarkable fact is that for o > o,
neither the transition probability nor the width of the transition windows depend on the
driving amplitude to leading order.

4.4.2 Hysteresis

We continue to study the SDE (4.71)

1 o
dz; = E[mt . A cos(2nt)] dt + % dW, (4.75)

but we also allow for amplitudes A > )., so that twice per period the potential barrier may
vanish. We want to study the behaviour of z; not as a function of £ but as a function of
the associated value of the parameter A(t) = —A cos(2nt). We use ag := A — A to compare
the amplitude to the critical one. Then ag > 0 corresponds to the situation discussed
above. Here, ag may change sign.

In the deterministic case, we can give a rough description as follows: For small am-
plitudes, i.e., A < Ac + O(¢), the deterministic particle remains in the initial well at all

™~ —

F1GURE 6. The potential V(z,t) = %x‘l — %xz + A(t)z, with A(t) = —Acos(27t), when A
exceeds Ac. In the deterministic case, with ¢ « 1, the overdamped particle jumps to a
new well whenever |A(¢)| becomes larger than A¢, leading to hysteresis.
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(a) x (b) (c)

F1GURE 7. Typical random hysteresis “cycles” in the three parameter regimes. (a) Driving
amplitude A and noise intensity o are too small to allow the path to switch potential wells.
(b) For large amplitude but weak noise, the path tracks its deterministic counterpart,
which switches wells. (c) For sufficiently strong noise, the path can overcome the potential
barrier, even before the barrier is lowest or vanishes.

times, while for large amplitudes, i.e., A > A. 4 O(e), the particle switches well twice per
period, see Figure 6.

If we add noise to the system, i.e., if we study the SDE (4.75), we find that there are
three regimes (see Figure 7), characterized as follows:

e The small-amplitude regime: —ag < const e and o < (Jag| V 5)3/4.
If the amplitude of the modulation is too small to allow for transitions in the absence
of noise and the noise intensity is below threshold, then z; is unlikely to switch wells.
This regime corresponds to the subthreshold behaviour in Theorem 4.9, but extends
to the case of a barrier vanishing for a short time.

o The large-amplitude regime: —ag > const e and o < (5\/|a0|)1/2.

If the amplitude of the modulation is large enough to allow for transitions (even in
the absence of noise) and the noise intensity is below threshold, then z; is close to
z9° and typically changes wells twice per period as z$* does.

e The large-noise regime: Either —ag < € and o > (Jag| V 5)3/4 or —ag > € and
o > (e+/]ad])'/?.
If the noise intensity is above threshold, then z; typically switches wells twice per
period. The remarkable fact is that this typically happens before the barrier is lowest
or vanishes, and the (random) value of A when the crossing occurs is concentrated
around a deterministic value A which satisfies A = Ae — Co*/3. To leading order, C
does not depend on € or A. This regime corresponds to the regime above threshold
in Theorem 4.9, but also includes the case of a vanishing barrier.

4.4.3 Bifurcation delay

Let us finally discuss the slow passage through a (symmetric) pitchfork bifurcation. We
consider again the Ginzburg-Landau potential (4.70), but this time with A = 0, and a
parameter p(t) increasing monotonously through zero. For the sake of simplicity, we shall
choose u(t) =t. As p changes from negative to positive, the potential transforms from a
single-well to a double-well potential, a scenario known as spontaneous symmetry breaking.
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VIVIWIN

FiGure 8. The potential V(z,1) = %x‘l — %tmz transforms, as p changes from negative

to positive, from a single-well to a double-well potential. In the deterministic case, an
overdamped particle stays close to the saddle for a macroscopic time before falling into
one of the wells. Noise tends to reduce this delay.

In fact, the symmetry of the potential is not broken, but the symmetry of the state may be,
see Figure 8. Solutions tracking initially the potential well at £ = 0 will choose between
one of the new potential wells, but which one of the wells is chosen, and at what time,
depends strongly on the noise present in the system.

We consider the nonlinear SDE

1 o
dz, = E tzy — 27| dt + e dW;. (4.76)

In the deterministic case ¢ = 0, the equation of motion reads

dm?Et det det\3
€ =te;® — (z5°)°. (4.77)
dt¢
Its solution z{** with initial condition :c‘tiOEt = zo > 0 can be written in the form
! 1
zdet = c(zo, t) (B0l a(t, to) = / sds = §(t2 —t2), (4.78)
to

where the function ¢(zo,t) is found by substitution into (4.77). Its exact expression is of
no importance here, it is sufficient to know that 0 < ¢(zo,t) < zo for all ¢.

If we start at a time ¢y < 0, the solution (4.78) will be attracted exponentially fast by
the stable origin. The function a(t,%o) is negative and decreasing for ¢, < t < 0, which
implies in particular that mSEt is exponentially small. For ¢t > 0, the function a(t,%o) is
increasing, but it remains negative for some time. As a consequence, z{** remains close
to the saddle up to the time ¢ = II(¢y) for which a(t,%) reaches 0 again. Shortly after
time II(¢), the solution will jump to the potential well at ++/¢, unless z is exponentially
small. II(to) is called bifurcation delay, and depends only on u(¢t) and to. Here, for u(t) = ¢,
a(t, to) = 3(t* — t3) and II(to) = [to|.

The existence of a bifurcation delay may have undesired consequences. Assume for
3 experimentally.
Instead of measuring the asymptotic value of z; for many different values of y, which is

instance that we want to determine the bifurcation diagram of £ = yz —=z

time-consuming (especially near y = 0 where z; decays only like 1/v/%), one may be
tempted to vary p slowly during the experiment. This, however, will fail to reveal part of
the stable equilibrium branches because of the bifurcation delay. A similar phenomenon
exists for the Hopf bifurcation [23, 24].

The delay is due to the fact that z; approaches the origin exponentially closely. Noise of
sufficient intensity will help driving the particle away from the saddle, and should therefore
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reduce the bifurcation delay. The obvious question is thus: How does the delay depend
on the noise intensity?

We already know that z{° decreases exponentially fast for ¢ < 0. Theorem 4.6 shows
that paths are concentrated in a neighbourhood of order ¢ of z{*® on any time interval

[to,t1] bounded away from zero, so that we only need to worry about what happens after

time ¢;, when z9¢t is already exponentially small.

The dispersion of paths will be controlled by
o2 [t
3(t) = 5o 2x(tt)/e 1 O / e2(t:)/e g, (4.79)
t1

where 7 is a positive constant. One can show that this function grows like o%/Jt| for
t < —+/€, and remains of order o?/,/ up to time /. Only after time /¢, 9(t) grows
exponentially fast. In analogy with (4.42), we define a strip

B(h) = {(z,t): t1 <t < Ve, |z — 23| < h\/3(1) }. (4.80)

In order to describe the behaviour for ¢ > /e, we further introduce the domain

D(o) = {(m,t):\/ggth,|m|< V(l—g)t}, (4.81)

where p is a parameter in [0,2/3). Note that D(2/3) contains those points in space—time
where the potential is concave, while D(0) contains the points located between the bottoms
of the wells. Then we have the following description of the behaviour of sample paths.

Theorem 4.10 ([6, Theorems 2.10-2.12]).

e There is a constant hg > 0 such that for all h < ho\/€/0, the first-exit time TB(k) Of
z; from B(h) satisfies

Pty e, {78(n) < VE} < Ce e (4.82)

where

c, = l2lve tg' +0() and K= % — O(Ve) - 0(

o2h?

£

). (4.83)

o Assume that ol|log 0|3/ = O(y/€). Then for any g € (0,2/3), the first-exit time TD(o)
of z¢ from D(p) satisfies

o \/1 _ e—2ga(t,\/E)/5,

P s z{mp() 2 1} < C(t:€) (4.84)

where

t
C(t,e) = const t(l + M) (4.85)
€
o Assume z; leaves D(p) (with 1/2 < p < 2/3) through its upper (lower) boundary. Let
det,r L . . .
T, be the deterministic solution starting at time T = Tp(,) on the upper (lower)
boundary of D(p). Then :c‘tiEt’T approaches the equilibrium branch at \/t (resp., —\/t)
like {:/t?’/2 + \/Fe_”a(t”')/e, where n = 2 — 3p. Moreover, z; is likely to stay in a strip

centred at :c‘tiEt’T, with width of order o /+/t, at least up to times of order 1.
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FiGURE 9. A sample path of the SDE (4.76), for ¢ = 0.01 and o = 0.015. A deterministic
solution is shown for comparison. Up to time /¢, the path remains in the set B(h) centred
at zd°t, shown here for A = 3. It then leaves the set D(p) (here o = 2/3) after a time of
order 4/e|logo|, after which it remains in a neighbourhood of the deterministic solution
starting at the same time on the boundary of D(g).

The bound (4.82), which is proved in a similar way as Theorem 4.6, shows that paths
are unlikely to leave the strip B(kh) if 1 € h < hoy/e/o. If o is smaller than /g, paths
remain concentrated in a neighbourhood of the origin up to time 4/, with a typical
spreading growing like o//[¢| for ¢ < —+/€, and remaining of order o'/e/4 for [t| < +/e.
This is again a dynamical effect: Although there is a saddle at the origin for positive times,
its curvature is so small that paths do not have time to escape before t = 4/, see Figure 9.

Relation (4.84) yields an upper bound on the typical time needed to leave D(p), and
thus enter a region where the potential is convex. Since a(t,/€) grows like 7t2, the
probability not to leave D(p) before time ¢ becomes small as soon as

2
t> 4/ —¢llog o|. (4.86)
e

The last part of the theorem implies that another time span of the same order is needed
for paths to concentrate again, around an adiabatic solution tracking the bottom of the
well (at a distance of order e/t3/2). One can thus say that the typical bifurcation delay
time of the dynamical pitchfork bifurcation with noise is of order (/¢|log o|.

As a consequence, we can distinguish three parameter regimes:

1. Ezponentially small noise: o < e X/¢ for some K > 0.
At time /€, the spreading of paths is still exponentially small. In fact, one can
extend Relation (4.82) to all times for which a(¢,+e) < K. If K is larger than
a(Il(ty),0), where II(to) is the deterministic bifurcation delay, most paths will track
the deterministic solution and follow it into the right-hand potential well.

II. Moderate noise: e='/*" < ¢ « /€ for some p < 1.
The bifurcation delay lies between 1/ and a constant times /e|log o] < e(!77)/2 with
high probability. One can thus speak of a “microscopic” bifurcation delay.
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III. Large noise: o > /€.

The spreading of paths grows like a/\/m at least up to time —o. As ¢ approaches
the bifurcation time 0, the bottom of the potential well becomes so flat that the
paths are no longer localized near the origin and may switch wells several times before
eventually settling for a well. So for large noise intensities, the concept of bifurcation
delay should be replaced by two variables, namely the first-exit time from a suitably
chosen neighbourhood of the saddle and the time when the potential wells become
attractive enough to counteract the diffusion.

One can also estimate the probability to reach the right-hand potential well rather
than the left-hand potential well. Loosely speaking, if z, reaches 0 before time ¢, it has
equal probability to choose either potential well. It follows that

1 1
Piozo{ze 20} = 5+ E]P’to,zo{:cs > 0Vs € [to, ]} (4.87)

One can show that for ¢ = 0 the second term on the right-hand side is of order

zoe!/ e~la(0to) /e (4.88)
o
and for larger ¢, this term will be even smaller. Thus in case II, paths will choose one
potential well or the other with a probability exponentially close to 1/2.

For our choice of u(t), the height of the potential barrier grows without bound. This
implies that once z; has chosen a potential well, its probability ever to cross the saddle
again is of order e~ const [

The existence of three parameter regimes has some interesting consequences on the
experimental determination of a bifurcation diagram. Assume we want to determine the
stable equilibrium branches by sweeping the parameter with speed €. Regime II is the
most favourable: In Regime I, part of the stable branches cannot be seen due to the
bifurcation delay, while in Regime III, noise will blur the bifurcation diagram. For a given
noise intensity o, the sweeping rate ¢ should thus satisfy

o? < e < (1/|logo])*” (4.89)

in order to produce a good image of the stable equilibria. As long as 0% < 1/|logo|'/?,
increasing artificially the noise level allows to work with higher sweeping rates, but of
course the image will be more and more blurred.

On the other hand, the relation between noise and delay can be used to measure
the intensity of noise present in the system. If a bifurcation delay is observed for a
sweeping rate €q, repeating the experiment with slower and slower sweeping rates should
ultimately suppress the delay. If this happens for € = &1, then the noise intensity is of
order e—const [e1
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