
Dynamical systems with Gaussian and Levy noise: analytical and stochastic approaches

Noise is often considered as some disturbing component of the system. In particular physical

situations, noise becomes essential: it creates new events (example in climatology: qualitative

explanation of the almost periodic recurrence of cold and warm ages in paleoclimatic data).
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Large deviations and a Kramers’ type law for self-stabilizing diffusions
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The exit problem is the basic tool for the analysis of almost periodic stochastic paths.

• Introduction: large deviations and exit problem for classical diffusions.

• Existence of self-stabilizing diffusions

• Large deviations for self-stabilizing diffusions

• Exit problem in some convex landscape for self-stabilizing diffusions
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Introduction: large deviations for classical diffusions

Let us consider the solution of the stochastic differential equation

dY ε
t = V (Y ε

t )dt+
√
εdWt, Y

ε
t ∈ IRd, Y ε

0 = y ∈ D

in some bounded domain D. The drift term V is locally Lipschitz and W is some

d-dimensional Brownian motion.
�

�

�

�
➥ Exit problem : it consists in describing both the time needed by the solution Y ε in order

to exit from the bounded domain D and the distribution of the exit point on the boundary. In

this dynamical system perturbed by some small noise, we shall focus our attention to the

asymptotic behaviour of the exit time as the noise intensity becomes small. Since the diffusion

stays close to the solution of the deterministic system

dY 0
t = V (Y 0

t )dt, Y 0
0 = y

on fix time intervals, we shall assume that Y 0
t doesn’t exit from the domain D and converges,

as time elapses, towards some stable point ystable ∈ D.
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Introduction

Let us define the rate function

IT (ϕ) =

{

1
2

∫ T

0
‖ϕ̇t − V (ϕt)‖2 dt if ϕ ∈ H1

y ([0, T ])

+∞ otherwise.

Here H1
y ([0, T ]) is the Cameron-Martin space of absolutely continuous functions on the time

interval [0, T ] starting in y that possess square integrable derivatives.

Theorem 1 (Freidlin and Wentzell): The diffusion Y ε satisfies some large deviations principle

with good rate function IT . In other words,

IP(Y ε ∈ Γ) � exp

(

−1

ε
inf
ϕ∈Γ

IT (ϕ)

)

, where Γ ⊂ C([0, T ]).

Let us describe the minimal energy the diffusion Y ε needs to exit from the domain D. We

define the quasi-potential

Q(x, z) = inf{IT (ϕ) : ϕ ∈ C([0, T ]), ϕ(0) = x, ϕ(T ) = z, T > 0}.

The minimal cost is Q = inf
z∈∂D

Q(ystable, z).
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Introduction

The most important result is the precise evaluation of the exponential growth rate for the exit

time as the intensity of the stochastic perturbation becomes small ε→ 0 (Kramers’ time).

τ ε = inf{t > 0, Y ε
t /∈ D}.

Theorem 2 (Freidlin-Wentzell): ∀y ∈ D and δ > 0

lim
ε→0

IPy(e
(Q+δ)/ε > τ ε > e(Q−δ)/ε) = 1

Moreover lim
ε→0

ε ln IEy[τ
ε] = Q.

PSfrag replacements

Y ε
τε

y

ystable

∂D

Furthermore we obtain some informations about the distribution of the exit location: if

N ⊂ ∂D is some closed subset of the boundary and inf
z∈N

Q(ystable, z) > Q, then for all

y ∈ D, limε→0 IPy(Y
ε
τε ∈ N) = 0.

In particular if there exists some point z∗ ∈ ∂D which satisfies

Q(ystable, z
∗) < Q(ystable, z) for all z 6= z∗, z ∈ ∂D then

∀δ > 0, ∀y ∈ D, lim
ε→0

IPy(‖Y ε
τε − z∗‖ < δ) = 1.
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Introduction

Remark: In the particular gradient case (the drift term is the gradient of some potential

V = −∇U ) the quasipotential can be explicitly computed

(under some hypotheses: U(z) > U(ystable) and ∇U(z) 6= 0 for all z 6= ystable).

Q(ystable, z) = 2(U(z) − U(ystable)).

Hence

Q = inf
z∈∂D

2(U(z) − U(ystable)).

sketch of proof: For any function ϕ ∈ C1, we get

U(ϕT ) − U(ϕ0) =
∫ T

0
〈∇U(ϕs), ϕ̇s〉ds

Hence IT (ϕ) =
1

2

∫ T

0

‖ϕ̇s −∇U(ϕs)‖2ds+ 2

∫ T

0

〈ϕ̇s,∇U(ϕs)〉ds

≥ 2(U(ϕT ) − U(ϕ0)).

In order to get the upper-bound, we choose some particular path ϕ̂: the unique solution of
ϕ̇s = ∇U(ϕs) with ϕT = z. Then it suffices to use both the convergence ϕ̂0 → ystable as
T → ∞ and the definition of the cost
Q(ystable, z) = inf{IT (ϕ) : ϕ ∈ C([0, T ]), ϕ0 = ystable, ϕT = z, T > 0}. �
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Introduction

In the particular gradient case, there exist precise results introduced by physicists (Kramers

was the first one) and developped by several mathematicians (among those Bovier, Eckhoff,

Gayrard, Klein 2005) who presented equivalents for the exit time.

Furthermore Day (1983) proved that τ ε/IE[τ ε] ∼ E(1) where E(1) is some exponential law

of parameter 1. More precisely, for any y ∈ K ⊂ D where K is some compact set, there

exists some constant δ > 0 such that

IPy(τ
ε > t) = e−λεt(1 + OK(e−δ/ε))

for all t ≥ 0 and ε small enough. λε represents the principal eigenvalue of the following

operator:

Lεu =
ε

2
∆u+ 〈V,∇u〉.

Moreover λεIE[τ ε] → 1 uniformly on each compact subset K ⊂ D. In fact

u(t, y) = IPy(τ
ε > t) is solution of the PDE

∂u

∂t
= Lεu inD×(0,∞), u(t, y) = 0 for y ∈ ∂D, t > 0, and u(0, y) = 1 for y ∈ D.
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Self-stabilizing diffusions

Self-stabilizing diffusions

Let us consider the SDE

dXε
t = V (Xε

t )dt−
∫

IRd

Φ(Xε
t − x)uε

t(x)dx dt+
√
εdWt, Xε

0 = x, (1)

where uε
t (x)dx is the law of Xε

t . The so-called self-stabilization perturbation gives to the

diffusion more inertia and so stabilizes it in some particular state space domains. These SDE

are obtained as limit of interacting particle systems, as the number of particles tends to infinity.

dX i,N
t = V (X i,N

t )dt− 1

N

N
∑

j=1

Φ(X i,N
t −Xj,N

t )dt+
√
εdW i

t , i = 1, . . . , N.

Assumptions: V and Φ are locally lipschitz, there exists some non decreasing function φ with

φ(0) = 0 s. t. Φ(x) = x
‖x‖

φ(‖x‖). Φ increases at most polynomially and

〈h,DV (x)h〉 ≤ −KV for ‖h‖ = 1 and ‖x‖ ≥ R0.

➥ Theorem: There exists some unique strong solution to the equation (1).
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More precisely: if the initial condition satisfies IE[‖X0‖(r+1)2 ] <∞ (r describes the growth

of the interaction Φ) then there exists some unique strong solution X ε which satisfies

sup
t≥0

IE(‖Xε
t ‖p) <∞ for p ∈ [1, (r + 1)2].

Sketch of proof : (Benachour, Roynette, Talay, Vallois 1998)

Λν
T := {b : [0, T ] × IRd → IRd| ‖b‖T < ν, x 7→ b(t, x) is locally

Lipschitz, uniformly with respect to t and satisfies the dissipativity

property 〈x− y, b(t, x) − b(t, y)〉 ≥ 0, x, y ∈ IRd.}.

The norm used is ‖b‖T := supt∈[0,T ] supx∈IRd
‖b(t,x)‖
1+‖x‖2q , 2q > r.

On this function space, we define some map Γ: which associates the function b ∈ Λν
T with

Γb(t, x) = IE[Φ(x−Xb
t )] where Xb is solution to

dXt = V (Xt) − b(t,Xt)dt+
√
εdWt.

For T small enough, Γ defines some contracting map with Lipschitz constant 1/2. This

implies the existence and uniqueness of the solution which can be extended on t ≥ 0. �
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Large deviations for self-stabilizing diffusions

Let ψt(x) the solution of the dynamical system ψ̇t = V (ψt), ψ0 = x.

The rate function is defined by the following expression:

IT (ϕ) =

{

1
2

∫ T

0
‖ϕ̇t − V (ϕt) + Φ(ϕt − ψt(x))‖2 dt, if ϕ ∈ H1

x,

∞, otherwise

Theorem: The unique solution of the SDE

dXε
t = V (Xε

t )dt−
∫

IRd

Φ(Xε
t − x)uε

t(x)dx dt+
√
εdWt, X

ε
0 = x,

satisfies a large deviations principle with good rate function IT .

Remark: The drift term can be written as some expectation: bε(t, y) = V (y) − rε,x(t, y)

with rε,x(t, y) = IE[Φ(y −Xε
t )].

As ε tends to 0, the drift term tends to b0(t, y) = V (y) − Φ(y − ψt(x)).
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Exit problem for self-stabilizing diffusions

Let D be some compact domain which contains some unique stable equilibrium point xstable.

We assume that all paths, solutions of the deterministic system, ψ̇t = V (ψt), ψ0 = x are

attracted towards xstable. Let I∞T the rate function defined by

I∞T =

{

1
2

∫ T

0
‖ϕ̇t − V (ϕt) + Φ(ϕt − xstable)‖2 dt if ϕ ∈ H1

y ([0, T ])

+∞ otherwise.

Q∞(x, z) is the associated quasi-potential and Q
∞

= infz∈∂D Q
∞(xstable, z).

Theorem : For any x ∈ D and δ > 0,

lim
ε→0

IPx(e
(Q

∞

+δ)/ε > τ ε > e(Q
∞

−δ)/ε) = 1

and lim
ε→0

ε ln IEx[τ
ε] = Q

∞
.

If N ⊂ ∂D is some closed subset such that inf
z∈N

Q∞(xstable, z) > Q
∞

, then the probability

that N contains the exit point is asymptotically negligible: lim
ε→0

IPx(X
ε
τε ∈ N) = 0.
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Example

Example in R
2

Let us consider V the gradient of the following potential:

V = −∇U , with U(x, y) = 6x2 + y2/2. The exit

problem is studied in some elliptic domain defined by

D = {(x, y) ∈ IR2 : x2 + y2/4 = 1}. The origin

xstable = 0 is the unique stable equilibrium point.
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PSfrag replacements

Localization
of the exit
in the classical
case

Localization

of the exit

for the self-stabilizing diffusion

Without self-stabilization, Freidlin and

Wentzell’s theory implies

IE0[τ
ε
D] � e4/ε,

with self-stabilization: Φ = ∇A where

A(x, y) = 2x2 + 2y2, we get

IE0[τ
ε
D] � e16/ε

Moreover the locations of the exits are totally different in these two particular cases.
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Figure 1: Level sets without (resp. with) interaction
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