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Nonlinear dispersive equations

I model equations for propagation of waves in nonlinear
dispersive media

I “Universal models” : water waves, nonlinear optics, plasma
physics, energy transfer in molecular systems, Bose-Einstein
condensation ...

I conservative equations

I In general
i∂tu + P(D)u + F (u) = 0

where u = u(t, x) is the unknown and

P̂(D)u(ξ) = p(ξ)û(ξ)

where p is real valued ; dispersion relation : ω(k) = −p(k)



Examples

Korteweg - de Vries equations

(KdV ) ∂tu + ∂3xu + ∂x(u2) = 0

I Boussinesq, 1872, Korteweg- de Vries, 1895 after observation
by J. Scott Russel, 1834
http ://www.ma.hw.ac.uk/solitons

I asymptotic model for long waves at the surface of water
(small amplitude, shallow water, unidirectional propagation)

rigorous derivation (from free surface Euler equations) :
W. Craig, CPDE, 1985

I here, p(k) = k3 (strong dispersion)

I Model for plasma physics : Herman, J. Phys. A, 1990



Examples

Nonlinear Schrödinger equations

(NLS) i∂tu + ∆u + F (u) = 0

I here, p(k) = |k |2

I describes enveloppe of wave packets in water waves (deep
water) Zakharov, 1968, F (u) = κ|u|2u

I propagation of light in dispersive and nonlinear media (e.g.
optic fibers) F (u) = κ|u|2u
rigorous derivation (as enveloppe, from Maxwell equations) :
Donnat, Joly, Metivier, Rauch, 1996
in optic fibers : special case of the Manakov system

I Bose-Einstein condensation : Gross-Pitaevskii equation
F (u) = V (x)u + κ|u|2u



Integrable equations

Some of those equations are integrable by inverse scattering

 infinity of invariant functionals

 existence of solitons : localized solutions propagating without
change of form, elastic interactions

 resolution into solitons + dispersive tail

KdV : Gardner, Green, Kruskal, Miura, 1967

cubic NLS equations in dimension one (x ∈ R) : Zakharov-Shabat,
1972

Non integrable equations : higher dimension, higher order
nonlinearity, external (possibly random) forces... which of those
properties still hold ? sometimes still localized solutions : solitary
waves



Why adding noise ?

KdV-type equations (no rigorous mathematical derivation)

I random pressure field (water surface waves) : e.g., turbulent
wind on the surface
 additive noise, white in time ξ̇(t, x)

I variations of the bottom topography modeled by a
stationary (in x) random process :
 add a term (∂xu)ξ̇(t), white in time
Craig, de Bouard, Diaz-Espinoza, Guyenne, Sulem,
Nonlinearity, 2008

I temperature effects (plasma physics) : Herman, J. Phys. A,
1990
random potentials : uξ̇(t, x) or (∂xu)ξ̇(t, x)

I model for weak turbulence (Kuksin et ; al.), random
perturbations of nonlinearity, velocity or dispersion (Garnier)



Why adding noise ?

NLS-type equations

I temperature effects (light propagation in molecular
systems) :  potential terms uξ̇(t, x)
Bang, Christiansen, If, Rasmussen, Gaididei, Phys. Rev. E,
1994

I inhomogeneities in the medium (e.g. optic fibers) :
Falkovich, Kolokolov, Lebedev, Turitsyn, Phys. Rev. E, 1994
amplifiers :  additive noise ξ̇(t, x)
dispersion management  perturbation of dispersion ξ̇(t)∆u

I fluctuations of the laser frequency (Bose-Einstein
condensation) : induces fuctuations of the confining potential
Abdullaev, Baizakov, Konotop, Nonlinearity and Disorder,
2001  ξ̇(t)V (x)



Solitary waves

Localized solutions propagating without change of form (due to
nonlinearity + dispersion)

I travelling waves : u(x , t) = ϕv (x − vt), v ∈ Rd

I standing waves : u(x , t) = e iωtϕω(x), ω ∈ R

Symmetries of equations lead to more general families of solutions

KdV-type equations : two parameter family of solutions

uc,x0(x , t) = ϕc(x − ct − x0), c > 0, x0 ∈ R

NLS-type equations : 2d + 2-parameter family of solutions

uω,θ,v ,x0(x , t) = ϕω(x − 2vt − x0)e i(ωt−v .x+v2t+θ)

(translation, Galilean and Gauge transformations)



Solitary waves

Integrable cases : resolution into soliton for any localized solution

Theorem : (Eckaus-Schuur, 1986, Deft-Zhou, 1993)
Let u(x , t) be a regular and localized solutions of the KdV
equation ; then there exist N ∈ N, c1, · · · , cN > 0, γ1, · · · , γN ∈ R,
ν > 0 and µ > 0 such that

lim
t→∞

sup
x≥−µ−νt1/3

|u(x , t)−
N∑

k=1

ϕck (x − ckt − γk)| = 0



Solitary waves

Symplectic formulation of the equation

∂tu = JH ′(u)

where J = ∂x for (KdV), J = i for (NLS) and

(KdV ) H(u) =
1

2

∫
(∂xu)2dx − 1

3

∫
u3dx

energy or Hamiltonian

(NLS) H(u) =
1

2

∫
|∇u|2dx − 1

4

∫
|u|4dx

the mass or charge si also conserved :

m(u) =
1

2

∫
|u|2dx

Solitary wave = critical point of the action functional

Eω(u) = H(u) + ωm(u)

Ground state = critical point minimizing Eω



Solitary waves

Numerical methods for computations of solitary waves

I Shooting methods (radial solutions){
ϕ′′(r) + d−1

r ϕ′(r)− ωϕ(r) + κ|ϕ(r)|2σϕ(r) = 0

ϕ(0) = β, ϕ′(0) = 0

+ dichotomy argument to find β∗ such that limr→∞ ϕ(r) = 0

Excited states, central vortices, systems of equations
Di Menza, M2AN, 2009

I Complex time integration : solve the heat flow

∂tu = H ′(u)

with renormalization of the L2-norm at each time step  
convergence to a solitary wave



Solitary waves

computation of the ground state of NLS by shooting method
(Di Menza, 2009)



Solitary waves

computation of excited state of NLS by shooting method
(Di Menza, 2009)



Solitary waves

computation of excited state of NLS by shooting method
(Di Menza, 2009)



Solitary waves
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computation of vortices of NLS by shooting method
(Belaouar, 2011)



Solitary waves

computation of vortices of 3-D NLS by complex time integration
(Danäıla, 2006)



Solitary waves : orbital stability

Define

(GKdV ) Uε =

{
u ∈ H1, inf

s∈R
‖u − ϕω(.− s)‖H1 ≤ ε

}

ϕω is orbitally stable if, given
ε > 0, any solution starting
sufficiently close to ϕω stays in
Uε for all time

U

Theorem : ϕω0 is stable iff Eω(ϕω) is a convex function of ω near
ω0

Benjamin, Bona-Souganidis-Strauss, Weinstein,
Grillakis-Shatah-Strauss



Solitary waves : orbital stability

Key point : study of Lω = E ′′ω(ϕω) (not positive definite)

I if d
dωm(ϕω0) > 0 then ϕω0

is a minimum of H for
constant m

m=cste

( )’’

0

I if d
dωm(ϕω0) < 0 then

there is a curve ψα with
m(ψα) = m(ϕω0) on
which H is maximized at
ϕω0

( )’’

0

m=cste



Solitary waves : asymptotic stability

linearization : u(t, x) = ϕω(x − ωt) + v(t, x − ωt) (GKdV)

 
dv

dt
= JLωv

I σe(JLω) = iR

I nullspace generated by
invariances of equation

ex (GKdV) :{
∂xLω(∂xϕω) = 0

∂xLω(∂ωϕω) = −∂xϕω



Solitary waves : asymptotic stability

GKdV : Pego-Weinstein, 1994, Martel-Merle, 2001
NLS : Buslaev-Perelman, 1992, Buslaev-Sulem, 2003

Principal part written as a modulated solitary wave :

u(t, x) = ϕω(t)(x − x(t)) + v(t, x − x(t))

and ω(t), x(t) chosen in order to eliminate secular modes

I cvgence to a solitary wave with shifted parameters
ω(t)→ ω+, x(t) ∼ ω+t + x+ as t → +∞

I cvgence of v in a space with exponential weight (or locally in
space)

I also true for n-solitary wave solutions
Martel-Merle-Tsai, 2003

I recent results on non elastic collision of solitons for GKdV
Martel-Merle, 2009



Stochastic case : KdV

du + (∂3xu + ∂x(u2))dt =

{
εdW
εudW

W (t) infinite dimensional Wiener process i.e.

W (t, x) =
∑
j

Φ(ej)(x)Wj(t)

Wj indep. 1-D BM, (ej) c.o.s. in L2(R),
I Φ Hilbert-Schmidt operator from L2(R) into H1(R), if

additive noise

I Φ(ej) = k ∗ ej , with k ∈ H1(R) ∩ L1(R) if multiplicative
noise ; equivalently

W (t, x) =

∫ t

0

∫
R
k(x − y)B(ds, dy)

where B is a Brownian sheet on R+ × R



Stochastic case : KdV

Let uε(0, x) = ϕω0(x) ; write the solution uε of the stochastic
equation as

uε(t, x) = ϕωε(t)(x − xε(t)) + εηε(t, x − xε(t))

where the parameters xε(t) and ωε(t) are random modulation
parameters, chosen such that for all t,
(ηε(t), ϕω0) = (ηε(t), ∂xϕω0) = 0

This decomposition holds as long as ‖εηε(t)‖H1 ≤ α and
|ωε(t)− ω0| ≤ α for α > 0 sufficiently small.

Question : Can we estimate the time τ εα with

τ εα = inf{t > 0, ‖εηε(t)‖H1 ≥ α or |ωε(t)− ω0| ≥ α}?

exit time
{  (.

0
x )}

0
+



Stochastic case : KdV

joint works with A. Debussche, E. Gautier, 2007-2010
For all T > 0, and ε > 0 with ε2T sufficiently small,

P(τ εα ≤ T ) ≤ exp(−C (α)

ε2T
)

Moreover, in the additive case, if W replaced by Wn approximating
space-time white noise, then there exists a constant C (α, ω0) such
that for all T > 0,

lim inf
n→+∞

lim inf
ε→0

ε2 log P(τn,εα ≤ T ) ≥ −C (α, ω0)

T

Remark :

I LDP holds in multiplicative case ; however, have to solve a
controllability problem by a potential  open problem

I lower bounds on the exit time without modulation : −C(α,ω0)
T 3



Stochastic case : KdV

Multiplicative homogeneous case :
ηε converges to η as ε goes to zero, on fixed time intervals, in the
mean square sense ; η solution of

dη = ∂xLω0ηdt + Q(ϕω0dW̃ )

with η(0) = 0 and

I W̃ (t, x) = W (t, x + ω0t)

I Q : projector on the “stable manifold”

I η is a centered Gaussian process (“Ornstein-Uhlenbeck” if
∂xLω0 dissipative operator)

Pego, Weinstein, CMP, 1994 : Q∂xLω0 dissipative in spaces with
exponential weights
 η converges weakly to a Gaussian stationary measure as t goes
to infinity



Stochastic case : KdV

I The modulation equations are given by{
dxε = ω0 + εB1dt + εdB2 + o(ε)
dωε = εdB1 + o(ε)

with (B1,B2) a R2-valued brownian motion, corresponding to
projection of the noise on the center manifold

I Keeping only first order terms in ε, we obtain

max
x∈R

E
(
ϕωε(t)(x − xε(t))

)
≤ Kω0ε

−1/2t−5/4

for large t

Wadati, J. Phys. Soc. Japan, 1983 : additive pure time white
noise, Ct−3/2



Stochastic case : NLS

Same kind of results for NLS equation with

I confining potential : V (x) = |x |2

I small noise : εV (x)u ◦ dW (t)

AdB, Fuikuizumi, 2009

ψε(t, x) = e iθ
ε(t)(φωε(t)(x) + εηε(t, x))

exp(i t
0

){ }

No asymptotic stability (bounds states) but asymptotics on η for ω
close to ωmin = −d



Stochastic case : numerical approximations

Space-time NLS : Crank-Nicolson in time + finite differences or
finite elements in space + semi-implicit discretization of the noise
u ◦ dW (t, x)

Debussche-Di Menza, 2002, Barton-Smith-Debussche-Di Menza,
2005

convergence of the semi-discretization in time + order estimates
dB, Debussche, 2004, 2006

Additive KdV : Crank-Nicolson in time + finite elements in space

Debussche-Printems, 1999, 2001

convergence of the semi-discretization in time
Debussche-Printems, 2006



Stochastic case : numerical approximations

NLS with time-dependent noise :
Splitting methods :

I i∂tu + ∆u = 0 : FFT

I nonlinearity + noise : explicit integration

M. Gazeau, 2011, work in progress with R. Belaouar

Alternative to Crank-Nicolson : relaxation scheme (avoids nonlinear
implicitness)

C. Besse, deterministic NLS, 1998



Stochastic case : numerical approximations (KdV)



Stochastic case : numerical approximations (KdV)



Stochastic case : numerical approximations (KdV)



Stochastic case : numerical approximations (KdV)



Stochastic case : numerical approximations (NLS)
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Stochastic case : numerical approximations (NLS)
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Stochastic case : numerical approximations (NLS)
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Conclusion and open problems

Dynamics of stochastic nonlinear dispersive equations still needs
investigations : lots of applications

Open problems in asymptotic dynamics :

I Take account of asymptotic stability for KdV in additive case ?

I Explain diffusion NLS soliton with space-time noise ?

I KdV in periodic case x ∈ T : Y. Tsutsumi, 2009

Assume |k ∗ |v |2|2L2 ≥ δ
2|v |4L2 with 2δ2 ≥ |k |2L2

Then the solution u of

du + (∂3xu + ∂x(u2))dt = udW

satisfies :
|u(t)|L2 → 0, a.s. as t → +∞



Conclusion and open problems

I Dynamics at time 1/ε2 : averaging ?

Inverse scattering : Garnier, 1998 (NLS), 2001 (KdV)
Noise representing perturbations of velocity, dispersion or
nonlinearity ; Propagation of solitons : equations on the
scattering data ; no estimate on the remaining terms for the
original solution

Action-angle variables : Kuksin, Piatnitski, 2008
Hasminski-Whitham averaging for

∂tu + ∂3xu − ν∂2xu + ∂x(u2) =
√
νξ̇;

modeling of weak turbulence.



Conclusion and open problems

Rigorous derivation of stochastic models

Needs stochastic homogenization (and more...) e.g.

I Dirichlet to Neumann operator in domain with random
boundary (water wave problem)

I Propagation in molecular systems : stochastic NLS equation
formally obtained from interacting particle system i~dφn

dt +
∑

p 6=n Jpnφp + χunφn = 0

M d2un
dt2

+ Mλdun
dt + Mω2

0un = χ|φn|2 + ηn

Last step : diffusion approximation (current work with A.
Debussche, M. Gazeau)


