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Deterministic case

Consider the ordinary differential equation in Rd

dx

dt
= f(x)

• f is regular and satisfies the dissipativity condition such as

〈x, f(x)〉 ≤ K − L|x1 − x2|2,

on Rd for some K ≥ 0 and L > 0,

⇒ there exists a global attractor A0.



Kloeden & Lorenz (SINUM 1986):

• then a one-step numerical scheme with constant step size h > 0 has an
attractor Ah and the Hausdorff seperation satisfies

d(Ah, A0)→ 0 as h→ 0 +

i.e., upper semi continuous convergence of the numerical attractors



More structure, more information

If f satisfies a one-sided dissipative Lipschitz condition

〈x− y, f(x)− f(y)〉 ≤ −L|x1 − x2|2,

for all x, y ∈ Rd for some L > 0

=⇒ there is a unique asymptotically stable steady state x̄ with f(x̄) 6= 0,
i.e., the global attractor is A0 = {x̄}, and

• for most one-step numerical schemes the numerical attractor is also Ah =
{x̄}.



Stochastic case

What is the effect of background or environmental noise?

Consider the Ito stochastic differential equation with additive noise

dXt = f(Xt) dt+ α dWt,

where Wt, is a two-sided scalar Wiener process and α ∈ Rd is a constant
vector.

This has no equilibrium solution but if f satisfies a one-sided dissipative Lip-
schitz condition, then

⇒ ∃ unique stochastic stationary solution X̄t, which is pathwise

globally asymptotically stable.



Recall:

• The solutions of Ito stochastic differential equations are pathwise

continuous, but not differentiable.

• Ito SDEs are really stochastic integral equations with stochastic

integrals defined in the mean-square or L2 sense.

How do we apply the Lipschitz properties to obtain pathwise estimates?



A technical detour : Consider the Ito SDE

dXt = f(Xt) dt+ α dWt

where f satisfies the one-sided Lipschitz condition.

i.e., the stochastic integral equation

Xt = Xt0 +

∫ t

t0

f(Xs) ds+ α

∫ t

t0

dWt

The difference of any two solutions satisfies pathwise

X1
t −X2

t = X1
t0
−X2

t0
+

∫ t

t0

[
f(X1

s )− f(X2
s )
]︸ ︷︷ ︸

continuous paths

ds



Fundamental theorem of calculus ⇒ X1
t −X2

t pathwise differentiable.

d

dt

[
X1

t −X2
t

]
= f(X1

t )− f(X2
t ) pathwise

• Apply the one-sided Lipschitz condition

d

dt

∣∣X1
t −X2

t

∣∣2 = 2
〈
X1

t −X2
t , f(X1

t )− f(X2
t )
〉
≤ −2L

∣∣X1
t −X2

t

∣∣2

⇒
∣∣X1

t −X2
t

∣∣2 ≤ ∣∣X1
t0
−X2

t0

∣∣2 e−2L(t−t0) → 0 as t→∞

i.e. all solutions converge pathwise together — but to what?



Special case: Ito SDE with linear drift f(x) = −x

dXt = −Xt dt+ α dWt

explicit solution

Xt = Xt0e
−(t−t0) + αe−t

∫ t

t0

es dWs

The forward limit as t → ∞ does not exist — moving target!

But the pullback limit as t0 → −∞ with t fixed does exist:

lim
t0→−∞

Xt = Ōt := αe−t

∫ t

−∞
es dWs (pathwise)

The Ornstein-Uhlenbeck stochastic stationary process Ōt is a solution

of the linear SDE and all other solutions converge pathwise to it in the

forward sense ∣∣Xt − Ōt

∣∣→ 0 as t→∞ (pathwise)



Random dynamical systems

Let (Ω,F ,P) be a probability space and (X, dX) a metric space.

A random dynamical system (θ, φ) on Ω×X consists of

• a metric dynamical system θ on Ω, which models the noise,

• a cocycle mapping φ : R+ × Ω ×X → X, which represents the dynamics
on the state space X and satisfies

1). φ(0, ω, x0) = x0 (initial condition)

2). φ(s+ t, ω, x0) = φ(s, θtω, φ(t, ω, x0)) (cocycle property)

3). (t, x0) 7→ φ(t, ω, x0) is continuous (continuity)

4). ω 7→ φ(t, ω, x0) is F-measurable (measurability)

for all s, t ≥ 0, x0 ∈ X and ω ∈ Ω.



Random attractors

A random attractor is a family of nonempty measurable compact subsets of
X

Â = {A(ω) : ω ∈ Ω}

which is

• φ-invariant φ(t, ω, A(ω)) = A(θtω) for all t ≥ 0,

• pathwise pullback attracting in the sense that

distX (φ (t, θ−tω,D(θ−tω)) , A(ω))→ 0 for t→ +∞

for all suitable families D̂ = {D(ω) : ω ∈ Ω} of nonempty measurable bounded
subsets of X.



Theorem (Crauel, Flandoli, Schmalfuß etc)

Let (θ, φ) be an RDS on Ω × X such that φ(t, ω, ·) : X → X is a compact
operator for each fixed t > 0 and ω ∈ Ω.

If there exists a pullback absorbing family B̂ = {B(ω) : ω ∈ Ω} of nonempty
closed and bounded measurable subsets of X, i.e. there exists a TD̂,ω ≥ 0 such
that

φ (t, θ−tω,D(θ−tω)) ⊂ B(ω) for all t ≥ TD̂,ω

for all D̂ = {D(ω) : ω ∈ Ω} in a given attracting universe.

Then the RDS Ω×X has a random attractor Â with component subsets given
by

A(ω) =
⋂
s>0

⋃
t≥s

φ (t, θ−tω,B(θ−tω)) for each ω ∈ Ω.



General case again

Substract the integral version of the linear SDE for Ōt from the integral

version of the nonlinear SDE

dXt = f(Xt) dt+ α dWt

to obtain

Xt − Ōt = Xt0 − Ōt0 +

∫ t

t0

[
f(Xs) + Ōs

]
ds

⇒ Vt := Xt− Ōt is pathwise differentiable and satisfies the pathwise ODE

d

dt
Vt = f(Vt + Ōt) + Ōt (pathwise)



• Apply the one-sided Lipschitz condition pathwise to

d

dt

[
Xt − Ōt

]
=
[
f(Xt)− f(Ōt)

]
+
[
f(Ōt) + Ōt

]
(pathwise)

to obtain the pathwise estimate

|Vt|2 ≤ |Vt0 |
2 e−L(t−t0) +

2

L
e−Lt

∫ t

t0

eLs
(
|f(Ōs)|2 + |Ōs|2

)
ds

• Take pathwise pullback convergence as t0 → −∞ to obtain

|Xt − Ōt| ≤ R̄t := 1 +
2

L
e−Lt

∫ t

−∞
eLs
(
|f(Ōs)|2 + |Ōs|2

)
ds

for t ≥ T depending on suitable bounded sets of initial values.



• i.e., there exists a family of compact pullback absorbing balls centered

on Ōt with random radius R̄t.

• Dynamical systems limit set ideas

⇒ there exists a compact setvalued stochastic process At inside

these absorbing balls which pathwise pullback attracts the solutions.

• BUT the solutions converge together pathwise in forwards sense, so

the sets At are in fact all singleton sets

⇒ ∃ stochastic stationary solution X̄t.



General Principles

• All regular Ito SDE in Rd can be transformed into pathwise ODE

[Imkeller & Schmalfuß (2001), Imkeller & Lederer (2001,2002)]

• and generate random dynamical systems

⇒ pathwise theory and numerics for Ito SDE

• Pullback convergence enables us to construct moving targets.



• Stochastic stationary solutions are a simple singleton set version of more
general random attractors

⇒ theory of random dynamical systems

e.g., Ludwig Arnold (Bremen)

• parallel theory of deterministic skew product flows

e.g., almost periodic ODE : George Sell (Minneapolis)

⇒ A theory of nonautonomous dynamical systems

e.g., pullback attractors



Effects of discretization

Numerical Ornstein-Uhlenbeck process

For the linear SDE with additive noise,

dXt = −Xt dt+ α dWt,

the drift-implicit Euler-Maruyama scheme with constant step size h > 0 is

Xn+1 = Xn − hXn+1 + α∆Wn, n = n0, n0 + 1, . . . ,

which simplifies algebraically to

Xn+1 =
1

1 + h
Xn +

α

1 + h
∆Wn,

Here the ∆Wn = Wh(n+1) −Whn are mutually independent and N(0, h) dis-
tributed



It follows that

Xn =
1

(1 + h)n−n0
Xn0 +

α

1 + h

n−1∑
j=n0

1

(1 + h)n−1−j
∆Wj

and the pathwise pullback limit, i.e. with n fixed and n0 → −∞, gives the
discrete time numerical Ornstein-Uhlenbeck process

Ô(h)
n :=

α

1 + h

n−1∑
j=−∞

1

(1 + h)n−1−j
∆Wj, n ∈ Z. (1)

which is an entire solution of the numerical scheme and a discrete time
stochastic stationary process.

One can show that it converges pathwise to the continuous time Ornstein-
Uhlenbeck process in the sense that

Ô
(h)
0 → Ô0 as h→ 0.



Discretization of an nonlinear stochastic system

Consider the nonlinear SDE in Rdwith additive noise,

dXt = f(Xt) dt+ α dWt,

where the drift coefficient f is continuously differentiable and satisfies the
one-sided dissipative Lipschitz condition with constant L.

The drift-implicit Euler-Maruyama scheme with constant step size h > 0
applied to this SDE is

Xn+1 = Xn + hf(Xn+1) + α∆Wn,

which is, in general, an implicit algebraic equation and must be solved nu-
merically for Xn+1 for each n.



The difference of any two solutions

Xn+1 −X ′n+1 = (Xn −X ′n) + h
(
f(Xn+1)− f(X ′n+1)

)
,

does not contain a driving noise term. Then∣∣Xn+1 −X ′n+1

∣∣2 =
〈
Xn+1 −X ′n+1, Xn −X ′n

〉
+h
〈
Xn+1 −X ′n+1, f(Xn+1)− f(X ′n+1)

〉
≤

∣∣Xn+1 −X ′n+1

∣∣ |Xn −X ′n| − hL
∣∣Xn+1 −X ′n+1

∣∣2 ,
⇒

∣∣Xn+1 −X ′n+1

∣∣ ≤ 1

1 + Lh
|Xn −X ′n| ,

⇒ |Xn −X ′n| ≤
1

(1 + Lh)n
|X0 −X ′0| → 0 as n→∞.

i.e. all numerical solutions converge pathwise to each other forward in time.



Change variables to Un := Xn − Ô(h)
n , where Ô

(h)
n is the numerical Ornstein-

Uhlenbeck process, to obtain the numerical scheme

Un+1 = Un + hf
(
Un+1 + Ô

(h)
n+1

)
+ hÔ(h)

n .

Taking the inner product of both sides with Un+1 we obtain

|Un+1|2 = 〈Un+1, Un〉+ h
〈
Un+1, f

(
Un+1 + Ô

(h)
n+1

)〉
+ h

〈
Un+1, Ô

(h)
n

〉
≤ |Un+1| |Un|+ h

〈
Un+1, f

(
Un+1 + Ô

(h)
n+1

)〉
+ h |Un+1|

∣∣∣Ô(h)
n

∣∣∣ .
Rearranging, using the one-sided Lipschitz condition and simplifying gives

|Un+1| ≤ |Un| − Lh |Un+1|+ h
∣∣∣f (Ô(h)

n+1

)∣∣∣+ h
∣∣∣Ô(h)

n

∣∣∣ .



⇒ |Un+1| ≤
1

1 + Lh
|Un|+

h

1 + Lh
B(h)

n ,

where
Bn(h) :=

∣∣∣f (Ô(h)
n+1

)∣∣∣+
∣∣∣Ô(h)

n

∣∣∣ ,
⇒ |Un| ≤

1

(1 + Lh)n−n0
|Un0|+

h

1 + Lh

n−1∑
j=n0

1

(1 + h)n−1−j
B

(h)
j .

Taking the pullback limit as n0 → −∞ with n fixed, it follows that Un is
pathwise pullback absorbed into the ball Bd[0, R̄n] in Rd centered on the
origin with squared radius

R̄2
n := 1 +

h

1 + Lh

n−1∑
j=−∞

1

(1 + h)n−1−j
B

(h)
j .

Note that R̄n is random, but finite.



From the theory of random dynamical systems we conclude that the discrete
time random dynamical system generated by drift-implicit Euler-Maruyama
scheme has a random attractor with component sets in the corresponding
balls Bd[0, R̄n].

Since all of the trajectories converge together pathwise forward in time, the
random attractor consists of a single stochastic stationary process which we

shall denote by Û
(h)
n .

Transforming back to the original variable, we have shown that the drift-
implicit Euler-Maruyama scheme applied to the nonlinear SDE has a stochas-
tic stationary solution

X̂(h)
n := Û (h)

n + Ô(h)
n , n ∈ Z,

taking values in the random balls Bd[Ô
(h)
n , R̄n], which attracts all other solu-

tions pathwise in both the forward and pullback senses.
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Stochastic differential equations with nonlocal
sample dependence
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P.E. Kloeden and T. Lorenz,
Stochastic differential equations with nonlocal sample dependence,
J. Stoch. Anal. Applns., 28 (2010), 937–948.



We consider the existence and uniqueness of strong solutions of Itô stochas-
tic differential equations of the form

dXt = a(t,Xt,E(Xt),E(|Xt|2)) dt

+b(t,Xt,E(Xt),E(|Xt|2)) dWt



A strong solution of a scalar Itô stochastic differential equation

dXt = a(t,Xt) dt+ b(t,Xt) dWt, (2)

on a given time interval [0, T ] is a function X : [0, T ]×Ω → R with (t, ω) 7→
X(t, ω) =: Xt(ω) such that
(1.) X is jointly Leb1 ×A-measurable with∫ T

0

E(|Xt|2) dt < ∞,

(2.) Xt : Ω → R is At-measurable with E(|Xt|2) < ∞ for every t ∈ [0, T ],
(3.) X satisfies for t ∈ [0, T ]the Itô stochastic integral equation

Xt = X0 +

∫ t

0

a(s,Xs) ds+

∫ t

0

b(s,Xs) dWs,

(4.) the solution X is unique in the sense that

P
(

sup
0≤ t≤T

|Xt − Yt| > 0

)
= 0

for every solution Yt of the above integral equation with Y0 = X0.



Theorem 1 Suppose that

(i) a, b : [0, T ]× R → R are jointly Leb2–measurable,

(ii) there exists a constant Λ > 0 such that for all t ∈ [0, T ] and x, y ∈ R,

|a(t, x) − a(t, y)|+ |b(t, x) − b(t, y)| ≤ Λ |x− y|,

(iii) there exists a constant γ < ∞ such that for all t ∈ [0, T ] and x ∈ R,

|a(t, x)|+ |b(t, x)| ≤ γ (1 + |x|),

(iv) X0 : Ω → R is A0-measurable with E (|X0|2) < ∞.



Then the stochastic differential equation (2) has a pathwise unique strong
solution (Xt)0≤ t≤T with initial value X0, which satisfies

sup
0≤ t≤T

E
(
|Xt|2

)
<∞.

If, in addition, E(|X0|2n) < ∞ for some integer n ≥ 1, then there exist
constants C1, C2 and C3, depending only on γ, Λ, n and T , such that

E
(
|Xt|2n

)
≤

(
E
(
|X0|2n

)
+ C2t

)
eC1 t,

E
(
|Xt −X0|2n

)
≤ C3

(
E
(
|X0|2n

)
+ 1
)
× eC1 |t−s| · |t− s|n

for every s, t ∈ [0, T ].



Definition 2 Lip(R) denotes the set of Lipschitz continuous functions
R→ R and for each f ∈ Lip(R), set

‖f(·)‖lg := sup
x∈R

|f(x)|
1 + |x|

.

Remark 3 ‖ · ‖lg : Lip(R) → R+ is a norm on Lip(R) with

‖f‖lg ≤ |f(0)|+ Lip f,

sup
|x| ≤ r

|f(x)| ≤ ‖f‖lg (1 + r)

for every f ∈ Lip(R) and radius r ≥ 0.



Lemma 4 Suppose that a1, b1 : [0, T ] × R → R and a2, b2 : [0, T ] × R →
R satisfy the assumptions of Theorem 1 with common parameters Λ, γ > 0.
Let (X1

t )0≤ t≤T and (X2
t )0≤ t≤T denote the strong solutions of

dXk
t = ak(t,Xk

t )dt+ bk(t,Xk
t )dWt,

for k = 1 and 2, respectively, with uniformly bounded second moments. Then,

E(|X1
T − X2

T |2) ≤

(
3 · E

(
|X1

0 − X2
0 |2
)

+ 81
(
1 + E(|X1

0 |2)
)
×

∫ T

0

(∥∥a1(s, ·)− a2(s, ·)
∥∥2

lg
+
∥∥b1(s, ·)− b2(s, ·)

∥∥2

lg

)
ds
)

×e(2 Λ2 eT + 1 + C1+C2) T .



Nonlocal stochastic differential equations

Define

EA :=
{

(t,X)
∣∣ t ∈ R, X : Ω→ R is

At+ −measurable with t+ := max{t, 0}
and E(|X|2) <∞

}
,

and

|(t,X)|EA := |t|+ E(|X|2) for every (t,X) ∈ EA.

Remark 5 Note that | · |EA is not a norm on EA because the triangle in-
equality does not hold in general due to the mean square.

It could be made into a norm by taking the square root of the expectation
term, but that is not necessary and would complicate estimates later.



Consider what we call a nonlocal stochastic ordinary differential equation

dXt(ω) = F1 [t,Xt(·)] (Xt(ω))dt (3)

+F2 [t,Xt(·)] (Xt(ω))dWt(ω).

We represent the coefficient functions here in the form

F = (F1, F2) : EA → Lip(R)× Lip(R)

rather than
F : R+ × L2(Ω,A,P)× R→ R× R,

since this allows us to state the regularity assumptions in a more transparent
way, which is also more convenient to use in estimates.



Theorem 6 Suppose that F = (F1, F2) : EA → Lip(R)×Lip(R) satisfies:

(i) sup(t,Y )∈EA
{‖F [t, Y ](·)‖lg + LipF [t, Y ](·)} < ∞,

(ii) F is locally Lipschitz w.r.t. the random variables and continuous in
the following sense: For each R > 0, there exist a constant LR > 0 and a
modulus of continuity ωR(·) such that∥∥F [t1, Y1](·)− F [t2, Y2](·)

∥∥2

lg

≤ LR · E(|Y1 − Y2|2) + ωR(|t1 − t2|)

for all (tk, Yk) ∈ EA with |(tk, Yk)|EA ≤ R for k = 1 and 2.

Then for any T ∈ (0,∞) and any A0-measurable random variable X0 with
bounded second moment, there exists a unique strong solution (Xt)0≤ t≤T of
the nonlocal SDE (3) with the initial value X0.

If, in addition, X0 has bounded fourth moment, then (Xt)0≤ t≤T is sample-
path continuous.



Idea of Proof.

We use interpolated Euler-like approximations on equi-distant partitions of
[0, T ], which turn out to be a uniform Cauchy sequence in the mean-square
norm. The completeness of L2(Ω,A, P ) then provides a m.s. continuous
candidate X : [0, T ]→ L2(Ω,A, P ) for the sought solution.
For Xn(0) = X0 and for each k = 1, . . ., 2n, define Xn : (tnk , t

n
k+1] →

L2(Ω,A,P) inductively as the pathwise unique strong solution of the local
SDE

dXn
t (ω) = F1

[
tnk , X

n
tnk

(·)
]
(Xn

t (ω))dt

+F2

[
tnk , X

n
tnk

(·)
]
(Xn

t (ω))dWt(ω)

as guaranteed by Theorem 1.



Mean-square evolution processes.

• The solutions of nonlocal SDEs can be formulated as mean-square evolu-
tion processes.

Let (Ω,A,P) be a probability space and let (At)∈R be a filtration.

Define X := L2
(
Ω,A; Rd

)
and Xt := L2

(
(Ω,At,P),Rd

)
for each t ∈ R and

R2
≥ :=

{
(t, s) ∈ R2 : t ≥ s

}



Definition 7 A mean-square evolution process φ on an underlying space Rd

with a probability set-up (Ω,A, {At}t∈R,P) is a family of mappings

φ(t, t0, ·) : Xt0 → Xt, (t, t0) ∈ R2
≥,

which satisfies
1) initial value property: φ(t0, t0, X0) = X0 for every X0 ∈ Xt0 and any
t0 ∈ R;

2) two-parameter semigroup property: for each X0 ∈ Xt0 and all (t2, t1),
(t1, t0) ∈ R2

≥
φ(t2, t0, X0) = φ (t2, t1, φ(t1, t0, X0)) ;

3) continuity property:

(t, t0, X0) 7→ φ(t, t0, X0) is continuous in the space R2
≥ × X.



Definition 8 A family B = {Bt}t∈R of nonempty subsets of X with Bt ⊂ Xt

for each T ∈ R is said to be φ-invariant if

φ (t, t0, Bt0) = Bt for all (t, t0) ∈ R2
≥ and every t ∈ R

and φ-positively invariant if

φ (t, t0, Bt0) ⊂ Bt for all (t, t0) ∈ R2
≥ and every t ∈ R

For simplicity, we will say that B is a family of subsets of {Xt}t∈R and
that B is uniformly bounded if there is an R := RD < ∞ such that E‖Xt‖2

≤ R for all points Xt ∈ Bt for every t ∈ R

Definition 9 A φ-invariant family A = {At}t∈R of nonempty compact
subsets of {Xt}t∈R is called a forward attractor if it forward attracts all fam-
ilies B = {Bt}t∈R of uniformly bounded subsets of {Xt}t∈R, i.e.,

dist (φ(t, t0, Bt0), At)→ 0 as t→∞ (t0 fixed) (4)

and a pullback attractor if it pullback attracts all families B = {Bt}t∈R of
uniformly bounded subsets of {Xt}t∈R, i.e.,

dist (φ(t, t0, Bt0), At)→ 0 as t0 → −∞ (t fixed). (5)



Theorem 10 Suppose that a mean-square evolution φ on Rd has a φ-positively
invariant pullback absorbing family B = {Bt}t∈R of nonempty uniformly
bounded subsets of {Xt}t∈R and that the mappings φ (t, t0, ·) : Xt0 → Xt are
asymptotically compact.

Then φ has a unique global pullback attractor A = {At}t∈R with compo-
nent sets determined by

At =
⋂
t0≤t

φ (t, t0, Bt0) for each t ∈ R (6)

If B is not φ-positively invariant, then

At =
⋂
s≥0

⋃
t0≤t−s

φ (t, t0, Bt0) for each t ∈ R



Big technical problem

How do we characterise compact subsets of a space of mean-square ran-
dom variables

L2

(
(Ω,At,P),Rd

)
?
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