Reliable and Unreliable Behavior in
Driven Oscillator Networks

Kevin K. Lin Eric Shea-Brown Lai-Sang Young
University of Arizona University of Washington New York University

Oberwolfach 2011.08.22

MFO 2011.08.22 —p. 1/26



Example: Neural response
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Example: Neural response
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Response

Reliability: same stimulus =- (essentially) same response
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Response

Reliability: same stimulus =- (essentially) same response

Motivations:

1. Neural processing via temporal spike patterns
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Response

Reliability: same stimulus =- (essentially) same response

Mortivations:
1. Neural processing via temporal spike patterns

2. Generalized synchrony
E.g., lasers [Roy...]; chemical osc. [Tsimring...]
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Response

Reliability: same stimulus =- (essentially) same response

Mortivations:
1. Neural processing via temporal spike patterns

2. Generalized synchrony
E.g., lasers [Roy...]; chemical osc. [Tsimring...]

3. Uncertainty propagation in dynamical systems [Mézic]
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Goal: Network conditions for reliable and unreliable

behavior via qualitative theory + numerics

Note: Single neurons typically reliable
[Galan-Ermentrout, Goldobin-Pikovsky, Kurths, Teramae, Nakao, Kuske, ...]
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Goal: Network conditions for reliable and unreliable

behavior via qualitative theory + numerics

Note: Single neurons typically reliable
[Galan-Ermentrout, Goldobin-Pikovsky, Kurths, Teramae, Nakao, Kuske, ...]

Outline
1. Model and Background
2. A Class of Reliable Networks
3. A Mechanism for Unreliability
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1. Model + Background

Model: Phase Oscillator Networks
N phase oscillators 0, € St ~ [0,27), i=1,---,N

(9@(75) =y

MFO 2011.08.22 — . 5/26



1. Model + Background

Model: Phase Oscillator Networks
N phase oscillators 0, € St ~ [0,27), i=1,---,N

0:(t) = v; + 2(6;) | L (¢)

I;(t) = External stimulus

2(0) = Phase Response

=1 — COS(@) (“Theta neuron” [Ermentrout, Kopell])
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1. Model + Background

Model: Phase Oscillator Networks
N phase oscillators 0, € St ~ [0,27), i=1,---,N

0i(t) = v + 2(6;) [Ii(t) + Z ajz-g(ﬁj)}

I;(t) = External stimulus

2(0) = Phase Response

=1 — COS(@ ) (“Theta neuron” [Ermentrout, Kopell])
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Reliability:
Given ]i(t) . (64 (t), 0N (t)) essentially independent of
(6,(0), ... 65 (0)) for ¢ > o

i.e. network state reproducible across trials

“Trial”’: new initial condition (fix stimulus, network, etc.)
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Conceptual Framework:
Random Dynamical Systems (RDS)

- Idealized inputs: I;(¢) white noise = SDE of the form

dXy = Vo(X,) dt + Y Vi(Xy) 0 dW

1=1

X; € M (forus, M =TN)
W 1ID standard BM
V; vector fields on M

Standing assumptions: (i) 3! stationary measure 1 ; (il) 4 << Leb
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Conceptual Framework:
Random Dynamical Systems (RDS)

- Idealized inputs: I;(¢) white noise = SDE of the form

dXy = Vo(X,) dt + Y Vi(Xy) 0 dW

1=1

X; € M (forus, M =TN)
W 1ID standard BM
V; vector fields on M

Standing assumptions: (i) 3! stationary measure 1 ; (il) 4 << Leb

- Relevant view for reliability:

Dynamics of ensemble in response to one sample input signal

- Stochastic flow of diffeomorphisms
[Bismut, Elworthy, Ikeda-Watanabe, Kunita]
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RDS Review

Stochastic flow maps
3 F5t € Diff(M)
- Xy = F3H(X)
_ FS,t o FO,s _ FO,t

os(w) w
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RDS Review

Stochastic flow maps
3 F5' € Diff(M)
- X, = F34(X,)

87t O,S - O,t
- FO'S(CU) ©) Fw — Fw

Sample measures /,:

po = lim (F3°).p

S——00
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RDS Review

Stochastic flow maps
3 F5' € Diff(M)

X, = F54(X,) Properties of (i,
) t— tw S
S5t 0,s _ [0t (1) u, = p conditioned on past
. ng(w) o F*=F
Sample measures /., (i) E(u,) = p

(i) (F9)ufty = fion(e
l = lim (F%9),u o) )

§——00 Jt(w)s = Ws+t
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Lyapunov exponents
- Measure average rate of (local) expansion / contraction
- N dimensions = d/N exponents
- Largest exponent A,
Amax > 01 asymptotically unstable
Amax < 0: asymptotically stable
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Lyapunov exponents
- Measure average rate of (local) expansion / contraction
- N dimensions = d/N exponents
- Largest exponent A,
Amax > 01 asymptotically unstable
Amax < 0: asymptotically stable

Theorem (Oseledecs). 4 A1 > Ao > ... > A\, integers m,;, and subspaces
Ei(r,w) C T, M:

Q) dim(E;(z,w)) = mi; O E; =T,M
(i) v € Ei(z,w) = 1log|DEY (z) v — X
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Amax determines structure of 1,
Case 1: M\pax <0
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Amax determines structure of 1,
Case 1: M\pax <0

Theorem (Le Jan). If \,.. < 0, then p, 1s a random sink,1i.e.,
Ho = 5 211 Oz (0 = D).
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Amax determines structure of 1,
Case 1: M\pax <0

Theorem (Le Jan). If \,.. < 0, then p, 1s a random sink,1i.e.,
Ho = 5 211 Oz (0 = D).

Theorem (Baxendale). Suppose \..x < 0, and

(i) The “2-point motion” has no compact invariant sets in M x M \diagonal ,
(i) Lie(TV1,--- ,TVy)(z,v) = T(@yITM , (z,v) € TM,v #0.

Then My = 5Zw(t) .

Note: “Typically” one expects n = 1; confirmed numerically.

MFO 2011.08.22 —p. 10/26



Amax determines structure of 1,
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Theorem (Baxendale). Suppose \..x < 0, and

(i) The “2-point motion” has no compact invariant sets in M x M \diagonal ,
(i) Lie(TV1,--- ,TVy)(z,v) = T(@yITM , (z,v) € TM,v #0.

Then My = 5Zw(t) .

Note: “Typically” one expects n = 1; confirmed numerically.

Amax < 0 indicates reliability
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Note. Single oscillators typically reliable
Proposition (see e.g. [Kifer])
(i) > ;miAi <0

(i) >, m;A\; = 0 iff p is invariant (under F* for a.e. w)

Can also show directly using Jensen’s inequality
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Case 2: A\pax > 0

Theorem (Ledrappier + Young). If )\, > 0, then p,, is a random
SRB measure. (“SRB” = Sinai-Ruelle-Bowen)
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Case 2: A\pax > 0

Theorem (Ledrappier + Young). If )\, > 0, then p,, is a random
SRB measure. (“SRB” = Sinai-Ruelle-Bowen)

SRB properties:

(i) Smooth densities along unstable manifolds W*(x, w)
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Case 2: A\pax > 0

Theorem (Ledrappier + Young). If )\, > 0, then p,, is a random
SRB measure. (“SRB” = Sinai-Ruelle-Bowen)

SRB properties:
(i) Smooth densities along unstable manifolds W*(x, w)

(i) Dimension formula: dim(u,,) = Lyapunov dimension
Cf. [Timme-Wolf]
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Case 2: A\pax > 0

Theorem (Ledrappier + Young). If )\, > 0, then p,, is a random
SRB measure. (“SRB” = Sinai-Ruelle-Bowen)

SRB properties:
(i) Smooth densities along unstable manifolds W*(x, w)

(i) Dimension formula: dim(u,,) = Lyapunov dimension
Cf. [Timme-Wolf]

Amax > 0 indicates unreliability
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Random Sink (A, < 0)
[CLICK TO PLAY MOVIE]
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Random SRB Measure (A« > 0)
[CLICK TO PLAY MOVIE]
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Remark. A\, .. is useful for numerically probing

reliability
0
-
el(t) ©
3
m -1 i
=
= fﬁ\}'
a 22 I1 (I) i 2
A
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2. A Condition for Reliable Networks

Theorem (KL-Shea-Brown—-Young). If the connection
graph of a phase oscillator network 1s acyclic, then
Amax < 0.

Note: [Mézic et al] have analogous result for uncertainty propagation
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Proof (sketch):
(1) Acyclic graph =~ dordering so: < j iff ¢ ~~» j

MFO 2011.08.22 —p. 17/26



Proof (sketch):
(1) Acyclic graph = dorderingso¢ < jiff ¢ ~~ j

(11) Skew product structure: Vk < N, can write flow as
o (O) = (FULO) ) G B, ,0n)

o) — (01, ,6y)
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Proof (sketch):
(1) Acyclic graph = dordering so: < jiff ¢ ~~ 3
(11) Skew product structure: Vk < N, can write flow as
Fon(O) = (F267), Gy B, ,0x))
O = (01, ---,0,)

(i11) Induction on k, using

DFY* (a)o]
DFO,t — |7k @ and
T 1 DESH(2)0) | sin Z(vkq1,mrp1 DFS ()0)]

% log | sin Z(DF%t(x)u, DFY(x)v)| — 0ast — oo
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Extension: Acyclic Networks of Modules
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Extension: Acyclic Networks of Modules

£ “WW— SRR’
-1.02
@—’ A:(1,2,3,5,6)
\% \
. \
H o B:(4,7) - C:(8,9)
B 1 |-4/1.3 L.2 i
(7) %*@W*
|
LA C

- If every “module” is reliable, then A, < 0
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Extension: Acyclic Networks of Modules

£ “WW— SRR’
-1.02
@—’ A:(1,2,3,5,6)
. \
B:(4,7) - C:(8,9)
B

- If every “module” is reliable, then A, < 0

- Can measure reliability of modules via fiber Lyapunov exponents
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3. A Mechanism for Unreliability

b~ (P

input

91 = V1 + 2(91) °
92 = V9 + 2(92) °

ag, - g(02) + e 1(t)]
ag - g(61)]
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How do ag, ag,, and ¢ affect reliability?

1 OO

3
25 f I maX > O
10.05
2 Eee e unreliable
1.5} = _ 0.05
1 0.02 e
1-0.1
0.5 -0.15
0 -0.2 Amax < O
05 °® reliable
-0.3
_10
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How do ag, ag,, and ¢ affect reliability?

Io.1 Amax > ()

10.05 .
unreliable

-0.15

-0.2 Amax < O

225 reliable

-0.3
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How do ag, ag,, and ¢ affect reliability?

1 (OO

3 J
25 fg IO'1 >\maX > O
- 10.05 ]
2] e unreliable
1.5 > o
1-0.05
Qfty -
0.5 -0.15
0 -0.2 Amax < O
05 * reliable
-0.3
_10
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How do ag, ag,, and ¢ affect reliability?

C =

- 10.05
10

gy - 1-0.05

. 0.1 ™
W L
/ﬁ 0.15

A‘Ff
= -0.3 -0.2
0.14
_0.02 EeELEE - ~0.25
1N A

~0.3

0.5 1 1.5 2

o

MFO 2011.08.22 — . 20/26



el (t)ar> Q%Q

For ¢ = 0, daj, (ag) at which a limit cycle emerges

[KL-Shea-Brown—Young]|

maX>O

10.05 llIlI'GllElbl@

-0.15 )\maX < O

-0.2

reliable

-0.25

-0.3
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Geometric Mechanism for Positive Exponent

Dynamical setting: Limit cycle + perturbation

Setting close to rigorous work of Wang and Young on
shear-induced chaos [Wang, Young, - - -]
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Geometric Mechanism for Positive Exponent

Dynamical setting: Limit cycle + perturbation

Setting close to rigorous work of Wang and Young on
shear-induced chaos [Wang, Young, - - -]

Q. Wang and L.-S. Young studied

T = f(x) +g(x)25(t — kT) .

k

Proved 1n a variety of settings (Hopf, reaction-diffusion PDEs, mechanical

oscillators...): Amax > 0, SRB measures , exponential mixing....

MFO 2011.08.22 —p. 22/26



Simplest example:
h = 1+ oy
gy o= —dy+A-H(0)- >, ,0(t—nT)

MFO 2011.08.22 —p. 23/26



Simplest example:

f = 1+ oy

gy o= —dy+A-H(0)- >, ,0(t—nT)
Theorem (Wang-Young). If

o shear . .
— A = . - (kick “amplitude”) > 1,
A contraction rate

then 3 a positive measure set A C R* such that VI € A,
(1) Amax > 0

(1) the system above has an SRB measure
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Simplest example:

f = 1+ oy

gy o= —dy+A-H(0)- >, ,0(t—nT)
Theorem (Wang-Young). If

o shear . .
— A = . - (kick “amplitude”) > 1
A contraction rate

then 3 a positive measure set A C R* such that VI € A,
(1) Amax > 0

(1) the system above has an SRB measure

Pt

‘ LIMIT CYCLE
KICK

SHEAR

B R

>

)
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At triple point (where limit cycle emerges):

- Geometry indicates strong shear in relevant parameter region

2958
2 |

0.6

04

0.2

-0.2

0.4|-

w1 =10, m0=105ag=10, ag =

//

Y
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At triple point (where limit cycle emerges):

- Geometry indicates strong shear in relevant parameter region

- Suggests: Weakly-attracting cycle + strong shear + perturb.
= Folding of limit cycle
= Unreliability
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Conclusions

Driven oscillator networks can be reliable or unreliable depending

on network conditions, and

(1) Acyclic networks cannot be unreliable
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