Discrete time piecewise affine models of gene regulatory networks

J. Math. Bio. 52 (2006) 524-570
with R. Coutinho, R. Lima and A. Meyroneinc
Principles and modelling of gene regulation

Gene regulatory networks

Dynamics:

- Expression level $=x_{i}$ in $[0,1]$
- Interaction: [+ = Activation, - = Inhibition] + threshold

$$
\mathrm{d}_{1} \mathrm{x}_{\mathrm{B}}=-\mathrm{x}_{\mathrm{B}}+\mathrm{f}^{\mathrm{s}}\left(\mathrm{x}_{\mathrm{A}}\right)+\ldots
$$

Self-inhibitor $\quad F(x)=a x+(1-a) H(T-x)$

$$
\phi: \mathbb{R} \rightarrow[0,1] \text { is 1-periodic rotation number } v \in[0,1)
$$ Thm: $\lim _{t \rightarrow+\infty}\left(\tilde{F}^{t}(\tilde{x})-\phi(\stackrel{\rightharpoonup}{t+\alpha})\right)=0 \quad$ for all $\tilde{\mathrm{x}} \in(0,1]$ $T \mapsto \nu(a, T)=$ decreasing Devil's staircase

Biological relevance: Permanent oscillations with frequency mode-locking

Origin of oscillations: Delays

« $\mathrm{a}=$ delay parameter »

Two mutually inhibiting interactions [Positive circuit]

$$
\left\{\begin{array}{l}
x_{1}^{t+1}=a x_{1}^{t}+(1-a) H\left(T_{2}-x_{2}^{t}\right) \\
x_{2}^{t+1}=a x_{2}^{t}+(1-a) H\left(T_{1}-x_{1}^{t}\right)
\end{array}\right.
$$

Existence of orbit visiting only 00 and $11 ? \quad$ Yes, depending on parameters
\longrightarrow Asymptotically, we have $\mathrm{x}^{\mathrm{t}}=\mathrm{x}_{1}{ }^{\mathrm{t}}=\mathrm{x}_{2}^{\mathrm{t}}$ and $x^{t+1}=a x^{t}+(1-a) H\left(T_{1}-x^{t}\right)=a x^{t}+(1-a) H\left(T_{2}-x^{t}\right)$
[Self-inhibitor: x^{t} attracted by a unique (quasi)-periodic orbit with rotation number v]

Existence domains of (quasi-)periodic orbits

Origin of permanent oscillations

(possible) trajectory in a system of coupled differential equations with delays

Negative circuit of two genes

$$
x_{i}^{\prime}=(1-a) \sum_{k=0}^{\infty} d^{k^{k} \theta_{3}^{t-k-1}-1} \text { for all } t \in \mathbb{Z}, i=1,2 .
$$

1/Balanced orbits $\theta^{t}=\left(00^{p} 01^{p} 11^{p} 10^{p}\right)^{\infty}$ exists iff $\left(\mathrm{T}_{1}, \mathrm{~T}_{2}\right)$ in $\left[\mathrm{T}_{\mathrm{p}}(\mathrm{a}), 1-\mathrm{T}_{\mathrm{p}}(\mathrm{a})\right]^{2}$

2/ Regular orbits

θ^{t}
Parameters: (A,B,C,D,v)

Analysis of a family of regular orbits: ($\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{v}$) such that
-1 point/lap in 10 and 00

- p points/lap in 01
- ρ points/lap in 11

$$
\mathrm{T} _1=\mathrm{T} _2=1 / 2
$$

Ex2: $\mathrm{T}_{-} 1=\mathrm{T} _2=0.88$

Existence and uniqueness of regular orbits

 with ($\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{v}$) s.t. $1 \mathrm{pt} / \mathrm{lap}$ in 10 and $00, \mathrm{p}$ pts/lap in $01, \rho \mathrm{pts} / \mathrm{lap}$ in 11Theorem 4.1. (Families of regular orbits and their parameter dependence. Simple case) The (p, ρ)-regular orbit exists iff $\left(T_{1}, T_{2}\right)$ belongs to a unique rectangle $I_{1}(a, p, \rho) \times I_{2}(a, p, \rho)$ which exists for every $p \geqslant 1$ and $\rho \geqslant 1$ provided that $a \in\left(0, a_{c}\right]$.

Regular orbits with n_A pt/lap in 10, n_B pt/lap in 00, n_C pt/ap in $01, \rho$ pts/lap in 11
Theorem 4.3. (Families of regular orbits and their parameter dependence. General case) Let $n_{A} \geqslant 1$ and $n_{C} \geqslant 1$ be arbitrary integers.

The $\left(n_{A}, n_{B}, n_{C}, \rho\right)$-regular orbit can exist - upon a suitable choice of the parameters (a, T_{1}, T_{2}) -for any ρ in an interval of the form $\left(\rho_{c}, \infty\right)$ only if $n_{B}=1$.

The $\left(n_{A}, 1, n_{C}, \rho\right)$-regular orbit exists iff $\left(T_{1}, T_{2}\right)$ belongs to a unique rectangle $I_{1}\left(a, n_{A}, n_{C}, \rho\right) \times I_{2}\left(a, n_{A}, n_{C}, \rho\right)$ which exists provided that $a \in\left[\underline{a}_{n_{A}, n_{C}}, \bar{a}_{n_{A}, n_{C}}\right]$ and that ρ is larger than a critical value (say $\rho \geqslant \rho_{a, n_{\mathrm{A}}, n_{C}}$). The mumbers $\underline{a}_{n_{A}, n_{C}}$ and $\bar{a}_{n_{A}, n_{C}}$ are known explicitly.

Open problems: Other regular orbits, non regular orbits, complete description ($\mathrm{a}<1 / 2$)

$n_{A}=1$ and $n_{C}=1,20$

