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Stabilization by Noise

Stabilization
by Additive
" Noise Well known phenomenon due to Multiplicative Noise.
Dirk Blomker For example
Introduction 1. By Itd noise, due to It6-Stratonovic correction:
Bu“n'if'gfq' » For SDE: [Arnold, Crauel, Wihstutz '83],
Noise [Pardoux, Wihstutz '88 '92].....
Amplitude Eq. » For SPDE: [Kwiecinska '99],[Caraballo, Mao et.al. '01],
e [Cerrai '05], [Caraballo, Kloeden, SchmallfuB '06]....
Stabllization 2. By Rotation:[Baxendale et.al.’93], [Crauel et.al.'07].....

degenerate noise
formal

theorem Consider here:

More Noise .. )
» Degenerate additive noise

Summary

» effect of noise transported by the nonlinearity

» Stabilization effects on dominating behaviour

N
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Introduction

v

v

Rigorous error estimates for Amplitude equations

Understand interplay between noise and nonlinearity

vV v v Vv Y

SPDEs of Burgers-type near a change of stability
Dominant modes evolve on a slow time-scale

Stable modes decay on a fast time-scale

Evolution of dominant modes given by Amplitude eq.

Formal derivation well known [Cross, Hohenberg, '93]
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Introduction 1. Burgers equatlon

Burgers Eq.

[ O = 8)2<u 4+ vu+ udgu + o€

Noise

Amplitude Eq.
e 2. Surface Growth

theorem

Stabilization

Oth = —0%h — v02h — 92|0xh|> + o¢
degenerate noise

formal

theorem 3. Rayleigh Bénard Convection
More Noise 3D-Navier-Stokes coupled to a heat equation

Summary



An Equation of Burgers type

Stabilization

by Additive
o For simplicity we consider only a scalar Burgers equation.

Dirk Blomker

troduction Equation of Burgers type

Burgers Eq.

Linear Op. Oru = (02 4 1)u + veé®u + udeu + €% (B)
Noise

Amplitude Eq.

formal u(t,x) eR, t >0, x € [0,7]
Stabilization

small noise
degenerate noise
formal

Dirichlet boundary conditions (u(t,0) = u(t, ) =0))
Moving frame Jo u(t,x)dx =0
ve2u linear (in)stability

theorem
More Noise

|ve?| < 1 distance from bifurcation

Summary

vV v vV v Vv Y

&(t,x) Gaussian white noise



‘:;f%@/ﬁ The Linear Operator
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ST The Linear Operator:

Introduction

L = —02 — 1 Dirichlet b. c. on [0,7] and [ u(x)dx =0

Burgers Eq.

Linear Op.
Noise

e £ » Orthonormal system generated by sin(kx), k =1,2,...
mplitude Eq.

ormal : . ) .
formal » Eigenvalues: \, = k-1, k=12,...
Stabilization

Zmallnoise. 0:A1<w<>\2<...<)\k—>00
egenerate noise

formal
theorem

» The dominant mode

More Noise

Summary

N = span{sin} — the kernel of L



The Noise
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Introduction .
e Two cases of noise:

Burgers Eq.
Linear Op.
Noise

Amplitude Eq. > FIrSt
e White noise acting directly on A/

theorem

Stabilization

small noise > Later-
o Degenerate noise not acting on A/

theorem

More Noise

Summary



Wiener Process

Stabilization
by Additive
Noise atu = (a)% =+ 1)IJ =4F V€2U aF uaxu + 625 (B)J
Dirk Blomker
Introduction NOise: f(t‘ X) = at V‘/(t7 X)
B;lrger(s) Eq. 0o
inear Op. .
Noise W(t,X) = E O'kﬁk(t) sm(kx)
Af::liltude Eq. k=1
theorem
s » g cR, ol < C
e » {Bk}ken i.i.d. Brownian motions
theorem o
e et Remark: For space-time white noise o, = 1 Vk.
Summary

How does noise affects the dynamics of dominant modes in N/?




The Amplitude Equation
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Dirk Blsmk Oru = (8)2(+1)U+V€2u+uaxu—|—52atw (B)J

Ansatz:

Introduction

Burgers Eq. u(t7 X) = 6‘9(€2t) Sin(X) + (9(62)
Linear Op.
Noise

=Ml Result: Amplitude Equation

formal

theorem

Stabilization Ora=va— T1233 + 013, (A)

small noise

degeneras ncke where 3(T) = eo131(¢ 2 T) rescaled noise in N

theorem

More Noise

Interesting fact:

Summary

Nonlinearity B(u,v) = £0x(uv) does not map N to V!
Higher order modes are involved!
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Formal Calculation

Oru = —Lu+ velu+ B(u, u) + 0, W (B)J

u(t,x) = e A(€2t) +€% (2 t) +...
—— ——
EN 1N

Thus (T = €2t, P, Projection onto N/, Ps = | — P,)
as Pc.B(A,A) =0

OTA = VA +2P.B(A, 1)) + d1P.W + O(e)
and
07 = —Lp + PsB(A, A) + €7 Ps W + O(e) ,

where W(T) = eW(e2T).
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Formal Calculation Il

Neglecting all small terms leads to
OTA =vA+2P.B(A, ) + drP.W
with 1 = L71PsB(A, A).
With A(T) = a(T)sin
Jra=va— 1—1233 + 0718,

where —% = 2P.B(sin, L=*P;B(sin, sin)).
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The Theorem

Oru = (02 + 1)u + ve*u + udeu + 20, W (B)
Ora=va—+£a’>+078 (A)

Theorem — Approximation

| A

u is solution of (B) — a is solution of (A)
u(0) = ea(0) sin +e1hg with g L sin

Then for k, T, p, d > 0 there is C > 0 such that

P( sup Hu(t)—ea(tez)sinHoo>e2_“)
t€[0, Toe2]

< Ce? +P(|a(0)| > 9) + P(||¢ol|oc > 6)




Impact of the Noise
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Burgers Eq. . . . .
linear Op Dominant modes driven only by noise acting on N.

Noise

Amplitude Eq.

formal No impact of 3, [,

theorem

Stabilization
small noise
degenerate noise

formal aTa =va— %33 + aT/g Y (A)

theorem

More Noise where 3(T) = eo181(e72T) rescaled noise in V.

Summary



The Noise Il
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Assumption:
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No noise on the dominant mode: o1 =

Introduction

Burgers Eq.
Linear Op. e
Noise )
Amplitude Eq. W(t) = ngﬁk(t) Sln(k.) ) g(t) = atW(t)
thecar k=2
Stabilization

small noise

il Question: How does noise interacts with the nonlinearity?

formal

theorem » Noise only on the second mode
More Noise O-k — 0 for k # 2
Summary Two extreme cases:

» Near white noise
O = 1 for k > 2




Stabilisation by Additive noise — Setting
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Introduction

Burgers Eq.

Linear Op. Oru = (1+8)2()U+1/62U+U8§U+0'¢

Noise

Amplitude Eq. .. ..
oy » Dirichlet boundary conditions on [0, 7], [; udx =0

theorem

Stabilization » N = span{sin} — One dominating mode
small noise

GO > P(t,x) = 0¢P2(t)sin(2x) — Noise only on 2nd mode

formal
theorem

More Noise

Summary
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Previous Result

Previous Approximation Result:

If o = €2, then for t € [0, Toe 2]
u(t) = ea(e’t)sin +O(¢®) and d1a=va—

1
ﬁa

3

No impact of Noise!

Need larger Noise!
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Stabilisation by Additive noise — Result

Consider larger noise

O = (14 92 u + velu + ud?u + c¢ (B2)

Amplitude Equation [DB, Hairer, Pavliotis, 07]

da= (v — g&)adT — £2%dT + tao df, (A2)

in Stratonovic sense, with Go(T) = €f2(¢2T).

» Stabilisation effect for v € (0,1/88).
» Problem: u(t) — ea(€®t)sin ~ i—Q 1 62(T)sin(2-) + O(€?)
I'e——

white noise
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Formal Motivation

da=(v— )adT - —a3dT + a odfs (A2)

Stabilization effect

Itd to Stratonovic correction is —%23

Where does the other term comes from?

Consider slow time: (u(t) = ew(€2t))

OrY = —e 2Ly +vip + e B(v, ) + e tard  (B2)



Formal Calculation

Stabilization

by Additive ) =il —19_&
Noise 8T¢ = —€ L’(/J + V'l/} + € B('l/}, 'lp) + € 8T¢2
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el Ansatz with 1), € span(sin(kx)):

Burgers Eq.

oo W(T) = 61(T) + 6a(T) + eta(T) + O(€)

M 15t mode: (using Bp(¢k, 1) =0 for k & {n—1,n+ 11— n})

Stmabu'ato O7b1 = v + 2€ 1 Bi(v, Y1) + 2B1 (2, 43) + O(e)

z::::'" 2nd mode: LT/)Q = 652(1/)1, ¢1) + €7D + 0(62)

More Noise 3rd mode: L¢3 — 2B3('lp2, 1/}1) + O(e)

Summary

New contribution to 1t mode:
462 By (L1072, L71B3(07®2,91))




Formal Motivation
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- New contribution to 1t mode:
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Introduction 462 Bl(L_18T¢27 L_183(8T¢2, ¢1)) = C(68T52)2A

Burgers Eq.

Linear Op.
Noise

Amplitude Eq. What is noise2?

formal

theorem

ctobiation Instead of ed7/3> we use Z.(T) = e fOT e_3(T_5)572d[32(s) :

small noise

degenerate noise
formal
theorem

More Noise Lemma: Averaging with error bounds

Summary
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Stabilisation by Additive noise — Theorem

DB, Hairer, Pavliotis, 07

Let u be a continuous H}([0, 7])-valued solution of (B2) with
u(0) = €a(0) + eyp and 9 L sin. Let a be a solution of (A2)
and define

R = e ttvo+ (| t - (s) ) sin(2),

then for all 9, x, p, Tg > 0 there is a constant C such that

P ( sup  [|u(t) — ea(€®t) sin(-) — eR(t)|| i > 63/2,{>

1.‘6[07 T0€_2]

< CeP + P (||u(0)|| > de) -
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More Noise — Near White Noise

What about more noise?
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More Noise — Near White Noise

Oru = (14 02)u + velu+ udiu + € (B3)
with £(t,x) = 0¢ > pen Bk(t) sin(kx) (near white noise)

Amplitude Equation

There is a Brownian motion B such that
1
da = padT — Ea3dT + V0232 + 0pdB (A3)

for some constants (7, 0,4, 0p).

Multiplicative AND Additive Noise!
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More Noise — Theorem

DB, Hairer, Pavliotis, 07

For a € [0, 3) let u be a continuous HS([0, 7])-valued solution
of (B3) with u(0) = €a(0) + eyp and g L sin. Let a be a
solution of (A3) and define

t
R(t) = ety + / e (E=9)Lgw(s) .
0

Then for all x, 4, p, To > 0 there is a constant C > 0 such that

P < sup  [|u(t) — ea(€Xt)sin(-) — eR(t)|[ o > E5/4—n>

te[0, Toe—2]

< CeP +P(||u(0)| o > de) .
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Dirk Blomker » SPDEs of Burgers type near a change of stability
Introduction » Approximation of transient dynamics

Burgers Eq. Via amp|ltude equations

Linear Op.

ez » Stabilisation by additive noise
Amplitude Eq. ) .

- » Effect of noise on dominant modes

theorem
Stabilization » Noise transported by nonlinearity between Fourier-modes

small noise
degenerate noise
formal

theorem

Further results:
Ve ke » Attractivity results

Summary » Approximation of moments

» Approximation of invariant measures
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