Discrete time piecewise affine models of gene regulatory networks

Bastien Fernandez

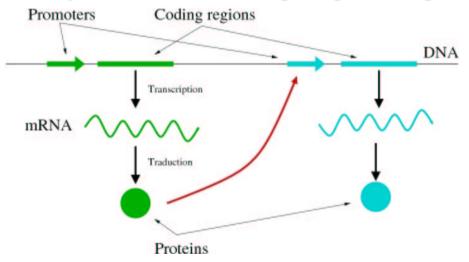
[www.cpt.univ-mrs.fr/~bastien]

CONTRE de Physialle Théorique

J. Math. Bio. 52 (2006) 524-570

with R. Coutinho, R. Lima and A. Meyroneinc

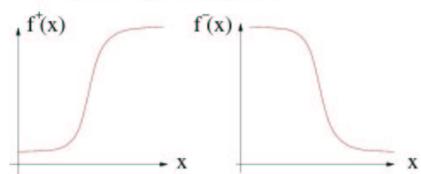
Principles and modelling of gene regulation



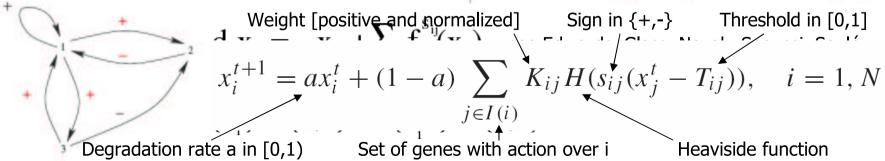
Dynamics:

- Expression level = x_i in [0,1]
- **Interaction:** [+ = Activation, = Inhibition]
- + threshold

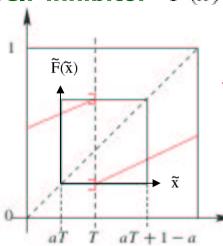
$$d_t x_B = -x_B + f^s(x_A) + ...$$



Gene regulatory networks



Self-inhibitor
$$F(x) = ax + (1-a)H(T-x)$$

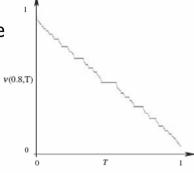


 $\phi: \mathbb{R} \to [0, 1]$ is 1-periodic rotation number $v \in [0, 1)$

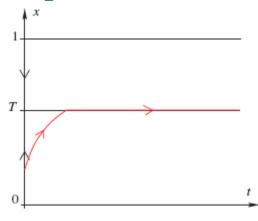
Thm: $\lim_{x \to \infty} \left(\tilde{F}^t(\tilde{x}) - \phi(\nu t + \alpha) \right) = 0$ for all $\tilde{x} \in (0, 1]$

$$T\mapsto \nu(a,\,T)\,$$
 = decreasing Devil's staircase

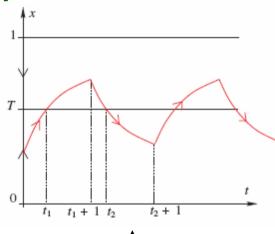
Biological relevance: Permanent oscillations with frequency mode-locking



Origin of oscillations: Delays

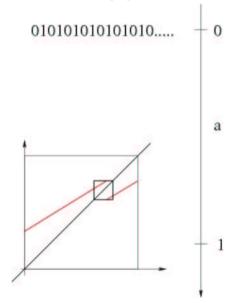


$$\frac{dx}{dt} = -x(t) + H(T - x(t))$$

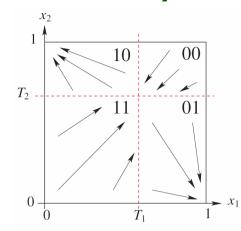


$$\frac{dx}{dt} = -x(t) + H(T - x(t)) \qquad \frac{dx}{dt} = -x(t) + H(T - x(t-1))$$

« a = delay parameter »



Two mutually inhibiting interactions [Positive circuit]



$$\begin{cases} x_1^{t+1} = ax_1^t + (1-a)H(T_2 - x_2^t) \\ x_2^{t+1} = ax_2^t + (1-a)H(T_1 - x_1^t) \end{cases}$$

- either the orbit visits only 00 and 11
- or it converges either to (0,1) [when in 10] or to (1,0) [when in 01]

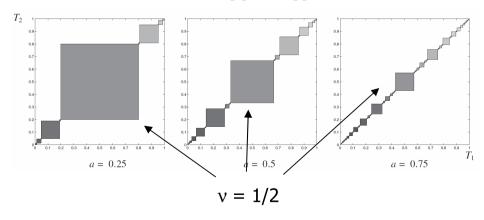
Existence of orbit visiting only 00 and 11?

Yes, depending on parameters

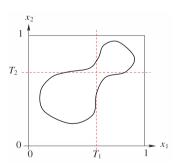
Asymptotically, we have $x^t = x_1^t = x_2^t$ and $x^{t+1} = ax^t + (1-a)H(T_1 - x^t) = ax^t + (1-a)H(T_2 - x^t)$

[Self-inhibitor: x^t attracted by a unique (quasi)-periodic orbit with rotation number v

Existence domains of (quasi-)periodic orbits

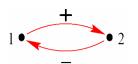


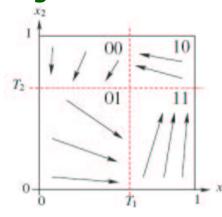
Origin of permanent oscillations



(possible) trajectory in a system of coupled differential equations with **delays**

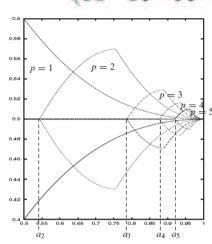
Negative circuit of two genes
$$x_i^t = (1-a) \sum_{k=0}^{\infty} a^k \theta_{3-i}^{t-k-1}$$
 for all $t \in \mathbb{Z}$, $i = 1, 2$.

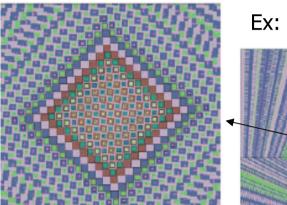


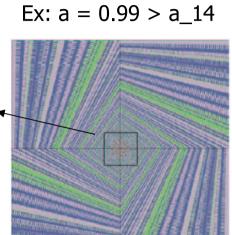


1/Balanced orbits

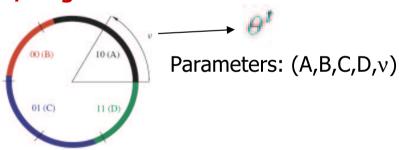
 $\theta^t = (00^p \ 01^p \ 11^p \ 10^p)^{\infty}$ exists iff (T_1, T_2) in $[T_p(a), 1 - T_p(a)]^2$

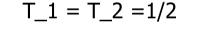


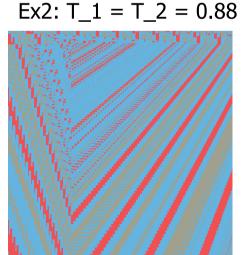


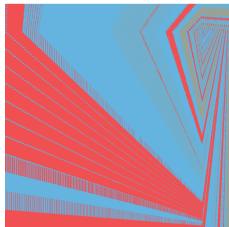


2/ Regular orbits









Analysis of a family of regular orbits:

(A,B,C,D,v) such that

- -1 point/lap in 10 and 00
- p points/lap in 01
- ρ points/lap in 11

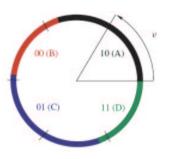
Existence and uniqueness of regular orbits

a = 0.52

with (A,B,C,D,v) s.t. 1 pt/lap in 10 and 00, p pts/lap in 01, ρ pts/lap in 11

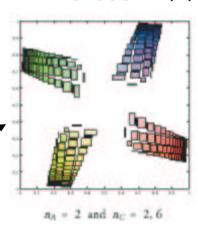
Theorem 4.1. (Families of regular orbits and their parameter dependence. Simple case) The (p, ρ) -regular orbit exists iff (T_1, T_2) belongs to a unique rectangle $I_1(a, p, \rho) \times I_2(a, p, \rho)$ which exists for every $p \ge 1$ and $\rho \ge 1$ provided that $a \in (0, a_c]$.

a_c ~ 0.544



 $(p,\rho) = Property (p,r) = Property (p,r$

Proposition: When $a>a_c$, existence for p>p(a) and p>p(a,p).



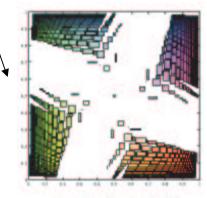
Regular orbits with n_A pt/lap in 10, n_B pt/lap in 00, n_C pt/lap in 01, ρ pts/lap in 11

a = 0.68

Theorem 4.3. (Families of regular orbits and their parameter dependence. General case) Let $n_A \ge 1$ and $n_C \ge 1$ be arbitrary integers.

The (n_A, n_B, n_C, ρ) -regular orbit can exist – upon a suitable choice of the parameters (a, T_1, T_2) – for any ρ in an interval of the form (ρ_c, ∞) only if $n_B = 1$. The $(n_A, 1, n_C, \rho)$ -regular orbit exists iff (T_1, T_2) belongs to a unique rectangle $I_1(a, n_A, n_C, \rho) \times I_2(a, n_A, n_C, \rho)$ which exists provided that $a \in [\underline{a}_{n_A, n_C}, \overline{a}_{n_A, n_C}]$ and that ρ is larger than a critical value (say $\rho \geqslant \rho_{a,n_A,n_C}$). The numbers \underline{a}_{n_A,n_C} and \overline{a}_{n_A,n_C} are known explicitly.

Open problems: Other regular orbits, non regular orbits, complete description (a $< \frac{1}{2}$)



 $n_A = 1$ and $n_C = 1, 20$