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Introduction
The aim of molecular dynamics simulations is to understand the
relationships between the macroscopic properties of a molecular
system and its atomistic features. In particular, one would like to to
evaluate numerically macroscopic quantities from models at the
microscopic scale.

Some examples of macroscopic quantities:

(i) Thermodynamics quantities: stress, heat capacity, free energy
(average of some observable wrt an equilibrium measure)

E(ϕ(X )) =

∫

Rd

ϕ(x)µ(dx).

(ii) Dynamical quantities: diffusion coefficients, viscosity,
transition rates (average over trajectories at equilibrium)

E(F((X t)t≥0)) =

∫

C0(R+,Rd )
F((x t)t≥0))W(d((x t)t≥0)).



Introduction Adaptive biasing techniques The Parallel Replica Algorithm Conclusion

Introduction

Many applications in various fields: biology, physics, chemistry,
materials science. Molecular dynamics computations consume
today a lot of CPU time.

A molecular dynamics model amounts essentially in choosing a
potential V which associates to a configuration
(x1, ..., xN) = x ∈ R

3N an energy V (x1, ..., xN).

In the canonical (NVT) ensemble, configurations are distributed
according to the Boltzmann-Gibbs probability measure:

dµ(x) = Z−1 exp(−βV (x)) dx ,

where Z =
∫

exp(−βV (x)) dx is the partition function and
β = (kBT )−1 is proportional to the inverse of the temperature.
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Introduction

Typically, V is a sum of potentials modelling interaction between
two particles, three particles and four particles:

V =
∑

i<j

V1(x i , x j) +
∑

i<j<k

V2(x i , x j , xk) +
∑

i<j<k<l

V3(x i , x j , xk , x l).

For example, V1(x i , x j) = VLJ(|x i − x j |) where

VLJ(r) = 4ǫ
(

(

σ
r

)12
−
(

σ
r

)6
)

is the Lennard-Jones potential.

Difficulties: (i) high-dimensional problem (N ≫ 1) ; (ii) µ is a
multimodal measure.
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Introduction

To sample µ, ergodic dynamics wrt to µ are used. A typical
example is the over-damped Langevin (or gradient) dynamics:

dX t = −∇V (X t) dt +
√

2β−1dW t

which is a limit (when the mass goes to zero or the damping parameter

to infinity) of the Langevin dynamics:

{

dX t = M−1Pt dt,

dPt = −∇V (X t) dt − γM−1Pt dt +
√

2γβ−1dW t ,

where M is the mass tensor and γ is the friction coefficient.

In the following, we mainly consider the over-damped Langevin
dynamics.



Introduction Adaptive biasing techniques The Parallel Replica Algorithm Conclusion

Introduction

Difficulty: In practice, X t is a metastable process, so that the
convergence to equilibrium is very slow.

A 2d schematic picture: X 1
t is a slow variable (a metastable dof) of

the system.

x1

x2

V (x1, x2)
X 1

t

t
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Introduction

A more realistic example (Dellago, Geissler): Influence of the
solvation on a dimer conformation.
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Compact state. Stretched state.

The particles interact through a pair potential: truncated LJ for all
particles except the two monomers (black particles) which interact
through a double-well potential. A slow variable is the distance
between the two monomers.
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Introduction

A “real” example: ions canal in a cell membrane. (C. Chipot).
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Introduction

One contral numerical difficulty is thus metastability.

Outline of the talk:

1. Adaptive biasing techniques: These belong to one class of
numerical methods to compute thermodynamic quantities, and
in particular free energy differences.

2. The Parallel Replica dynamics: This is one instance of an
algorithm to generate efficiently metastable dynamics.
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Adaptive biasing techniques
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Adaptive biasing techniques

We suppose in this part that we know a slow variable of
dimension 1: ξ(X t), where ξ : R

d → T is a so-called reaction
coordinate.

This reaction coordinate will be used to bias the dynamics
(adaptive importance sampling technique).
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Adaptive biasing techniques
Let us introduce two probability measures associated to µ and ξ:

• The image of the measure µ by ξ:

ξ ∗ µ (dz) = exp(−βA(z)) dz

where the free energy A is defined by:

A(z) = −β−1 ln

(

∫

Σ(z)
e−βV δξ(x)−z(dx)

)

,

with Σ(z) = {x , ξ(x) = z} is a (smooth) submanifold of R
d ,

and δξ(x)−z(dx) dz = dx .

• The probability measure µ conditioned to ξ(x) = z :

µΣ(z)(dx) =
exp(−βV (x)) δξ(x)−z(dx)

exp(−βA(z))
.
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Adaptive biasing techniques

The bottom line of adaptive methods is the following: for “well
chosen” ξ the potential V − A ◦ ξ is less metastable than V . But A
is unknown !

Principle: use a time dependent potential of the form

Vt(x) = V (x) − At(ξ(x))

where At is an approximation at time t of A, given the
configurations visited so far.

Hopes:

• build a dynamics which goes quickly to equilibrium,

• compute free energy profiles.

Wang-Landau, ABF, metadynamics: Darve, Pohorille, Hénin, Chipot, Laio, Parrinello, Wang, Landau,...
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Adaptive biasing techniques
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A 2d example of a free energy biased trajectory: energetic barrier.
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Adaptive biasing techniques
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A 2d example of a free energy biased trajectory: entropic barrier.
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The ABF method

How to update At ? Two methods depending on wether A′
t

(Adaptive Biasing Force) or At (Adaptive Biasing Potential) is
approximated.

For the Adaptive Biasing Force method, the idea is to use the
formula

A′(z) =

∫
(

∇V · ∇ξ

|∇ξ|2
− β−1

div

(

∇ξ

|∇ξ|2

))

e−βV δξ(x)−z(dx)
∫

e−βV δξ(x)−z(dx)

=

∫

f dµΣ(z) = Eµ(f (X )|ξ(X ) = z).

The mean force A′(z) is the mean of f with respect to µΣ(z).
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The ABF method

Important remark: whatever At , the mean force associated with the
Gibbs distribution

ψeq
∝ exp(−β Vt)(x) dx = exp(−β(V − At ◦ ξ))(x) dx

is the original mean force A′:

∫

f ψeq δξ(x)−z(dx)
∫

ψeqδξ(x)−z(dx)
= A′(z).

Thus, use as an approximation of A′(z):

A′
t(z) = E(f (X t)|ξ(X t) = z).
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The ABF method

A typical ABF dynamics is then:

{

dX t = −∇(V − At ◦ ξ)(X t) dt +
√

2β−1dW t ,

A′
t(z) = E (f (X t)|ξ(X t) = z) .

The associated (nonlinear) Fokker-Planck equation writes:























∂tψ = div
(

∇(V − At ◦ ξ)ψ + β−1∇ψ
)

,

A′
t(z) =

∫

f ψ δξ(x)−z(dx)
∫

ψ δξ(x)−z(dx)

,

where X t ∼ ψ(t, x) dx . A numerical illustration.
Questions: Does A′

t converge to A′ ? What did we gain compared
to the original gradient dynamics ?
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Longtime convergence and entropy (1)

Recall the original gradient dynamics:

dQt = −∇V (Qt) dt +
√

2β−1dW t .

The associated (linear) Fokker-Planck equation writes:

∂tφ = div
(

∇Vφ+ β−1∇φ
)

.

where Qt ∼ φ(t,q) dq.

The metastable behaviour of Qt is related to the multimodality of
µ, which can be quantified through the rate of convergence of φ to
φ∞ = Z−1 exp(−βV ).

A classical PDE approach: use entropy techniques.
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Longtime convergence and entropy (2)

Notice that the Fokker-Planck equation rewrites

∂tφ = β−1
div

(

φ∞∇

(

φ

φ∞

))

.

Let us introduce the entropy:

E (t) = H(φ(t, ·)|φ∞) =

∫

ln

(

φ

φ∞

)

φ.

We have (Csiszár-Kullback inequality):

‖φ(t, ·) − φ∞‖L1 ≤
√

2E (t).
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Longtime convergence and entropy (3)

dE

dt
=

∫

ln

(

φ

φ∞

)

∂tφ

= β−1

∫

ln

(

φ

φ∞

)

div

(

φ∞∇

(

φ

φ∞

))

= −β−1

∫
∣

∣

∣

∣

∇ ln

(

φ

φ∞

)∣

∣

∣

∣

2

φ =: −β−1I (φ(t, ·)|φ∞).

If V is such that the following Logarithmic Sobolev inequality
(LSI(R)) holds: ∀φ pdf,

H(φ|φ∞) ≤
1

2R
I (φ|φ∞)

then E (t) ≤ E (0) exp(−2β−1Rt) and thus φ converges to φ∞
exponentially fast with rate β−1R .

Metastability ⇐⇒ small R
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Convergence of ABF (1)
A convergence result [TL, M. Rousset, G. Stoltz, Nonlinearity 2008] : Recall the
ABF Fokker-Planck equation:







∂tψ = div
(

∇(V − At ◦ ξ)ψ + β−1∇ψ
)

,

A′
t(z) =

R

f ψ δξ(x)−z(dx)
R

ψ δξ(x)−z (dx)
.

Suppose:

(H1) “Ergodicity” of the microscopic variables: the conditional
probability measures µΣ(z) satisfy a LSI(ρ),

(H2) Bounded coupling:
∥

∥∇Σ(z)f
∥

∥

L∞
<∞,

then
‖A′

t − A′‖L2 ≤ C exp(−β−1 min(ρ, r)t).

The rate of convergence is limited by:

• the rate r of convergence of ψ =
∫

ψ δξ(x)−z(dx) to ψ∞,

• the LSI constant ρ (the real limitation).



Introduction Adaptive biasing techniques The Parallel Replica Algorithm Conclusion

Convergence of ABF (2)

In summary:

• Original gradient dynamics: exp(−β−1Rt) where R is the LSI
constant for µ ;

• ABF dynamics: exp(−β−1ρt) where ρ is the LSI constant for
the conditioned probability measures µΣ(z).

If ξ is well chosen, ρ≫ R .

Two ingredients of the proof:

(1) The marginal ψ(t, z) =
∫

ψ(t, x) δξ(x)−z(dx) satisfies a closed
PDE:

∂tψ = β−1∂z ,zψ on T,

and thus, ψ converges towards ψ∞ ≡ 1, with exponential speed
C exp(−4π2β−1t). (Here, r = 4π2).
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Convergence of ABF (3)

(2) The total entropy can be decomposed as [N. Grunewald, F. Otto, C. Villani,

M. Westdickenberg, Ann. IHP, 2009]:

E = EM + Em

where
The total entropy is E = H(ψ|ψ∞),

The macroscopic entropy is EM = H(ψ|ψ∞),

The microscopic entropy is

Em =

∫

H
(

ψ(·|ξ(x) = z)
∣

∣

∣
ψ∞(·|ξ(x) = z)

)

ψ(z) dz .

We already know that EM goes to zero: it remains only to consider
Em...
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Convergence of ABF (4)

Other results based on this set of assumptions:

• [TL, JFA 2008] LSI for the cond. meas. µΣ(z)

+ LSI for the marginal µ(dz) = ξ ∗ µ(dz)
+ bdd coupling (‖∇Σ(z)f ‖L∞ <∞) =⇒ LSI for µ.

• [F. Legoll, TL, Nonlinearity, 2010] Effective dynamics for ξ(Qt). Uniform
control in time:

H(L(ξ(Qt))|L(zt)) ≤ C

(

‖∇Σ(z)f ‖L∞

ρ

)2

H(L(Q0)|µ).
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Discretization of ABF (1)

Discretization of adaptive methods can be done using two
(complementary) approaches:

• Use trajectorial averages along a single path:

E(f (X t)|ξ(X t) = z) ≃

∫ t

0
f (X s) δ

α(ξ(X s) − z) ds
∫ t

0
δα(ξ(X s) − z) ds

.

• Use empirical means over many replicas (interacting particle
system):

E(f (X t)|ξ(X t) = z) ≃

∑N
m=1

f (Xm,N
t ) δα(ξ(Xm,N

t ) − z)
∑N

m=1
δα(ξ(Xm,N

t ) − z)
.
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Discretization of ABF (2)

Interest of a discretization using an interacting particle system:

• Convergence can be more easily analyzed !

• Very efficient parallelization.

• A selection mechanism may be added to duplicate “innovative
particles” and kill “redundant particles”. [TL, M. Rousset, G. Stoltz, J

Chem Phys 2007].

• Better sampling of all reactive paths.
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Multiple channel cases

In some practical cases (multi-channel case), ρ may be small... Are
these convergence results optimal ?

Numerically, it is observed [C. Chipot, TL, K. Minoukadeh, 2010] that in such a
situation, the ABF method actually converges rapidly, in particular
when using implementations using many replicas.

Theoretically, it can be shown [TL, K. Minoukadeh, 2010] that, in a
bi-channel situation, the ABF method actually converges with a
rate limited by the LSI constants of the conditional measures in
each channel.
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Adaptive biasing techniques
Coming back to the original aim: how to use free energy to
compute canonical averages

∫

ϕdµ =
∫

ϕZ−1 exp(−βV ) ?

• Importance sampling:

∫

ϕ dµ =

∫

ϕ exp(−βA ◦ ξ)Z−1

A exp(−β(V − A ◦ ξ)
∫

exp(−βA ◦ ξ)Z−1

A exp(−β(V − A ◦ ξ))

.

• Conditioning:

∫

ϕdµ =

∫

z

(

∫

Σ(z)
ϕ dµΣ(z)

)

e−βA(z) dz

∫

z

e−βA(z) dz

.

This requires the sampling of the conditional probability
measure µΣ(z) which can be done using projected Langevin
dynamics [TL, M. Rousset, G. Stoltz, 2011].
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Adaptive biasing techniques: conclusions

Interesting features of the algorithm: parallelization and adaptivity.

Entropy approaches are powerful techniques to investigate
multimodal measures, metastable dynamics and analyze sampling
algorithms.

These techniques can be used whenever the sampling of a
multimodal measure is involved, for example for statistical inference
in Bayesian statistics [N. Chopin, TL, G. Stoltz, 2011].

Challenges: (i) Extensions to high-dimensional RCs ; (ii) Extensions
to cases with no detailed balance.
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Free energy calculation methods
There many other numerical methods to compute free energies.

(a) Thermodynamic integration. (b) Histogram method.

(c) Out of equilibrium dynamics. (d) Adaptive dynamics.
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The Parallel Replica Algorithm
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The Parallel Replica Algorithm

The Parallel Replica Algorithm, proposed by A.F. Voter in 1998, is
a method to get efficiently a "coarse-grained projection" of a
dynamics.
Let us consider again the overdamped Langevin dyanmics:

dX t = −∇V (X t) dt +
√

2β−1dW t

and let assume that we are given a smooth mapping

S : R
d → N

which to a configuration in R
d associates a state number. Think of

a numbering of the wells of the potential V .

The aim of the parallel replica dynamics is to generate very
efficiently a trajectory (St)t≥0 which has (almost) the same law as
(S(X t))t≥0.
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The Parallel Replica Algorithm

Initialization: Consider an initial condition X ref
0 for a reference

walker, the associated initial condition S0 = S(X ref
0 ), and a

simulation time counter Tsimu = 0.

Then, one iteration of the algorithm goes through three steps.

• The decorrelation step: Let the reference walker (X ref
Tsimu+t)t≥0

evolve over a time interval t ∈ [0, τcorr ]. Then,
• If the process leaves the well during the time interval (i.e.

∃t ≤ τcorr such that S
(

X
ref

Tsimu+t

)

6= S
(

X
ref

Tsimu

)

) advance the

simulation clock by τcorr and restart the decorrelation step ;
• otherwise, advance the simulation clock by τcorr and proceed

to the dephasing step.

During all this step, STsimu+t := S
(

X ref
Tsimu+t

)

.
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The Parallel Replica Algorithm

The reference walker enters a new state
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The Parallel Replica Algorithm

Decorrelation step: wait for a time τcorr .
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• The dephasing step: Duplicate the walker X ref
Tsimu

into N
replicas. Let these replicas evolve independently and in parallel
over a time interval of length τdephase . If a replica leaves the
well during this time interval, restart the dephasing step for
this replica. Throughout this step, the simulation counter is
stopped.
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The Parallel Replica Algorithm

Dephasing step.
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The Parallel Replica Algorithm

Dephasing step: generate new initial conditions in the state.
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The Parallel Replica Algorithm

Dephasing step: generate new initial conditions in the state.
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The Parallel Replica Algorithm

Dephasing step: generate new initial conditions in the state.
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The Parallel Replica Algorithm

Dephasing step: generate new initial conditions in the state.
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The Parallel Replica Algorithm

Dephasing step: generate new initial conditions in the state.
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The Parallel Replica Algorithm

Dephasing step: generate new initial conditions in the state.
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The Parallel Replica Algorithm

Dephasing step: generate new initial conditions in the state.
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• The parallel step: Let all the replicas evolve independently and
track the first escape event:

T = inf
k

T k
W = TK0

W

where K0 = arg infk T k
W and

T k
W = inf{t ≥ 0, S(X k

Tsimu+t) 6= S(X k
Tsimu

)}

is the first time the k-th replica leaves the well. Then:

Tsimu = Tsimu + NT and X ref
Tsimu+NT = XK0

Tsimu+T .

Moreover, over [Tsimu,Tsimu + NT ], the state dynamics St is
constant and defined as:

St = S(X 1

Tsimu
).

Then, go back to the decorrelation step...
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The Parallel Replica Algorithm

Parallel step.
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The Parallel Replica Algorithm

Parallel step: run independent trajectories in parallel...
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The Parallel Replica Algorithm

Parallel step: ... and detect the first transition event.
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The Parallel Replica Algorithm

Parallel step: update the time clock: Tsimu = Tsimu + NT .
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The Parallel Replica Algorithm

A new decorrelation step starts...



Introduction Adaptive biasing techniques The Parallel Replica Algorithm Conclusion

The Parallel Replica Algorithm

New decorrelation step
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The Parallel Replica Algorithm

Analysis of the algorithm: the parallel step would introduce no error
if

• the escape time T 1

W was exponentially distributed

• and independent of the next visited state.

This essentially amounts to assuming that S(X t) is a Markov
chain...

How to analyze the error introduced by the algorithm ?

This is related to the general question: how to relate a continuous
state space Markov dynamics to a discrete state space Markov
dynamics ? Pitfalls: (i) the temperature is not necessarily small (ii) the

partition of the state space may be anything (iii) no thermodynamic limit

in general (non-homogeneous systems).
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The quasi-stationary distribution
The quasi-stationary distribution (QSD) ν for X t and associated to
the actual well W is a probability measure which is (i) supported
by W and such that (ii): ∀t > 0, ∀A ⊂ W ,

ν(A) =

∫

W

P(X x

t ∈ A, t < T x

W ) ν(dx)
∫

W

P(t < T x

W ) ν(dx)
.

If X 0 ∼ ν and if (X s)0≤s≤t has not left the well, then X t ∼ ν.

Let L = −∇V · ∇ + β−1∆ be the infinitesimal generator of (X t).
Then the density u of ν (dν = u(x)dx) is the first eigenvector of
L∗ = div (∇V + β−1∇) with absorbing boundary conditions:

{

L∗u = −λ1u on W ,

u = 0 on ∂W .



Introduction Adaptive biasing techniques The Parallel Replica Algorithm Conclusion

The quasi-stationary distribution and the dephasing step

Property of the QSD: If X 0 ∼ ν then, the first exit time TW from
W is exponentially distributed with parameter λ1 and is a random
variable independent of the first hitting point XTW

on ∂W .

The dephasing step is very much related to the so-called
Fleming-Viot process and may be seen as a way to get N i.i.d.
random variables distributed according to the QSD.

Remark: In general, TW exponentially distribtued is not sufficient
for X 0 to be distributed according to ν.
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The parallel step
As announced above, starting from the QSD, the parallel step is
exact. This is stated precisely here.

Let us start from N initial conditions X k
0 i.i.d. in the well W and

let the processes evolve independently. Let us denote

T k
W = inf{t > 0,X k

t 6∈ W }

the escape time for the k-th replica, and

T = TK0
W where K0 = arg min

k∈{1,...,N}
T k

W

the first escape time over all processes.

• Assume that T 1

W is exponentially distributed [OK starting
from QSD.] Then NT has the same law as T 1

W .

• Assume that T 1

W is independent of X 1

T 1
W

[OK starting from

QSD.] Then XK0

T
K0
W

has the same distribution as X 1

T 1
W

and is

independent of TK0
W .
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The parallel step

Remark: If the CPUs are not synchronized, everything works
likewise by changing

Tsimu = Tsimu + NTK0
W

to Tsimu = Tsimu+ the sum of the elapsed times on each CPU
when the first escape event occurs.
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The decorrelation step

We would like to quantify the error introduced by the dephasing
and parallel steps, when the decorrelation step is successful.

As shown above, when the decorrelation step is successful, it is
assumed that the reference walker is distributed according to the
QSD. If it was indeed the case, the algorithm would be exact. The
decorrelation step can be seen as a way to probe this assumption.
What is the error introduced there ?
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The decorrelation step
We have the following error estimate in total variation norm: for
t ≥ C

λ2−λ1
,

sup
f ,‖f ‖L∞≤1

∣

∣

∣
E(f (TW−t,XTW

)|TW ≥ t)−E
ν(f (TW ,XTW

))
∣

∣

∣
≤ C exp(−(λ2−λ1)t),

where −λ2 < −λ1 < 0 are the two first eigenvalues of L∗ with
absorbing boundary conditions on ∂W .

This shows that τcorr should be chosen such that:

τcorr ≥
C

λ2 − λ1

.

On the other hand, it should be smaller than the typical time to
leave the well, E(TW ). Since E

ν(TW ) = 1/λ1, this typically
implies the spectral gap requirement,

C

λ2 − λ1

≤
1

λ1

.
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The Parallel Replica Algorithm: conclusions

This can be generalized to other dynamics (coarse-graining of
kMC).

Main results:

• The QSD is a good intermediate between continuous state
dynamics and kMC-like approximations.

• The error analysis holds whatever the partition. But the
method requires metastability between the states to be
computationally efficient.

• The parameter τcorr should be adjusted in terms of the two
first eigenvalues of the Fokker-Planck operator with absorbing
boundary conditions.
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Conclusion

Many numerical methods in MD are based on some dimension
reduction and coarse-graining techniques.

Main open problems in MD:

• How to generate efficiently metastable dynamics ?

• Out-of-equilibrium systems: models, analysis, sampling
methods ?
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Conclusion
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• T. Lelièvre, M. Rousset and G. Stoltz, Free energy computations, a

mathematical perspective, Imperial College Press, 2010.

• C. Le Bris, T. Lelièvre, M. Luskin and D. Perez, A mathematical

formalization of the parallel replica dynamics,
http://arxiv.org/abs/1105.4636.
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