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Plan

1. What kind of stochastic systems arise in neuroscience?

2. Which questions are relevant?

3. Which mathematical techniques are used?

4. Example: FitzHugh–Nagumo equations with noise



1. A hierarchy of problems

The whole brain SPDEs (field equations)

Populations of neurons SDEs, DDEs
Wilson–Cowan model

Single neuron S(P)DEs for membrane potential
Hodgkin–Huxley, Morris–Lecar,

FitzHugh-Nagumo model, . . .

Ion channels Markov chains
Genetic networks Coupled maps

Molecular dynamics SDEs, Monte Carlo, . . .

1



1. A hierarchy of problems

The whole brain SPDEs (field equations)

Populations of neurons SDEs, DDEs
Wilson–Cowan model

Single neuron S(P)DEs for membrane potential
Hodgkin–Huxley, Morris–Lecar,

FitzHugh-Nagumo model, . . .

Ion channels Markov chains
Genetic networks Coupled maps

Molecular dynamics SDEs, Monte Carlo, . . .

1-a



1. A hierarchy of problems

The whole brain SPDEs (field equations)

Populations of neurons SDEs, DDEs
Wilson–Cowan model

Single neuron S(P)DEs for membrane potential
Hodgkin–Huxley, Morris–Lecar,

FitzHugh-Nagumo model, . . .

Ion channels Markov chains
Genetic networks Coupled maps

Molecular dynamics SDEs, Monte Carlo, . . .

1-b



1. A hierarchy of problems

The whole brain SPDEs (field equations)

Populations of neurons SDEs, DDEs
Wilson–Cowan model

Single neuron S(P)DEs for membrane potential
Hodgkin–Huxley, Morris–Lecar,

FitzHugh-Nagumo model, . . .

Ion channels Markov chains
Genetic networks Coupled maps

Molecular dynamics SDEs, Monte Carlo, . . .

1-c



1. A hierarchy of problems

The whole brain SPDEs (field equations)

Populations of neurons SDEs, DDEs
Wilson–Cowan model

Single neuron S(P)DEs for membrane potential
Hodgkin–Huxley, Morris–Lecar,

FitzHugh-Nagumo model, . . .

Ion channels Markov chains
Genetic networks Coupled maps

Molecular dynamics SDEs, Monte Carlo, . . .

1-d



1.1 ODE models for action potential generation

• Hodgkin–Huxley model (1952)
•Morris–Lecar model (1982)

Cv̇= −gCam
∗(v)(v − vCa)− gKw(v − vK)− gL(v − vL) + I(t)

τw(v)ẇ= −(w − w∗(v))

m∗(v) = 1+tanh((v−v1)/v2)
2 , τw(v) = τ

cosh((v−v3)/v4)),

w∗(v) = 1+tanh((v−v3)/v4)
2

• FitzHugh–Nagumo model (1962)

C
g v̇= v − v3 + w+ I(t)

τẇ= α− βv − γw

For C/g � τ : slow–fast systems of the form

εv̇= f(v, w)

ẇ= g(v, w)
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1.2 Origins of noise

. External noise: input from other neurons (one level above)

. Internal noise: fluctuations in ion channels (one level below)
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1.2 Origins of noise

. External noise: input from other neurons (one level above)

. Internal noise: fluctuations in ion channels (one level below)

Models for noise:

. Gaussian white noise dWt

. Time-correlated noise (Ornstein–Uhlenbeck)

. More general Lévy processes

. Point processes (Poisson or more general renewal processes)

In the simplest case we have to study:

dxt=
1

ε
f(xt, yt) dt+

σ
√
ε

dWt

dyt= g(xt, yt) dt+ σ′ dW ′t
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2. What are the relevant questions?

Modelling (choice of noise)

Asymptotic behaviour

. Existence and uniqueness of invariant state (measure)

. Convergence to the invariant state
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2. What are the relevant questions?

Modelling (choice of noise)

Asymptotic behaviour

. Existence and uniqueness of invariant state (measure)

. Convergence to the invariant state

However, transients are important!

. Time-dependent forcing

. Metastability

. Excitability

. Stochastic resonance

. . . .
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2.1 Example: FitzHugh–Nagumo with noise
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2.1 Example: FitzHugh–Nagumo with noise

. System is excitable (sensitive to small random perturbations)

. Invariant measure: gives probability to be spiking/quiescent

. We are interested in distribution of interspike time interval
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2.2 Paradigm: the stochastic exit problem

dxt = f(xt) dt+ σ dWt x ∈ R n

Given D ⊂ R n, characterise

. Law of first-exit time

τD = inf{t > 0: xt 6∈ D}

. Law of first-exit location xτ

(harmonic measure)

D

xτD

6



2.2 Paradigm: the stochastic exit problem

dxt = f(xt) dt+ σ dWt x ∈ R n

Given D ⊂ R n, characterise

. Law of first-exit time

τD = inf{t > 0: xt 6∈ D}

. Law of first-exit location xτ

(harmonic measure)

D

xτD

. Dynamics within D may be described by quasistationary state

. May be able to use coarse-grained description of motion

between attractors (e.g. Markovian jump process)
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3. What mathematical techniques are available?

. Large deviations ⇒ rare events, exit from domain

. PDEs ⇒ evolution of probability density, exit from domain

. Stochastic analysis ⇒ sample-path properties

. Random dynamical systems

. . . .
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3.1 Large deviations

dxt = f(xt) dt+ σ dWt x ∈ R n

Large deviation principle: Probability of sample path xt being

close to given curve ϕ : [0, T ]→ R n behaves like e−I(ϕ)/σ2

Rate function: (or action functional or cost functional)

I[0,T ](ϕ) =
1

2

∫ T
0
‖ϕ̇t − f(ϕt)‖2 dt
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3.1 Large deviations

dxt = f(xt) dt+ σ dWt x ∈ R n

Large deviation principle: Probability of sample path xt being

close to given curve ϕ : [0, T ]→ R n behaves like e−I(ϕ)/σ2

Rate function: (or action functional or cost functional)

I[0,T ](ϕ) =
1

2

∫ T
0
‖ϕ̇t − f(ϕt)‖2 dt

Application to exit problem: [Wentzell, Freidlin 1969]

Assume D contains unique equilibrium point x?

. Cost to reach y ∈ ∂D: V (y) = inf
T>0

inf{I[0,T ](ϕ): ϕ0 = x?, ϕT = y}

. Gradient case: f(x) = −∇V (x) ⇒ V (y) = 2(V (y)− V (x?))

. Mean first-exit time: E[τD] ∼ exp
{

1

σ2
inf
y∈∂D

V (y)
}

. Exit location concentrated near points y minimising V (y)
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3.1 Large deviations

Advantages

. Works for very general class of equations (including SPDEs)

. Problem is reduced to deterministic variational problem

(can be expressed in Euler–Lagrange or Hamilton form)

. Can be extended to situations with multiple attractors

. Can be extended to (very) slowly time-dependent systems
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3.1 Large deviations

Advantages

. Works for very general class of equations (including SPDEs)

. Problem is reduced to deterministic variational problem

(can be expressed in Euler–Lagrange or Hamilton form)

. Can be extended to situations with multiple attractors

. Can be extended to (very) slowly time-dependent systems

Limitations

. Only applicable in the limit σ → 0

. V difficult to compute, except in gradient (reversible) case

. Leads little information on distribution of τ
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3.2 PDEs

dxt = f(xt) dt+ σ dWt x ∈ R n

Generator: Lϕ = f · ∇ϕ+ 1
2σ

2∆ϕ

Adjoint: L∗ϕ = ∇ · (fϕ) + 1
2σ

2∆ϕ

Kolmogorov forward or Fokker–Planck equation: ∂tµ = L∗µ
where µ(x, t) = probability density of xt
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3.2 PDEs

dxt = f(xt) dt+ σ dWt x ∈ R n

Generator: Lϕ = f · ∇ϕ+ 1
2σ

2∆ϕ

Adjoint: L∗ϕ = ∇ · (fϕ) + 1
2σ

2∆ϕ

Kolmogorov forward or Fokker–Planck equation: ∂tµ = L∗µ
where µ(x, t) = probability density of xt

Exit problem: Dirichlet–Poisson problems via Dynkin’s formula

and Feynman–Kac type equations, e.g.

. u(x) = Ex[τD] satisfies

Lu(x) = −1 x ∈ D
u(x) = 0 x ∈ ∂D

. v(x) = Ex[φ(xτD)] satisfies

Lv(x) = 0 x ∈ D
v(x) = φ(x) x ∈ ∂D

. Similar formulas for Laplace transform Ex[eλτD], etc
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3.2 PDEs

Advantages

. Yields precise information on laws of τD and xτD if Dirichlet–

Poisson problems can be solved

. Exactly solvable in one-dimensional and some linear cases

. In gradient case, precise results can be obtained in combination

with potential theory [Bovier, Eckhoff, Gayrard, Klein]

. Accessible to perturbation (WKB) theory

. Accessible to numerical simulation

. Conversely, yields Monte–Carlo algorithms for solving PDEs
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3.2 PDEs

Advantages

. Yields precise information on laws of τD and xτD if Dirichlet–

Poisson problems can be solved

. Exactly solvable in one-dimensional and some linear cases

. In gradient case, precise results can be obtained in combination

with potential theory [Bovier, Eckhoff, Gayrard, Klein]

. Accessible to perturbation (WKB) theory

. Accessible to numerical simulation

. Conversely, yields Monte–Carlo algorithms for solving PDEs

Limitations

. Few rigorous results in non-gradient case (L not self-adjoint)

. Moment methods: no rigorous control in nonlinear case

. Problems are stiff for small σ
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3.3 Stochastic analysis

dxt = f(xt) dt+ σ(x) dWt x ∈ R n

Integral form for solution:

xt = x0 +
∫ t

0
f(xs) ds+

∫ t
0
σ(xs) dWs

where the second integral is the Itô integral
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3.3 Stochastic analysis

dxt = f(xt) dt+ σ(x) dWt x ∈ R n

Integral form for solution:

xt = x0 +
∫ t

0
f(xs) ds+

∫ t
0
σ(xs) dWs

where the second integral is the Itô integral

Application to the exit problem:

The Itô integral is a martingale ⇒ its maximum can be

controlled in terms of variance at endpoint (Doob) :

P
{

sup
t∈[0,T ]

∣∣∣∣∣
∫ t

0
σ(xs) dWs

∣∣∣∣∣ > δ

}
6

1

δ2
E
[(∫ T

0
σ(xs) dWs

)2]

Itô isometry:

E
[(∫ T

0
σ(xs) dWs

)2]
=
∫ T

0
E[σ(xs)

2] ds
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3.3 Stochastic analysis

. Local methods describe dynamics near stable

branch, unstable branch, saddle–node bifurca-

tion, etc
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3.3 Stochastic analysis

Advantages

. Well adapted to fast–slow SDEs

. Rigorous control of nonlinear terms

. Does not require taking the limit σ → 0

. Works in higher dimensions
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3.3 Stochastic analysis

Advantages

. Well adapted to fast–slow SDEs

. Rigorous control of nonlinear terms

. Does not require taking the limit σ → 0

. Works in higher dimensions

Limitations

. Bounds on nonlinear terms are not optimal

. Requires case-by-case studies of different bifurcations

. Control of higher-dimensional bifurcations is not (yet) sufficient
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4. Example: Stochastic FitzHugh–Nagumo equations

dxt =
1

ε
[xt − x3

t + yt] dt+
σ1√
ε

dW (1)
t

dyt = [a− xt] dt+ σ2 dW (2)
t

. W
(1)
t ,W

(2)
t : independent Wiener processes

. 0 < σ1, σ2 � 1, σ =
√
σ2

1 + σ2
2

15



4. Example: Stochastic FitzHugh–Nagumo equations

dxt =
1

ε
[xt − x3

t + yt] dt+
σ1√
ε

dW (1)
t

dyt = [a− xt] dt+ σ2 dW (2)
t

. W
(1)
t ,W

(2)
t : independent Wiener processes

. 0 < σ1, σ2 � 1, σ =
√
σ2

1 + σ2
2

σ = 0: dynamics depends on δ = 3a2−1
2

δ > 0 δ < 0
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4.1 Some prior work

. Numerical: Kosmidis & Pakdaman ’03, . . . , Borowski et al ’11

. Moment methods: Tanabe & Pakdaman ’01

. Approx. of Fokker–Planck equ: Lindner et al ’99, Simpson & Kuske ’11

. Large deviations: Muratov & Vanden Eijnden ’05, Doss & Thieullen ’09

. Sample paths near canards: Sowers ’08
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4.1 Some prior work

. Numerical: Kosmidis & Pakdaman ’03, . . . , Borowski et al ’11

. Moment methods: Tanabe & Pakdaman ’01

. Approx. of Fokker–Planck equ: Lindner et al ’99, Simpson & Kuske ’11

. Large deviations: Muratov & Vanden Eijnden ’05, Doss & Thieullen ’09

. Sample paths near canards: Sowers ’08

Proposed “phase diagram” [Muratov & Vanden Eijnden ’08]

δε1/2

ε3/4

σ

σ = (δε)1/2

σ = δε1/4

σ = δ3/2
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4.2 Small-amplitude oscillations (SAOs)

Definition of random number of SAOs N :

separatrix

F, parametrised by R ∈ [0,1]

P

nullcline y = x3 − x

D
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4.2 Small-amplitude oscillations (SAOs)

Definition of random number of SAOs N :

separatrix

F, parametrised by R ∈ [0,1]

P

nullcline y = x3 − x

D

(R0, R1, . . . , RN−1) substochastic Markov chain with kernel

K(R0, A) = PR0{Rτ ∈ A}

R ∈ F, A ⊂ F, τ = first-hitting time of F (after turning around P )

N = number of turns around P until leaving D
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4.2 Small-amplitude oscillations (SAOs)

General theory of continuous-space Markov chains: [Orey ’71, Nummelin ’84]

Principal eigenvalue: eigenvalue λ0 of K of largest module. λ0 ∈ R
Quasistationary distribution: prob. measure π0 s.t. π0K = λ0π0
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General theory of continuous-space Markov chains: [Orey ’71, Nummelin ’84]

Principal eigenvalue: eigenvalue λ0 of K of largest module. λ0 ∈ R
Quasistationary distribution: prob. measure π0 s.t. π0K = λ0π0

Theorem 1: [B & Landon, 2011] Assume σ1, σ2 > 0

. λ0 < 1

. K admits quasistationary distribution π0

. N is almost surely finite

. N is asymptotically geometric:

lim
n→∞P{N = n+ 1|N > n} = 1− λ0

. E[rN ] <∞ for r < 1/λ0, so all moments of N are finite
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4.2 Small-amplitude oscillations (SAOs)

General theory of continuous-space Markov chains: [Orey ’71, Nummelin ’84]

Principal eigenvalue: eigenvalue λ0 of K of largest module. λ0 ∈ R
Quasistationary distribution: prob. measure π0 s.t. π0K = λ0π0

Theorem 1: [B & Landon, 2011] Assume σ1, σ2 > 0

. λ0 < 1

. K admits quasistationary distribution π0

. N is almost surely finite

. N is asymptotically geometric:

lim
n→∞P{N = n+ 1|N > n} = 1− λ0

. E[rN ] <∞ for r < 1/λ0, so all moments of N are finite

Proof uses Frobenius–Perron–Jentzsch–Krein–Rutman–Birkhoff theorem

and uniform positivity of K, which implies spectral gap
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4.2 Small-amplitude oscillations (SAOs)

Theorem 2: [B & Landon 2011]

Assume ε and δ/
√
ε sufficiently small

There exists κ > 0 s.t. for σ2 6 (ε1/4δ)2/ log(
√
ε/δ)

. Principal eigenvalue:

1− λ0 6 exp
{
−κ

(ε1/4δ)2

σ2

}
. Expected number of SAOs:

Eµ0[N ] > C(µ0) exp
{
κ

(ε1/4δ)2

σ2

}
where C(µ0) = probability of starting on F above separatrix

Proof:

. Construct A ⊂ F such that K(x,A) exponentially close to 1 for all x ∈ A

. Use two different sets of coordinates to approximate K:
Near separatrix, and during SAO
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4.3 Conclusions

Three regimes for δ <
√
ε:

. σ � ε1/4δ: rare isolated spikes

interval ' Exp(
√
ε e−(ε1/4δ)2/σ2

)

. ε1/4δ � σ � ε3/4: transition

geometric number of SAOs

σ = (δε)1/2: geometric(1/2)

. σ � ε3/4: repeated spikes δε1/2

ε3/4

σ

σ = (δε)1/2

σ = δε1/4

σ = δ3/2
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4.3 Conclusions

Three regimes for δ <
√
ε:

. σ � ε1/4δ: rare isolated spikes

interval ' Exp(
√
ε e−(ε1/4δ)2/σ2

)

. ε1/4δ � σ � ε3/4: transition

geometric number of SAOs

σ = (δε)1/2: geometric(1/2)

. σ � ε3/4: repeated spikes δε1/2

ε3/4

σ

σ = (δε)1/2

σ = δε1/4

σ = δ3/2

Warning:

If µ0 = π0, we would have

1− λ0 = 1
E[N ] = P{N = 1}

However, except for weak noise,

Pµ0{N = 1} > Pπ0{N = 1}
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