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Mixed-Mode Oscillations (MMOs)

Belousov–Zhabotinsky reaction

Hudson, Hart, and Marinko: Belousov-Zhabotinskii reaction 1605 
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FIG. 12. Recording from bromide ion electrode; T = 25°C; 
flow rate = 3. 99 ml/min; Ce+3 catalyst. 

results of Figs. 12 and 13 in various ways. We jumped 
to these conditions from various starting pOints. We 
also perturbed the two peak oscillations normally oc-
curring at these flow rates using the techniques described 
above. These attempts were not successful. It seems 
unlikely then that bistability occurs under these condi-
tions. Rather the behavior shown in Figs. 12 and 13 
was probably caused by some unknown variation in a 
system parameter. For example, the concentration of 
one of the reactants or a flow rate may have been in 
error. 

DISCUSSION 
Periodic oscillations in the B-Z reaction can be 

simple or complex. At constant temperature and feed 
concentrations there is a series of bifurcations from 
one type of oscillation to another as the flow rate is 
changed. The complexity and the number of peaks per 
cycle increases in general with increasing flow rate to 
a point just below that where the reactor becomes steady 
These bifurcations can also be produced by changes in 
temperature or feed concentration. 

The periodic oscillations are stable as indicated by 
their consistency over the course of a long run (up to 
48 h) and their insensitivity to perturbations. For every 
case, a perturbed system returned quickly to the state 
it was in immediately before the perturbation. Further-
more, there is no strong evidence that multiple oscilla-
tory states exist at the conditions investigated in this 
work, i. e., there appears to be only a single state at a 
fixed temperature, flow rate, and feed. concentration. 
It is true that we have occasionally observed more than 
one type oscillation in two different experiments for 
which conditions were ostensibly the same (Figs. 12 and 
13). Nevertheless, some variation in external condi-
tions is unavoidable in an experiment of this type, and 
it is likely that a small alteration in conditions such as 
flow rate or feed concentration caused the change ob-
served. The most convincing argument for this view is 
the fact that we were unable to perturb the system from 
a given state. The counter argument is that we did not 
use the correct perturbation, but we feel that we tried 

a sufficient number of the infinite possibilities. In 
earlier studies, some experimental evidence has been 
presented that indicates that multiple states can occur 
in the oscillatory range of the B-Z reaction in an open 
system. This includes two oscillatory states22 and an 
oscillatory state and a steady state3,22 under the same 
conditions. Except for some early unreliable results, 
no such phenomena were observed in the present work. 
(In these early studies several changes from one type of 
oscillatory state to another were obtained. This in-
cluded changes from one periodic state to another and 
also changes from periodic to nonperiodic states or the 
inverse. However, these phenomena were not repro-
ducible and subsequent improvements in control of the 
system parameters eliminated them entirely.) The feed 
concentrations employed by Marek and Svobodova22 were 
quite different than those employed here. Furthermore, 
there is undoubtedly also a difference in bromide ion 
concentration in the feedstream in the three studies, 
and it is known that bromide ion concentration can have 
a significant effect on the behavior of the system (e. g. , 
the calculations of Bar-Eli and Noyes23). Experiments 
are continuing on the effect of bromide ion on the reac-
tion. 

Mathematical analyses, such as that by Lorenz8 on 
thermal convection and Rossler12 on an abstract chemi-
cal reaction system, have shown that chaotic solutions 
can be obtained for deterministic differential equations. 
Tyson14 has analyzed a model of the B-Z reaction and 
shown that chaotic states should be possible. The 
analysis is based on the idea that chaotic states can 
occur along with periodic oscillations of period three. 
No numerical solutions of the differential equation were 
presented. Showalter, Noyes, and Bar-Eli6 have 
recently presented extensive numerical solutions of a 
B-Z reaction model. They obtained solutions exhibit-
ing multiple peak periodic oscillations, but only ob-
tained nonperiodic solutions when the error parameter 
was made larger. such that spurious results results 
were obtained. Of course, short time scale external 
fluctuations could also be causing the nonperiodic be-
havior observed in our experiments. 
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FIG. 13. Recording from bromide ion electrode; T = 25°C; 
flow rate = 4.11 ml/min; Ce+3 catalyst. 
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Recording from bromide ion electrode; T=25◦ C; flow rate = 3.99 ml/min; Ce+3 catalyst [Hudson, Hart, Marinko ’79]

Hunting French Ducks in a Noisy Environment Barbara Gentz MFO, 26 August 2011 1 / 28



MMOs Slow–Fast Systems Canards Random Perturbations Stochastic Folded Nodes Noisy SAOs & Escape

MMOs in Biology

Layer II Stellate Cells

preparation, the aim of the present study was to characterize
the specific properties of Ih in the SCs and to examine the role
of this current in the generation of subthreshold membrane
potential oscillations in these cells. In addition, a simplified
biophysical simulation based on the voltage- and current-clamp
data was used to study the interactions between Ih and INaP in
the generation of such oscillations. Our results indicate that the
dynamic interplay between the gating and kinetic properties of
Ih and INaP is essential for the generation of rhythmic sub-
threshold oscillations by the SCs. Given the key position of the
SCs in the temporal lobe memory system, modulation of Ih in
the SCs may have major implications for the control of popu-
lation dynamics in the entorhinal network and in the memory
processes it carries out. Some of these results have been
presented previously in abstract form (Dickson and Alonso
1996, 1998; Fransén et al. 1998).

M E T H O D S

General

Brain slices were prepared from male Long-Evans rats (100–250 g,
i.e., 30–60 days of age) as previously described (Alonso and Klink
1993). Briefly, animals were decapitated quickly, and the brain was
removed rapidly from the cranium, blocked, and placed in a cold
(4°C) Ringer solution (pH 7.4 by saturation with 95% O2-5% CO2)
containing (in mM) 124 NaCl, 5 KCl, 1.25 NaH2PO4, 2 CaCl2, 2
MgSO4, 26 NaHCO3, and 10 glucose. Horizontal slices of the retro-
hippocampal region were cut at 350–400 �m on a vibratome (Pelco

Series 1000, Redding, CA) and were transferred to an incubation
chamber in which they were kept submerged for �1 h at room
temperature (24°C). Slices were transferred, one at a time, to a
recording chamber and were superfused with Ringer solution, also at
room temperature. The chamber was located on the stage of an
upright, fixed-stage microscope (Axioskop, Zeiss) equipped with a
water immersion objective (�40–63: long-working distance), No-
marski optics, and a near-infrared charge-coupled device (CCD) cam-
era (Sony XC-75). With this equipment, stellate and pyramidal-like
cells could be distinguished based on their shape, size, and position
within layer II of the medial entorhinal cortex (Fig. 1A) (Klink and
Alonso 1997). Stellate cells (SCs) were selected for whole cell re-
cording.

Recording

Patch pipettes (4–7 M�) were filled with (in mM) 140–130 gluconic
acid (potassium salt: K-gluconate), 5 NaCl, 2 MgCl2, 10 N-2-hydroxy-
ethylpiperazine-N-2-ethanesulfonic acid (HEPES), 0.5 ethylene glycol-
bis(�-aminoethyl ether)-N,N,N�,N�-tetraacetic acid (EGTA), 2 ATP
(ATP Tris salt), and 0.4 GTP (GTP Tris salt), pH 7.25 with KOH. In
additional experiments performed to assess the contribution of chloride
ions to Ih, a modified intracellular solution was made containing (in mM)
120 K-gluconate, 10 KCl, 5 NaCl, 2 MgCl2, 10 HEPES, 0.5 EGTA, 2
ATP-Tris, and 0.4 GTP-Tris, pH 7.25 with KOH. The liquid junction
potential was estimated following the technique of Neher (1992). In brief,
the offset was zeroed while recording the potential across the patch
pipette and a commercial salt-bridge ground electrode (MERE 2, WPI,
Sarasota, FL) when the chamber was filled with the same intracellular
solution as used in the pipette. After zeroing, the chamber solution was

FIG. 1. Basic electrophysiological profile of entorhinal cortex (EC) layer II stellate cells (SCs) under whole cell current-clamp
recording conditions. A: digitized photomicrograph demonstrating the visualization of a patched SC. - - -, approximate border
between layers I and II. B: V-I relationship of the SC in A demonstrating robust time-dependent inward rectification in the
hyperpolarizing direction. C: action potential from (D2) (*) at an expanded time and voltage scale. Note the fast-afterhyperpo-
larization/depolarizing afterpotential/medium afterhyperpolarization (fast-AHP/DAP/medium-AHP) sequence characteristic of
these cells. D: subthreshold membrane potential oscillations (1 and 2) and spike clustering (3) develop at increasingly depolarized
membrane potential levels positive to about �55 mV. Autocorrelation function (inset in 1) demonstrates the rhythmicity of the
subthreshold oscillations.
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D: subthreshold membrane potential oscillations (1 and 2) and spike clustering (3) develop at increasingly depolarized membrane potential levels

positive to about –55 mV. Autocorrelation function (inset in 1) demonstrates the rhythmicity of the subthreshold oscillations [Dickson et al ’00]

Questions: Origin of small-amplitude oscillations?
Source of irregularity in pattern?
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Mechanisms for MMOs

. In ODEs and PDEs with bifurcations

. Through the canard phenomenon

. Noise-induced [Muratov, Vanden Eijnden ’08]

A few references

. Numerical studies: [Borowski, Kuske, Li, Cabrera ’11], . . .

. Approximation of FPE: [Lindner, Schimansky-Geier ’99], [Simpson, Kuske ’11]

. Large deviations: [Doss, Thieullen ’09]

. Sample-path behaviour for canards: [Sowers ’08]
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MMOs & Slow–Fast Systems

MMOs can be observed in slow–fast systems undergoing a folded-node bifurcation
(1 fast, 2 slow variables)

Normal form of folded-node [Benôıt, Lobry ’82; Szmolyan, Wechselberger ’01]

εẋt = yt − x2
t

ẏt = −(µ+ 1)xt − zt

żt =
µ

2

Timescale separation: ε� 1

Questions: Dynamics for small ε > 0 ?
Effect of noise?

Approach: General results for deterministic slow–fast systems; canards
Random perturbations of slow–fast systems; application to MMOs
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General Slow–Fast Systems: Singular Limits

In slow time t

εẋ = f (x , y)

ẏ = g(x , y)

y ε→0

Slow subsystem

0 = f (x , y)

ẏ = g(x , y)

Study slow variable y on slow
or critical manifold f (x , y) = 0

t 7→s
⇐⇒

⇐⇒/

In fast time s = t/ε

x ′ = f (x , y)

y ′ = εg(x , y)

y ε→0

Fast subsystem

x ′ = f (x , y)

y ′ = 0

Study fast variable x for frozen
slow variable y

Hunting French Ducks in a Noisy Environment Barbara Gentz MFO, 26 August 2011 5 / 28
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Slow (or Critical) Manifolds

C0 = {(x , y) ∈ Rn × Rm : f (x , y) = 0}

Definition

. C0 is normally hyperbolic at (x , y) ∈ C0 if

∂

∂x
f (x , y) has only eigenvalues λj = λj(x , y) with Reλj 6= 0

. C0 is asymptotically stable or attracting at (x , y) ∈ C0 if

Reλj(x , y) < 0 for all j

. C0 is unstable at (x , y) ∈ C0 if

Reλj(x , y) > 0 for at least one j

Hunting French Ducks in a Noisy Environment Barbara Gentz MFO, 26 August 2011 6 / 28
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Fenichel’s Theorem: Adiabatic Manifolds

Theorem [Tihonov ’52; Fenichel ’79]

Assume C0 is normally hyperbolic.

∃ adiabatic manifold Cε s.t.

. Cε is locally invariant

. Cε = C0 +O(ε)

If C0 is uniformly attracting , i.e.,

Re(λj(x , y)) 6 −δ0 < 0 ∀(x , y)

then Cε attracts nearby solutions
exponentially fast

x

y1

y2

C0 Cε

Hunting French Ducks in a Noisy Environment Barbara Gentz MFO, 26 August 2011 7 / 28



MMOs Slow–Fast Systems Canards Random Perturbations Stochastic Folded Nodes Noisy SAOs & Escape

Example: The Planar Fold

Normal form near fold point

εẋ = y − x2

ẏ = µ− x
(+ higher-order terms)
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ε = 0.05

(a) µ = 0.1 (b) µ = 0.0 (c) µ = −0.1
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Folded-Node Bifurcation: Slow Manifold

εẋ = y − x2

ẏ = −(µ+ 1)x − z

ż =
µ

2

x

y

z

Ca
0

Cr
0

L

(Arrows show slow flow)

ε = 0: Slow manifold has a decomposition

C0 = {(x , y , z) ∈ R 3 : y = x2} = Ca
0 ∪ L ∪ Cr

0
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Folded-Node: Adiabatic Manifolds and Canard Solutions

[Desroches et al ’11 (to appear)]

Assume

. ε sufficiently small

. µ ∈ (0, 1), µ−1 6∈ N

Theorem
[Benôıt, Lobry ’82;
Szmolyan, Wechselberger ’01;
Wechselberger ’05;
Brøns, Krupa, Wechselberger ’06]
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Folded-Node: Adiabatic Manifolds and Canard Solutions

[Desroches et al ’11 (to appear)]

Assume

. ε sufficiently small

. µ ∈ (0, 1), µ−1 6∈ N

Theorem

. Existence of strong and
weak (maximal) canards
γs,w
ε

. γs
ε makes 1/2 oscillation

(or 1 twist) around γw
ε

. 2k + 1 < µ−1 < 2k + 3:
∃ k secondary canards γjε

. γjε makes (2j + 1)/2
oscillations around γw

ε

Hunting French Ducks in a Noisy Environment Barbara Gentz MFO, 26 August 2011 10 / 28
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Folded-Node: Canard Spacing
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THE GEOMETRY OF SLOW MANIFOLDS NEAR A FOLDED NODE 1153
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Figure 9. Spiraling behavior of the secondary canards of (1.2) with µ = 8.5. Panel (a) shows the primary
canards γs and γw (black) and the three secondary canards η1, η2, and η3; also shown for orientation is the
parabolic cylinder S with its fold curve F . Panels (b) and (c) show the projections onto the (x, z)- and (y, z)-
planes, respectively.

We remark here that the oscillations of uz(1) near a fixed canard increase as µ is increased.
Hence, canards ηi for large i can be detected reliably for larger µ and then continued back
into the range of lower values of µ.

5.2. Spiraling behavior of the secondary canards. To explain the spiraling of the sec-
ondary canards around the weak canard, we concentrate on the case µ = 8.5, for which there
are three secondary canards, η1 to η3. They are shown in Figure 9 together with the primary
canards γs and γw (black curves). Figure 9(a) is a three-dimensional view of the canards,
where we also show for orientation the parabolic cylinder S (grey) with its fold curve F (thick
grey line). The secondary canards ηi lie seemingly parallel to γs for |x| large but follow γw

near F . With increasing i the ηi lie closer to γw as they spiral increasingly around it. Figures

[Desroches, Krauskopf, Osinga ’08]
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We remark here that the oscillations of uz(1) near a fixed canard increase as µ is increased.
Hence, canards ηi for large i can be detected reliably for larger µ and then continued back
into the range of lower values of µ.

5.2. Spiraling behavior of the secondary canards. To explain the spiraling of the sec-
ondary canards around the weak canard, we concentrate on the case µ = 8.5, for which there
are three secondary canards, η1 to η3. They are shown in Figure 9 together with the primary
canards γs and γw (black curves). Figure 9(a) is a three-dimensional view of the canards,
where we also show for orientation the parabolic cylinder S (grey) with its fold curve F (thick
grey line). The secondary canards ηi lie seemingly parallel to γs for |x| large but follow γw

near F . With increasing i the ηi lie closer to γw as they spiral increasingly around it. Figures

Lemma
For z = 0: Distance between canards γkε and γk+1

ε is O(e−c0(2k+1)2µ)
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Folded-Node: Canard Spacing
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Hence, canards ηi for large i can be detected reliably for larger µ and then continued back
into the range of lower values of µ.

5.2. Spiraling behavior of the secondary canards. To explain the spiraling of the sec-
ondary canards around the weak canard, we concentrate on the case µ = 8.5, for which there
are three secondary canards, η1 to η3. They are shown in Figure 9 together with the primary
canards γs and γw (black curves). Figure 9(a) is a three-dimensional view of the canards,
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ondary canards around the weak canard, we concentrate on the case µ = 8.5, for which there
are three secondary canards, η1 to η3. They are shown in Figure 9 together with the primary
canards γs and γw (black curves). Figure 9(a) is a three-dimensional view of the canards,
where we also show for orientation the parabolic cylinder S (grey) with its fold curve F (thick
grey line). The secondary canards ηi lie seemingly parallel to γs for |x| large but follow γw

near F . With increasing i the ηi lie closer to γw as they spiral increasingly around it. Figures

Lemma
For z = 0: Distance between canards γkε and γk+1

ε is O(e−c0(2k+1)2µ)
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Folded-Node: Proof of Canard-Spacing Lemma

Lemma
For z = 0: Distance between canards γkε and γk+1

ε is O(e−c0(2k+1)2µ)

Proof

. Let z0 6 z 6 0 and consider z as “time”

. Blow-up transformation removes ε-dependence (see below)

. Explicit expressions for strong and weak maximal canards [Benôıt ’90]

. Deviation u of arbitrary solution from weak canard satisfies

µ
du

dz
=

(
4z 2

−2(µ+ 1) 0

)(
u1

u2

)
+

(
−2u2

1

0

)
. Eigenvalues 2z ± iω(z) for z < 0: Rotation + contraction

. Suffices to calculate contraction rate

Hunting French Ducks in a Noisy Environment Barbara Gentz MFO, 26 August 2011 12 / 28
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Random Perturbations of General Slow–Fast Systems

dxt =
1

ε
f (xt , yt) dt +

σ√
ε
F (xt , yt) dWt

dyt = g(xt , yt) dt + σ′ G (xt , yt) dWt

. {Wt}t>0 k-dimensional (standard) Brownian motion

. adiabatic parameter ε > 0 (no quasistatic approach)

. noise intensities σ = σ(ε) > 0, σ′ = σ′(ε) > 0 with σ′(ε)/σ(ε) = %(ε) 6 1

Timescales: We are interested in the regime

Trelax = O(ε)� Tdriving = 1� TKramers = ε eV/σ
2

(in slow time)

Assumption: C0 is uniformly attracting (for the deterministic system)

Hunting French Ducks in a Noisy Environment Barbara Gentz MFO, 26 August 2011 13 / 28



MMOs Slow–Fast Systems Canards Random Perturbations Stochastic Folded Nodes Noisy SAOs & Escape

Deviation from the Adiabatic Manifold due to Noise

Main idea

. Consider deterministic process (xdet
t , ydet

t ) ∈ Cε (using invariance of Cε)

. Linearize SDE for deviation ξt := xt − xdet
t from adiabatic manifold

dξ0
t =

1

ε
A(ydet

t )ξ0
t dt +

σ√
ε
F0(ydet

t ) dWt

where A(y det
t ) = ∂x f (xdet

t , y det
t ) and F0 is 0th-order approximation to F

Key observation

. Resulting process ξ0
t is a (non-autononous) Gaussian process

.
1

σ2
Cov ξ0

t is a particular solution of the deterministic slow–fast system

εẊ (t) = A(ydet
t )X (t) + X (t)A(ydet

t )T + F0(ydet
t )F0(ydet

t )T

ẏdet
t = g(xdet

t , ydet
t )

. System admits an adiabatic manifold {(X (y , ε), y) : y ∈ D0}
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Defining Typical Neighbourhoods of Adiabatic Manifolds

Typical neighbourhoods

B(h) =
{

(x , y) :
〈[
x − x̄(y , ε)

]
,X (y , ε)−1

[
x − x̄(y , ε)

]〉
< h2

}
where Cε = {(x̄(y , ε), y) : y ∈ D0}

B(h)

Cε

(xdet
t , y det

t )

First-exit times

τD0 = inf{s > 0: ys /∈ D0}
τB(h) = inf{s > 0: (xs , ys) /∈ B(h)}
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Concentration of Sample Paths near Adiabatic Manifolds

Theorem [Berglund & G ’03]

. Assume non-degeneracy of noise term:

‖X (y , ε)‖ and ‖X (y , ε)−1‖ uniformly bounded in D0

. Then ∃ ε0 > 0 ∃ h0 > 0 ∀ ε 6 ε0 ∀ h 6 h0

P
{
τB(h) < min(t, τD0 )

}
6 Cn,m(t) exp

{
− h2

2σ2

[
1−O(h)−O(ε)

]}
where Cn,m(t) =

[
Cm + h−n

](
1 +

t

ε2

)
Remarks

. Bound is sharp: Similar lower bound

. If initial condition not on Cε: additional transitional phase

. On longer time scales: Behaviour of slow variables becomes crucial
(→ Assumptions on g)

Hunting French Ducks in a Noisy Environment Barbara Gentz MFO, 26 August 2011 16 / 28



MMOs Slow–Fast Systems Canards Random Perturbations Stochastic Folded Nodes Noisy SAOs & Escape

Stochastic Folded Nodes: Rescaling

dxt =
1

ε
(yt − x2

t ) dt +
σ√
ε

dW
(1)
t

dyt = [−(µ+ 1)xt − zt ] dt + σ′ dW
(2)
t

dzt =
µ

2
dt

Rescaling (blow-up transformation): (x , y , z , t) = (
√
εx̄ , εȳ ,

√
εz̄ ,
√
ε t̄)

dxt = (yt − x2
t ) dt +

σ

ε3/4
dW

(1)
t

dyt = [−(µ+ 1)xt − zt ] dt +
σ′

ε3/4
dW

(2)
t

dzt =
µ

2
dt

Rescale noise intensities: (σ, σ′) = (ε3/4σ, ε3/4σ′) and consider z as “time”
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Stochastic Folded Nodes: Final Reduction Step

Deviation (ξz , ηz) = (xz − xdet
z , yz − ydet

z ) satisfies

dξz =
2

µ
(ηz − ξ2

z − 2xdet
z ξz) dz +

√
2σ√
µ

dW (1)
z

dηz = − 2

µ
(µ+ 1)ξz dz +

√
2σ′√
µ

dW (2)
z

We’re in business . . . (almost)

. For small µ: Slowly driven system with two fast variables

. Calculate asymptotic covariance matrix

. Use Neishtadt’s theorem on delayed Hopf bifurcations to obtain the correct
asymptotic behaviour of the size of the covariance tube (see next slide)

. Use general result on concentration of sample paths
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Stochastic Folded Nodes: Covariance Matrix

Lemma

For z 6
√
µ, the covariance matrix X (z , µ) =

(
X11 X12

X21 X22

)
satisfies

X11,X22 �
{

1
|z| for z 6 −√µ ,

1√
µ for |z | 6 √µ ,

|X11 − X22| = O(1) , |X12| = |X21| = O(1)

Proof

. Coordinate change → canonical form

. Slow–fast system undergoing dynamic Hopf bifurcation
(pair of complex eigenvalues crosses the imaginary axis at z = 0)

. Result follows from [Neishtadt ’87]
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Stochastic Folded Nodes: Concentration of Sample Paths

Theorem [Berglund, G & Kuehn ’10 (submitted to JDE)]

P
{
τB(h) < z

}
6 C (z0, z) exp

{
−κ h2

2σ2

}
∀z ∈ [z0,

√
µ]

Recall: For z = 0

. Distance between canards γkε and γk+1
ε

is O(e−c0(2k+1)2µ)

. Section of B(h) is close to circular with
radius µ−1/4h

. Noisy canards become indistinguishable
when typical radius µ−1/4σ ≈ distance
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Ducks or Pasta . . . ?

γs
ε γ1

ε γ2
ε γ3

ε γ4
ε γ5

ε γw
ε
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Noisy Small-Amplitude Oscillations

Theorem [Berglund, G & Kuehn ’10 (submitted)]

Canards with 2k+1
2 oscillations become indistinguishable from noisy fluctuations for

σ > σk(µ) = µ1/4 e−(2k+1)2µ
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Early Escape and Global Returns

Early escape

. Consider z >
√
µ

. S0 = neighbourhood of γw, growing
like
√
z

Theorem [Berglund, G & Kuehn ’10]

∃κ, κ1, κ2,C > 0
s.t.
for σ|log σ|κ1 6 µ3/4

P
{
τS0 > z

}
6 C |log σ|κ2 e−κ(z2−µ)/(µ|log σ|)

Remark
r.h.s. small for z �

√
µ|log σ|/κ

Global returns

0

0.025

0.05

0.075

0.1

−0.005
0.015

0.035
0.055

0

200

800

1,200

x

y

y

z

z

(a)

(b)

ΣJ

p

p(y, z)

pdet

x = −0.3
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Early Escape: Proof

Theorem

For σ|log σ|κ1 6 µ3/4

P
{
τS0 > z

}
6 C |log σ|κ2 e−κ(z2−µ)/(µ|log σ|)

Proof

. Diffusion-dominated escape from smaller set around γw
ε

. Estimate distance covered in short time intervals

. Use Markov property to restart

. Drift-dominated escape from S0

. Use polar coordinates and averaging

. Consider radius only

. Show that drift dominates diffusion

Hunting French Ducks in a Noisy Environment Barbara Gentz MFO, 26 August 2011 24 / 28



MMOs Slow–Fast Systems Canards Random Perturbations Stochastic Folded Nodes Noisy SAOs & Escape

A Model Allowing for Global Returns
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x

x

y

zt

dxt =
1

ε
(yt − x2

t − x3
t ) dt +

σ√
ε

dW
(1)
t

dyt = [−(µ+ 1)xt − zt ] dt + σ′ dW
(2)
t

dzt =
[µ

2
+ axt + bx2

t

]
dt
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Mixed-Mode Oscillations in the Presence of Noise
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Observations

. Noise smears out small-amplitude oscillations

. Early transitions modify the mixed-mode pattern
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Outlook: Investigate MMO Patterns in Noisy Systems
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Open Problems

. Study return mechanism via return map in the presence of noise

. Can preselected MMO patterns be achieved by tuning of parameters?
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Folded-Node: The Slow Subsystem

Slow subsystem

0 = y − x2 =⇒ ẏ = 2xẋ

implies

2xẋ = −(µ+ 1)x − z

ż =
µ

2

Desingularized slow subsystem

(obtained by setting t = 2xt̄)

ẋ = −(µ+ 1)x − z

ż = µx

Properties of the desingularized slow flow

. Equilibrium (x , z) = (0, 0)

. Eigenvalues (λs, λw) = (−1,−µ)

. Origin (0, 0) is a stable node for µ ∈ (0, 1)
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Folded-Node: Singular Maximal Canards γs,w
0

Cr
0

Cr
0

Ca
0

Ca
0

LL zz

xx (a) (b)γs
0

γw
0

(a) desingularized slow flow (b) slow flow

Definition
A maximal singular canard is an orbit in Ca

0 ∩ Cr
0

A maximal canard is an orbit in Ca
ε ∩ Cr

ε
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