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What is a modified equation?

Consider an IVP for the ODE

dX

dt
= f (X ), X (0) = X0

and its approximation by a sequence Xn ≈ X (tn) for tn = n∆t
and time step ∆t. For example, we may consider Xn to be the
explicit Euler approximation given by

Xn+1 = Xn + ∆tf (Xn).

Traditional forward analysis seeks to understand the error by
studying

en := Xn − X (tn)

and we know sup0≤tn≤T |en| = O(∆t) for explicit Euler.
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Backward error analysis

An alternative is backward error analysis, where we ask if there
is a model that the approximation Xn actually solves or better
approximates. For example, can we find an IVP

dY

dt
= f̃ (Y ), Y (0) = X0,

for a modified drift f̃ , such that

Y (tn) = Xn?

Then the backward error is how close f̃ is to f .
The ODE for Y is known as the modified differential equation.
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Simple example

Consider
dX

dt
= λX , X (0) = X0

The explicit Euler method is

Xn+1 = Xn(1 + λ∆t)

and
Xn = (1 + λ∆t)nX0

Now, assuming λ∆t > −1,

log
Xn

X0
=

tn
∆t

log(1 + λ∆t).

Then Xn = Y (tn), where

Y (t) := X0et a(∆t), a(∆t) :=
1

∆t
log(1 + λ∆t).
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Continued.

Then Y (tn) = Xn and

dY

dt
= a(∆t)Y , Y (0) = X0.

This is the modified equation for the explicit Euler method and
is an ODE that describes the method’s behaviour.
Usually, only approximate modified equations are available.
Expand log(1 + x) = x − x2/2 + ..,

log Xn/X0 =(tn/∆t)(λ∆t − (λ∆t)2/2 + (λ∆t)3/3 + . . . )

=λtn(1− λ∆t/2 + λ∆t2/3−).

Then,
Xn = etn(λ−λ2∆t/2)X0 +O(∆t2) .
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Continued.

Hence, explicit Euler approximation

Xn = eλt(1−λ∆t/2)X0 +O(∆t2)

The first term is the solution to the IVP

dY

dt
=
(
λ− λ2∆t

2

)
Y

and we have sup0≤tn≤T |Y (tn)− Xn| = O(∆t2) .
This modified better describes what the method is doing than
the original equation, but not exactly.
Approximate modified equations are more useful, as they
generalise.
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Hamiltonian systems

The big success for backward error analysis is in understanding
the approximation of Hamiltonian systems. For Hamiltonian
H(q, p), consider

dq

dt
= Hp,

dp

dt
= −Hq

Often consider separable Hamiltonian H(q, p) = 1
2 p2 + V (q),

for potential V (q) = 1
2 q2. Then,

dq

dt
= p,

dp

dt
= −V ′(q) = −q

Arise in statistical mechanics and often interested in long term
calculations. Hamiltonian flow maps are symplectic and
preserve areas in phase space (q, p).
Symplectic integrators do the same.
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Symplectic methods

The symplectic Euler method is

qn+1 =qn + pn∆t

pn+1 =pn − V ′(qn+1)∆t

For this type of problem, the modified ODE is also
Hamiltonian. For example V (q) = q2/2

qn+1 = qn + pn∆t; pn+1 = pn − qn+1∆t

Modified equation to first order is the Hamiltonian system with
H(q, p)−∆tpq/2.
Gives an approximate statistical mechanics.
This construction can be done to arbitrarily high order.
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Basic problem and notations

Consider an Ito SDE with drift f and diffusion σ

dX = f (X ) dt + σ(X ) dW (t), X (0) = X0,

where W (t) is a standard Brownian motion.
Error estimates for finite time approximation in weak or strong
sense usually diverge as time interval becomes large.

error at step n ≤ KeKtn∆tp

for a constant K and rate p.
What can be said as tn →∞?
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Example: Euler/OU

Consider the SDE (OU process)

dX = −X dt +
√

2dW , X (0) = X0.

Its invariant measure is N(0, 1).
Euler-Maruyama method for ∆Wn = W (tn+1)−W (tn),

Xn+1 =Xn(1−∆t) +
√

2∆Wn

Xn =(1−∆t)nX0 +
n−1∑
i=0

(1−∆t)n−1−i√2∆Wi .

We know (1−∆t)n = ea(∆t)tn (case λ = −1) and

n−1∑
i=0

(1−∆t)n−1−i√2∆Wi =
n−1∑
i=0

ea(∆t)tn−1−i
√

2∆Wi
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Mean and variance

Mean zero and variance

n−1∑
i=0

e2a(∆t)tn−1−i 2∆t = 2∆t
1− e2a(∆t)tn

1− e2a(∆t)∆t
.

then

Var(Xn)→ 2∆t

1− e2a(∆t)∆t
, as n→∞.

Thus, Euler method has invariant measure
N(0, 2∆t/(1− e2a(∆t)∆t)).
Note a(∆t) = −1 +O(∆t) , so that

2∆t

1− e2a(∆t)∆t
=

2∆t

2∆t +O(∆t2)
= 1 +O(∆t) .

Invariant measure of method accurate to O(∆t) .
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Approximation of invariant measure

Talay made a general result about the last observation in a
series of papers.
Consider Milstein method in d = 1

Xn+1 = Xn+f (Xn)∆t+σ(Xn)∆Wn+
1

2
σ′(Xn)σ(Xn)(∆W 2

n−∆t).

Order one in weak and strong sense.
Let SDE be ergodic with invariant measure π. Talay gives
general conditions that imply

E
[
φ(Xn)

]
=

∫
R
φ(x) d π(x) +O(∆t) .

for continuous functions φ of polynomial growth.
Also shows true for class of second order methods.
Later, extended his results to non-smooth situation.
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Talay: Hamiltonians

Consider

dq =Hp dt

dp =
[
− Hq − F (q, p)Hp

]
dt + σdW (t)

subject to smoothness assumptions and, in particular, need
that F be strictly positive.
This gives standard Langevin equation for
H(q, p) = 1

2 p2 + V (q) with F (q, p) = 1.
Talay shows geometric convergence to invariance measure and
approximation properties of the implicit Euler method.
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Other results

Shardlow-Stuart: geometric ergodicity + finite time
approximation gives approximation.

For process X (t) with X (0) = X0, suppose Geometric
ergodicity

|Eφ(X (t))− π(φ)| ≤ K1V(X0)e−k1t ,

for test functions φ, invariant measure π, constants
K1, k1 > 0, Lyapunov fn. V.
Weak convergence for constants K2, k2, p > 0

|Eφ(X (tn))− Eφ(Xn)| ≤ K2V(X0) ∆tp ek2tn ,

If this holds for enough φ, numerical averages are close to
exact averages.

Applies in many situations (including SPDE), but rate is
not optimal.
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Dissipative Particle Dynamics

Mesoscopic model of fluids comprising particles with position
momentum (qi ,pi ). Forces on Particle i ,

Pair potential V soft, short range:

−aijV
′(qij)q̂ij .

Dissipation compactly supported wD(q), parameter λ,

−λwD(qij)(q̂ij · pij)q̂ij .

Noise wR(q)2 = wD(q), parameter σ:

σwR(qij)q̂ij

dβij(t)

dt
,

with βij for i < j independent BMs and βij = βji .
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Full DPD equations

q̂ unit vector in direction q; q length of q; qij = qi − qj .
Repulsion aij ≥ 0, Dissipation λ. Noise σ.

V (r) =

{
1
2 (1− r

rc
)2, r < rc ,

0, r ≥ rc ,
wD(r) =

{
(1− r

rc
)2, r < rc ,

0, r ≥ rc .

dqi =pi dt

dpi =−
∑
j 6=i

aijV
′(qij)q̂ij dt − λ

∑
j 6=i

wD(qij)(q̂ij · pij)q̂ij dt

+ σ
∑
j 6=i

wR(qij)q̂ij dβij(t),

Periodic boundary conditions on q. βij = βji .
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Properties

1 Momentum/angular momentum is const.

2 Let

H(q1, . . . ,qN ,p1, . . . ,pN) = 1
2

∑
i

p2
i + 1

2

∑
i 6=j

V (qij)

If σ2 = 2λkBT , where kB is Boltzmann’s constant and T
is temperature, and wD = (wR)2, then

ρ =
1

Z
exp

[−H(q1, . . . ,qN ,p1, . . . ,pN)

kBT

]
is invariant measure.
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Existence and uniqueness of solutions

1 The DPD system is a system of DEs with phase space
R2dN with coefficients that are smooth for distinct
particles (qi 6= qj).
Thus, for initial conditions with distinct particles, the
solution exists for a small time interval.

2 If qij(t) = 0 and pij(t) 6= 0, the particles immediately
separate and solution is again well defined.

3 Difficulties if qij(t) = 0 and pij(t) = 0 for some i 6= j .
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Simple case

Consider
dq = p dt dp = q̂ dβ(t).

where q̂ = q/q and q = ‖q‖.
Further simplify to the case d = 1,

dq = p dt, dp = sgn(q)dβ(t).

This contains many of the technical difficulties of the DPD
system. For q0 6= 0,

q(t) = q0 +

∫ t

0
p(s) ds, p(t) = sgn(q0)β(t).

is a solution until q(t) = 0. Difficulty when q0 = p0 = 0.
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Density

dq = p dt dp = dβ(t),

with initial data q(0) = x and p(0) = y . (drop sgn(q)).
Denote the probability of reaching dp × dq from (x , y) by
Pt(x , y ; p, q). Then,

∂P

∂t
=

1

2

∂2P

∂y 2
+ y

∂P

∂x
.

Pt(x , y ; p, q)

=

√
3

πt2
exp

[−(q − x − yt)2

t3/6
+

(q − x − yt)(p − y)

t2/6
− (p − y)2

t/2

]
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(0, 0) unreachable

Let

G (x , y) =

∫ ∞
0

Pt(x , y ; 0, 0) dt

and note G (x , y) <∞ for (x , y) 6= 0.
Let Mt = G (q(t), p(t)); this is a super martingale as

EMt =E

∫ ∞
0

Ps(q(t), p(t); 0, 0) ds

=

∫ ∞
t

Ps(x , y ; 0, 0) ds

≤
∫ ∞

0
Ps(x , y ; 0, 0) ds = M0.

So Mt is finite almost surely (if (x , y) 6= 0).
Thus, (q(t), p(t)) cannot reach (q, p) = (0, 0).
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Uniqueness for DPD

For d = 1 DPD, can show qij = pij = 0 is unreachable a.s.
Using change of variables and McKean’s argument.

For 2d, must show that the solution of

dq = p dt, dp = q̂ dβ(t)

for non zero initial data does not hit the origin a.s. ?

For numerical method given later any dimension, bad
states are unreachable.
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Proving geometric ergodicity

Consider Markov process x(t) with x(0) = y .
Minorization condition For a set C , ∃T > 0, measure ν

with ν(C ) > 0 s.t.

PT (y ,A) ≥ ν(A), y ∈ C , Borel sets A,

(PT (y ,A)=prob of reaching set A from y in time T ).
Drift condition ∃ Lyapunov function V and T > 0 s.t.

EV(x(T ))− V(y) ≤ −αV(y) + β1C (y),

where 1C is indicator function on C , α, β > 0.
If two conditions hold for C = {V ≤ K}, then x(t) converges
geometrically convergence to a unique invariant measure.
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Hypoelliptic case

Consider

dq = p dt, dp = (−λp − V ′(q)) dt + σdβ(t).

Minorization condition

Existence of a continuous density. Hormander Theorem.

Show that PT (y ,A) > 0. Control Theory. Noise
non-degenerate in p equation.

Drift condition

Ito’s formula on V(q, p) = 1
2 p2 + V (q). Use uniform

dissipation −λp. Infact, in this case prove,

d

dt
EV(x(t)) ≤ −αV(x(t)) + β1C (x(t)).
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Difficulties for DPD

Minorization condition

Hormander Thm requires C∞ smooth coefficients.

Not hypoelliptic for all y as noise switches off if qij > rc .
This makes control methods hard.

Drift condition

Dissipation switches off if qij > rc . In fact, can show

d

dt
EV(x(t)) = 1

2

∑
i 6=j

wD(qij)(σ2 − λpij · pij)

where V(x) = 1 + 1
2

∑
i pi · pi +

∑
i 6=j aijV (qij).
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Plots of energy
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Figure: Plots of V(x(t)) and qi (t) for initial data (2, 4, 8,−12, 5, 7)
on spatial domain [0, 10] with λ = σ = 1, aij = 0, and rc = 1.
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Working with DPD

Drift condition

Prove that collisions of two particles gives rise to
geometric decay on a time interval length dt.

Prove that collisions of particles happen sufficiently often.

Minorization condition

Coefficients are smooth except at bad points qi = qj .
Apply Hormander on a non-characteristic subdomain with
absorbing BCs (Cattiaux, 1991), to get lower bound on
transition density.

Assume domain length L < Nrc , then at least one pair will
interact and can start a control argument.
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Theorem

For d = 1, suppose that L < Nrc and σ, λ > 0. There exists a
probability measure π on a state space

S =
{

(q1, . . . , qN , p1, . . . , pN) ∈ T N × RN :
1

N

N∑
i=1

qi = q̄,

N∑
i=1

pi = 0, |pij |+ |qij | > 0 if i 6= j
}

such that

|Eφ(x(t))− π(φ)| ≤ K (1 +
∑

p2
i )e−kt

for all measurable φ : S → R with |φ| ≤ V.
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In two/three dimensions?

Many difficulties:

Pathwise uniqueness.

Geometry harder, as particles may move parallel to one
another and not collide.

A single pair interaction gives noise in one dimension. So
need at least two pair interactions for noise to span the
two dimensions of p.
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Example: OU

For λ, σ constants, consider

dX = λX dt + σ dW , X (0) = X0.

Explicit Euler method:

Xn+1 =(1 + λ∆t)Xn + σ∆Wn

Xn =(1 + λ∆t)nX0 + σ

n−1∑
i=0

(1 + λ∆t)n−1−i∆Wi

=ea(∆t)tnX0 + σ

n−1∑
i=0

ea(∆t)tn−1−i ∆Wi .

Is this the solution of some SDE?

dY = f∆t(Y ) dt + σ∆t(Y )dW (t), Y (0) = X0.
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Modified SDE for OU

Guess the correct form is

dY = a(∆t)Y dt + b(∆t) dW (t), Y (0) = X0.

where a(∆t) is already derived for deterministic case. Then,

Y (tn) =ea(∆t)tnX0 + b(∆t)

∫ tn

0
ea(∆t)(tn−s) dW (s)

=ea(∆t)tnX0 + b(∆t)
n−1∑
i=0

∫ ti+1

ti

ea(∆t)(tn−s) dW (s).

As Y , Xn are Gaussian, to get distribution of Y (tn) correct,
need to get mean and variance correct.
Mean is correct, as a(∆t) is correct and Ito integral mean zero.
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Correct variance

Var
(

b(∆t)

∫ ti+1

ti

ea(∆t)(tn−s) dW (s)
)

=b(∆t)2

∫ ti+1

ti

e2a(∆t)(tn−s) ds

equal to

Var(σea(∆t)tn−1−i ∆Wi ) = σ2e2a(∆t)tn−1−i ∆t.

So b(∆t) given by solution of

b(∆t)2

∫ ti+1

ti

e2a(∆t)(tn−s) ds = σ2e2a(∆t)tn−1−i ∆t.

b(∆t)2

∫ ∆t

0
e2a(∆t)(∆t−s) ds = σ2∆t.

Can find modified equation in weak sense for OU/Explicit
Euler.
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Modified equations for SDEs

Consider an Ito SDE with drift f and diffusion σ

dX = f (X ) dt + σ(X ) dW (t), X (0) = X0,

and look for a modified SDE that best fits the numerics

dY =
[
f (Y ) + ∆t f̃ (Y )

]
dt +

[
σ(Y ) + ∆t σ̃(Y )

]
dW (t),

Y (0) =X0.

To determine the modified term, we ask for an increase in the
order of the error in the weak sense. That is, find f̃ (Y ) and
σ̃(Y ) such that

Eφ(Xn)− Eφ(Y (tn)) = O(∆tp) ,

where p improves on the weak order of the method Xn (e.g.,
p = 2 for Explicit Euler.).
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Weak Convergence

For explicit Euler in one dimension,

Xn+1 = Xn + f (Xn)∆t + σ(Xn)∆Wn,

where ∆Wn are independent N(0,∆t) (Gaussian mean 0,
variance ∆t).

Basic idea: show consistency conditions on moments.

To gain convergence of order p, require approximation to
O(∆tp+1) of Eφ(X (∆t)), for polynomials φ upto degree
2p + 1.
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Weak consistency conditions

To gain a modified equation of second order, must satisfy
five conditions but only have two free parameters f̃
and σ̃.

Solution not guaranteed for any method!

Long calculation: compute moments EX p
n and EX (tn)p

for p = 1, . . . , 5 and see if there is a solution.

If the noise is multiplicative, the consistency equations
have no solution. There is no modified equation.
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Modified equation for explicit Euler

If we look at the additive case, all five conditions hold for

dY =
[
f (Y )−∆t

(1

2
f ′(Y )f (Y ) +

1

4
f ′′(Y )σ2

)]
∆t

+ σ
(

1−∆tf ′(Y )/2
)

dW (t),

For example, if f (Y ) = λY and σ(Y ) = σ,

dY =
(
λ−∆t

1

2
λ2
)

Y dt + σ
(

1−∆t
λ

2

)
dW (t).

is weak second order close to the explicit Euler method.
In general, cannot go to even higher order as the f ′(Y ) term
causes the modified equation to have multiplicative noise.
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Extensions: explicit Euler

In R2, there are now twenty moments conditions.
It is possible to find a second order modified SDE for
explicit Euler in this case.

∞-modified equation for Gaussian cases (like OU and
explicit Euler). Already derived.

Zygalakis, developed ∞ modified equation and introduces
a technique based on the generator, which simplifies
calculations.
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Milstein’s method

Zygalakis has shown there is a second order modified equation
for Milstein’s method. It is

dY =
[
f (Y )− ∆t

2

(
f (Y )f ′(Y ) +

1

2
σ(Y )2f ′′(Y )

)]
dt

+
[
σ(Y )− ∆t

2

(
σ(Y )f ′(Y )

+ f (Y )σ′(Y ) +
σ(Y )

2
σ′(Y )2 +

σ(Y )2σ′′(Y )

2

− 1

2
σ′(Y )

)]
dW (t).

There also a version in multiple dimensions. For GBM,

dY =
[
r − r 2∆t

2

]
Y dt +

[
σ −∆t

(
rσ +

σ3

4

)]
Y dW (t)

+
∆t

4
σ dW (t).

Notice the additive term.
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Kurtz asymptotic formula for Euler

Consider

dZ =f ′(X )Z dt + σ′(X )ZdW (t)

+
1√
2

(σ′(X )σ(X ) + f ′(X )σ(X ))dβ(t),

where β(t),W (t) are independent Brownian motions and
Z (0) = 0.
Then Xn = X (tn) + ∆t1/2Z (tn) + o(∆t1/2). For OU, the
equation for Z (t) is

dZ = λZ dt +
1√
2
σλ dβ(t).
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GBM

Geometric Brownian Motion SDE

dX = rX dt + σX dW (t), X (0) = X0,

Then if Xn is the Euler approximation,
Xn = X (tn) + ∆t1/2Z (tn) + o(∆t1/2), where

dZ = rZ dt + σZ dW (t) +
1√
2

(σ2 + σr)X dβ(t).

Is this really backward error analysis?
The behaviour of Euler is described in terms of two SDEs
It is not obvious from the form of Z (t) why weak error is order
one.
Prefer an SDE of the same type so can compare drift and
diffusion.
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Back to long time approximation

Can we use the modified equation to understand the long time
approximation of SDEs?
For Ornstein-Uhlenbeck, the modified SDE

dY = a(∆t)Y dt + b(∆t)Y dW (t)

are good for all time; i.e.,

correct distribution at time tn and

correct invariant measure.

For multiplicative noise problems, we cannot even find a
modified equation.
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Milstein method

Milstein method has order two modified equation

Talay’s work gives error analysis of invariant measure for
SDE approximation by Milstein’s method.

Expect that invariant measure of Milstein’s method is equal
invariant measure of modified equation to second order.
if Talay’s argument allows a dependence on ∆t in drift and
diffusion, could be made in to a general theorem.
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Langevin equation

Consider now the following SDE for position q,
momentum p, dissipation λ, diffusion σ, and potential V :

dq = p dt, dp = (−λp − V ′(q)) dt + σdW (t)

and the following generalisation of symplectic Euler

qn+1 =qn + pn+1∆t,

pn+1 =pn − (λpn + V ′(qn))∆t + σ∆Wn.
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Modified SDE for Langevin?

Modified equation

dq =
(

H̃p(q, p)− λ∆tp

2

)
dt +

σ∆t

2
dW (t)

dp =− H̃q(q, p) dt − λ
(

1 +
1

2
∆tλ+

1

2
∆tV ′(q)

)
p dt

+ σ
(

1 +
λ∆t

2

)
dW (t),

where the modified Hamiltonian

H̃(q, p) =
1

2
p2 + V (q)− 1

2
∆tV ′(q)p.
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Structure of modified equation

The invariant measure of

dp =Hp dt

dq =− (Hq + λHp) dt + σdW (t)

is e−2λH(q,p)/σ2
. For H = 1

2 p2 + V (q), this system is

dp =p dt

dq =− (V ′(q) + λp) dt + σdW (t)

the Langevin equation. We’d like the modified SDE to have
this structure, just as the symplectic method had a modified
equation with a Hamiltonian structure.
It does not.
Zygalakis has developed a method, whose 1st order modified
equation is.
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Conclusions

1 Long time error analysis for SDEs well developed,
especially Talay and coworkers.

2 Euler additive SDE, can write down modified equation to
high order.

3 Milstein has second order modified equation.

4 For Langevin equation, symplectic Euler has modified
equation but not appropriate structure. Zygalakis gives a
method where Langevin structure is found in modified
equation.

5 Is there a pathwise modified equation? Certainly need to
step outside SDEs of the same type to do this.

6 Perhaps, use rough path space analysis to consider SDEs
forced by some appropriate rough path?

7 Relate modifed equation to asymptotic analysis.
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