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Deterministic case

Consider the ordinary differential equations in Rd

dx

dt
= f(x),

dy

dt
= g(y),

• f , g regular and satisfy the one-sided Lipschitz conditions

〈x1 − x2, f(x1)− f(x2)〉 ≤ −L|x1 − x2|2,

〈y1 − y2, g(y1)− g(y2)〉 ≤ −L|y1 − y2|2,

on Rd for some L > 0,

⇒ globally asymptotically stable equilibria x̄ and ȳ.



Now consider the dissipatively coupled system

dx

dt
= f(x) + ν(y − x),

dy

dt
= g(y) + ν(x− y)

with ν > 0.

⇒ globally asymptotically stable equilibrium (x̄ν , ȳν).

(x̄ν , ȳν)→ (z̄, z̄) as ν →∞, where z̄ is the unique globally asymptotically

stable equilibrium of the averaged system

dz

dt
=

1
2

(f(z) + g(z)) .

This is known as synchronization



Stochastic case

What is the effect of environmental noise on synchronization?

Coupled Ito stochastic differential equations with additive noise

dXt = (f(Xt) + ν(Yt −Xt)) dt + α dW 1
t ,

dYt = (g(Yt) + ν(Xt − Yt)) dt + β dW 2
t

where W 1
t , W 2

t are independent two-sided scalar Wiener processes and

α, β ∈ Rd are constant vectors.

⇒ ∃ unique stochastic stationary solution (X̄ν
t , Ȳ ν

t ), which is pathwise

globally asymptotically stable.



Moreover on finite time intervals [T1, T2] of R

(X̄ν
t , Ȳ ν

t ) → (Z̄∞t , Z̄∞t ) as ν →∞ pathwise

where Z̄∞t is the unique pathwise globally asymptotically

stable stationary solution of the averaged SDE

dZt =
f(Zt) + g(Zt)

2
dt +

α

2
dW 1

t +
β

2
dW 2

t .

[Caraballo & Kloeden, Proc. Roy. Soc. London (2005)]



Recall:

• The solutions of Ito stochastic differential equations are pathwise

continuous, but not differentiable.

• Ito SDEs are really stochastic integral equations with stochastic

integrals defined in the mean-square or L2 sense.

How do we apply the Lipschitz properties to obtain pathwise estimates?



A technical detour : Consider the Ito SDE

dXt = f(Xt) dt + α dWt

where f satisfies the one-sided Lipschitz condition.

i.e., the stochastic integral equation

Xt = Xt0 +
∫ t

t0

f(Xs) ds + α

∫ t

t0

dWt

The difference of any two solutions satisfies pathwise

X1
t −X2

t = X1
t0 −X2

t0 +
∫ t

t0

[
f(X1

s )− f(X2
s )

]
︸ ︷︷ ︸
continuous paths

ds



Fundamental theorem of calculus ⇒ X1
t −X2

t pathwise differentiable.

d

dt

[
X1

t −X2
t

]
= f(X1

t )− f(X2
t ) pathwise

• Apply the one-sided Lipschitz condition

d

dt

∣∣X1
t −X2

t

∣∣2 = 2
〈
X1

t −X2
t , f(X1

t )− f(X2
t )

〉 ≤ −2L
∣∣X1

t −X2
t

∣∣2

⇒
∣∣X1

t −X2
t

∣∣2 ≤
∣∣X1

t0 −X2
t0

∣∣2 e−2L(t−t0) → 0 as t →∞

i.e. all solutions converge pathwise together — but to what?



Special case : Ito SDE with linear drift f(x) = −x

dXt = −Xt dt + α dWt

explicit solution

Xt = Xt0e
−(t−t0) + αe−t

∫ t

t0

es dWs

The forward limit as t → ∞ does not exist — moving target!

But the pullback limit as t0 → −∞ with t fixed does exist:

lim
t0→−∞

Xt = Ōt := αe−t

∫ t

−∞
es dWs (pathwise)
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PSfrag replacements
φ̄

(a) Forward
(b) pullback

t0
x0

t
x(·, t0, x0)

The Ornstein-Uhlenbeck stochastic stationary process Ōt is a solution

of the linear SDE and all other solutions converge pathwise to it in the

forward sense

∣∣Xt − Ōt

∣∣ → 0 as t →∞ (pathwise)



Random dynamical systems : Let (Ω,F ,P) be a probability space and

(X, dX) a metric space.

A random dynamical system (θ, φ) on Ω×X consists of

• a metric dynamical system θ on Ω, which models the noise,

• a cocycle mapping φ : R+×Ω×X → X, which represents the dynamics
on the state space X and satisfies

1). φ(0, ω, x0) = x0 (initial condition)
2). φ(s + t, ω, x0) = φ(s, θtω, φ(t, ω, x0)) (cocycle property)
3). (t, x0) 7→ φ(t, ω, x0) is continuous (continuity)

4). ω 7→ φ(t, ω, x0) is F-measurable (measurability)

for all s, t ≥ 0, x0 ∈ X and ω ∈ Ω.



Random attractors

A random attractor is a family of nonempty measurable compact subsets
of X

Â = {A(ω) : ω ∈ Ω}
which is

• φ-invariant φ(t, ω, A(ω)) = A(θtω) for all t ≥ 0,

• pathwise pullback attracting in the sense that

distX (φ (t, θ−tω,D(θ−tω)) , A(ω)) → 0 for t → +∞

for all suitable families D̂ = {D(ω) : ω ∈ Ω} of nonempty measurable
bounded subsets of X.



Theorem (Crauel, Flandoli, Schmalfuß etc)

Let (θ, φ) be an RDS on Ω × X such that φ(t, ω, ·) : X → X is a compact
operator for each fixed t > 0 and ω ∈ Ω.

If there exists a pullback absorbing family bB = {B(ω) : ω ∈ Ω} of nonempty
closed and bounded measurable subsets of X, i.e. there exists a T bD,ω ≥ 0 such
that

φ (t, θ−tω, D(θ−tω)) ⊂ B(ω) for all t ≥ T bD,ω

for all bD = {D(ω) : ω ∈ Ω} in a given attracting universe.

Then the RDS Ω×X has a random attractor bA with component subsets given
by

A(ω) =
\
s>0

[

t≥s

φ (t, θ−tω, B(θ−tω)) for each ω ∈ Ω.



General case again

Substract the integral version of the linear SDE for Ōt from the integral

version of the nonlinear SDE

dXt = f(Xt) dt + α dWt

to obtain

Xt − Ōt = Xt0 − Ōt0 +
∫ t

t0

[
f(Xs) + Ōs

]
ds

⇒ Vt := Xt−Ōt is pathwise differentiable and satisfies the pathwise ODE

d

dt
Vt = f(Vt + Ōt) + Ōt (pathwise)



• Apply the one-sided Lipschitz condition pathwise to

d

dt

[
Xt − Ōt

]
=

[
f(Xt)− f(Ōt)

]
+

[
f(Ōt) + Ōt

]
(pathwise)

to obtain the pathwise estimate

|Vt|2 ≤ |Vt0 |2 e−L(t−t0) +
2
L

e−Lt

∫ t

t0

eLs
(|f(Ōs)|2 + |Ōs|2

)
ds

• Take pathwise pullback convergence as t0 → −∞ to obtain

|Xt − Ōt| ≤ R̄t := 1 +
2
L

e−Lt

∫ t

−∞
eLs

(|f(Ōs)|2 + |Ōs|2
)

ds

for t ≥ T depending on suitable bounded sets of initial values.



• i.e., there exists a family of compact pullback absorbing balls centered

on Ōt with random radius R̄t.

• Dynamical systems limit set ideas

⇒ there exists a compact setvalued stochastic process At inside

these absorbing balls which pathwise pullback attracts the solutions.

• BUT the solutions converge together pathwise in forwards sense, so

the sets At are in fact all singleton sets

⇒ ∃ stochastic stationary solution X̄t.



General Principles

• All regular Ito SDE in Rd can be transformed into pathwise ODE

[Imkeller & Schmalfuß (2001), Imkeller & Lederer (2001,2002)]

• and generate random dynamical systems

⇒ pathwise theory and numerics for Ito SDE

• Pullback convergence enables us to construct moving targets.



• Stochastic stationary solutions are a simple singleton set version of
more general random attractors

⇒ theory of random dynamical systems

e.g., Ludwig Arnold (Bremen)

• parallel theory of deterministic skew product flows

e.g., almost periodic ODE : George Sell (Minneapolis)

⇒ A theory of nonautonomous dynamical systems

e.g., pullback attractors



Effects of discretization on synchronization

Numerical Ornstein-Uhlenbeck process

For the linear SDE with additive noise,

dXt = −Xt dt + α dWt,

the drift-implicit Euler-Maruyama scheme with constant step size h > 0
is

Xn+1 = Xn − hXn+1 + α∆Wn, n = n0, n0 + 1, . . . ,

which simplifies algebraically to

Xn+1 =
1

1 + h
Xn +

α

1 + h
∆Wn,

Here the ∆Wn = Wh(n+1) −Whn are mutually independent and N(0, h)
distributed



It follows that

Xn =
1

(1 + h)n−n0
Xn0 +

α

1 + h

n−1∑

j=n0

1
(1 + h)n−1−j

∆Wj

and the pathwise pullback limit, i.e. with n fixed and n0 → −∞, gives
the discrete time numerical Ornstein-Uhlenbeck process

Ô(h)
n :=

α

1 + h

n−1∑

j=−∞

1
(1 + h)n−1−j

∆Wj , n ∈ Z. (1)

which is an entire solution of the numerical scheme and a discrete time
stochastic stationary process.

One can show that it converges pathwise to the continuous time Ornstein-
Uhlenbeck process in the sense that

Ô
(h)
0 → Ô0 as h → 0.



Discretization of an isolated stochastic system

Consider the nonlinear SDE in Rdwith additive noise,

dXt = f(Xt) dt + α dWt,

where the drift coefficient f is continuously differentiable and satisfies
the one-sided dissipative Lipschitz condition with constant L.

The drift-implicit Euler-Maruyama scheme with constant step size h >
0 applied to this SDE is

Xn+1 = Xn + hf(Xn+1) + α∆Wn,

which is, in general, an implicit algebraic equation and must be solved
numerically for Xn+1 for each n.



The difference of any two solutions

Xn+1 −X ′
n+1 = (Xn −X ′

n) + h
(
f(Xn+1)− f(X ′

n+1)
)
,

does not contain a driving noise term. Then
∣∣Xn+1 −X ′

n+1

∣∣2 =
〈
Xn+1 −X ′

n+1, Xn −X ′
n

〉

+h
〈
Xn+1 −X ′

n+1, f(Xn+1)− f(X ′
n+1)

〉

≤
∣∣Xn+1 −X ′

n+1

∣∣ |Xn −X ′
n| − hL

∣∣Xn+1 −X ′
n+1

∣∣2 ,

⇒
∣∣Xn+1 −X ′

n+1

∣∣ ≤ 1
1 + Lh

|Xn −X ′
n| ,

⇒ |Xn −X ′
n| ≤

1
(1 + Lh)n

|X0 −X ′
0| → 0 as n →∞.

i.e. all numerical solutions converge pathwise to each other forward in
time.



Change variables to Un := Xn − Ô
(h)
n , where Ô

(h)
n is the numerical

Ornstein-Uhlenbeck process, to obtain the numerical scheme

Un+1 = Un + hf
(
Un+1 + Ô

(h)
n+1

)
+ hÔ(h)

n .

Taking the inner product of both sides with Un+1 we obtain

|Un+1|2 = 〈Un+1, Un〉+ h
〈
Un+1, f

(
Un+1 + Ô

(h)
n+1

)〉
+ h

〈
Un+1, Ô

(h)
n

〉

≤ |Un+1| |Un|+ h
〈
Un+1, f

(
Un+1 + Ô

(h)
n+1

)〉
+ h |Un+1|

∣∣∣Ô(h)
n

∣∣∣ .

Rearranging, using the one-sided Lipschitz condition and simplifying
gives

|Un+1| ≤ |Un| − Lh |Un+1|+ h
∣∣∣f

(
Ô

(h)
n+1

)∣∣∣ + h
∣∣∣Ô(h)

n

∣∣∣ .



⇒ |Un+1| ≤ 1
1 + Lh

|Un|+ h

1 + Lh
B(h)

n ,

where
Bn(h) :=

∣∣∣f
(
Ô

(h)
n+1

)∣∣∣ +
∣∣∣Ô(h)

n

∣∣∣ ,

⇒ |Un| ≤ 1
(1 + Lh)n−n0

|Un0 |+
h

1 + Lh

n−1∑

j=n0

1
(1 + h)n−1−j

B
(h)
j .

Taking the pullback limit as n0 → −∞ with n fixed, it follows that Un

is pathwise pullback absorbed into the ball Bd[0, R̄n] in Rd centered on
the origin with squared radius

R̄2
n := 1 +

h

1 + Lh

n−1∑

j=−∞

1
(1 + h)n−1−j

B
(h)
j .

Note that R̄n is random, but finite.



From the theory of random dynamical systems we conclude that the dis-
crete time random dynamical system generated by drift-implicit Euler-
Maruyama scheme has a random attractor with component sets in the
corresponding balls Bd[0, R̄n].

Since all of the trajectories converge together pathwise forward in time,
the random attractor consists of a single stochastic stationary process
which we shall denote by Û

(h)
n .

Transforming back to the original variable, we have shown that the drift-
implicit Euler-Maruyama scheme applied to the nonlinear SDE has a
stochastic stationary solution

X̂(h)
n := Û (h)

n + Ô(h)
n , n ∈ Z,

taking values in the random balls Bd[Ô
(h)
n , R̄n], which attracts all other

solutions pathwise in both the forward and pullback senses.



Discretization of the coupled stochastic systems

Consider the coupled stochastic system in R2d (now α, β are nonzero
scalars)

dXt = (f(Xt) + ν(Yt −Xt)) dt + α dW 1
t ,

dYt = (g(Yt) + ν(Xt − Yt)) dt + β dW 2
t ,

The corresponding drift-implicit Euler-Maruyama scheme with constant
step size,

Xn+1 = Xn + h (f(Xn+1) + ν(Yn+1 −Xn+1)) + α ∆W 1
n ,

Yn+1 = Yn + h (g(Yn+1) + ν(Xn+1 − Yn+1)) + β ∆W 2
n ,

can be written as the 2d-dimensional vector system

Xn+1 = Xn + h (F(Xn+1) + νBXn+1) + A ∆Wn



with the 2d-dimensional vectors

X =
(

x
y

)
, Wt =

(
W 1

t

W 2
t

)
, F(X) =

(
f(x)
g(y)

)
,

and the 2d× 2d-matrices

A =
[

αId 0
0 βId

]
, B =

[ −Id Id

Id −Id

]
,

where Id is the d× d identity matrix.

The function G := R2d → R2d defined by

G(X) := F(X) + νBX

satisfies a dissipative one-sided Lipschitz condition with constant L.

i.e. the vector scheme has essentially the same structure as the scheme
for the uncoupled nonlinear equation, but in a higher dimensional space.



The previous analysis can be repeated almost verbatim to give the exis-
tence of a unique stochastic stationary process

X̂(h,ν)
n =

(
X̂

(h,ν)
n

Ŷ
(h,ν)
n

)
, n ∈ Z,

which attracts all other solutions pathwise in both the forward and pull-
back senses.

Moreover, the X̂
(h,ν)
n take values in the random balls B2d[Ô

(h)
n , R̂n] for

appropriately defined R̂n (which are independent of ν), where Ô
(h)
n is

the discrete time Ornstein-Uhlenbeck stochastic stationary solution for
the discrete time 2d-dimensional linear system

Xn+1 =
1

1 + h
Xn +

1
1 + h

A ∆Wn.



Theorem 1 (
X̂

(h,ν)
n

Ŷ
(h,ν)
n

)
→

(
Ẑ

(h,∞)
n

Ẑ
(h,∞)
n

)

pathwise uniformly on bounded integer intervals [N1, N2] as ν → ∞,
where (Ẑ(h,∞)

n )n∈Z is the discrete time stationary stochastic solution of
the drift-implicit Euler-Maruyama scheme with constant step size

Zn+1 = Zn +
1
2
h (f(Zn+1) + g(Zn+1)) +

1
2
α ∆W 1

n +
1
2
β ∆W 2

n

applied to the averaged SDE

dZt =
1
2

(f(Zt) + g(Zt)) dt +
1
2
αdW 1

t +
1
2
βdW 2

t .



Synchronization of SDE with linear noise

A Stratonovich stochastic differential equation with linear noise

dXt = f(Xt) dt + α Xt ◦ dWt

can be transformed to the pathwise random ordinary differential equation

dx

dt
= F (x, Ōt(ω)) := e−Ōt(ω)f

(
eŌt(ω)x

)
+ Ōt(ω)x

using the transformation

x(t, ω) = e−Ōt(ω) Xt(ω).

with the Ornstein-Uhlenbeck process Ōt := αe−t
∫ t

−∞ es dWs.

NOTE: F satisfy the one-sided Lipschitz condition if f does.



Similar a pair of Stratonovich SDEs

dXt = f(Xt) dt + α Xt ◦ dW 1
t ,

dYt = g(Yt) dt + β Yt ◦ dW 2
t ,

can be transformed to the RODEs

dx

dt
= F (x, Ō1

t (ω)) := e−Ō1
t (ω)f

(
eŌ1

t (ω)x
)

+ Ō1
t (ω)x,

dy

dt
= G(y, Ō2

t (ω)) := e−Ō2
t (ω)g

(
eŌ2

t (ω)y
)

+ Ō2
t (ω) y,

with the transformations

x(t, ω) = e−Ō1
t (ω) Xt(ω) Ō1

t := αe−t

∫ t

−∞
es dW 1

s

y(t, ω) = e−Ō2
t (ω) Yt(ω). Ō2

t := βe−t

∫ t

−∞
es dW 2

s



The coupled system of random ordinary differential eqautions (RODEs)

dx

dt
= F (x, Ō1

t (ω)) + ν(y − x),

dy

dt
= G(y, Ō2

t (ω)) + ν(x− y)

has a pathwise asymptotically stable random attractor consisting of
single stochastic stationary process (x̄ν(t, ω), ȳν(t, ω)) with

(x̄ν(t, ω), ȳν(t, ω)) → (z̄(t, ω), z̄(t, ω)) as ν →∞,



where z̄(t, ω) is the pathwise asymptotically stable stochastic stationary
process of the averaged RODE

dz

dt
=

1
2

[
F (z, Ō1

t ) + G(z, Ō2
t )

]

i.e.

dz

dt
=

1
2

[
e−Ō1

t f
(
Ō1

t z
)

+ e−Ō2
t f

(
Ō2

t z
)]

+
1
2

[
Ō1

t + Ō2
t

]
z

or the equivalent Stratonovich SDE

dZt =
1
2

[
e−ηtf(eηtZt) + eηtg(e−ηtZt)

]
dt +

1
2
α ◦ dW 1

t +
1
2
β ◦ dW 2

t .

where ηt := 1
2 (Ō1

t − Ō2
t ).



Direct synchronization of the SDE

The corresponding system of coupled SDE is

dXt =
(
f(Xt) + ν

(
eŌ1

t−Ō2
t Yt −Xt

))
dt + α Xt ◦ dW 1

t ,

dYt =
(
g(Yt) + ν

(
e−Ō1

t +Ō2
t Xt − Yt

))
dt + β Yt ◦ dW 2

t .

has a unique stochastic stationary solution

(
X̄ν

t (ω), Ȳ ν
t (ω)

)

which is pathwise globally asymptotically stable with

(
X̄ν

t (ω), Ȳ ν
t (ω)

) →
(
z̄(t, ω)e−Ō1

t (ω), z̄(t, ω)e−Ō2
t (ω)

)
as ν →∞,

pathwise on finite time intervals [T1, T2] of R.



Stochastic reaction-diffusion system

on a thin two-layer domain

Let D1,ε and D2,ε be thin bounded domains in Rd+1, d ≥ 1,

D1,ε = Γ× (0, ε), D2,ε = Γ× (−ε, 0),

with 0 < ε ≤ 1 and Γ a bounded C2-domain in Rd.

Write

x ∈ Dε := D1,ε ∪D2,ε as x = (x′, xd+1)

where

x′ ∈ Γ and xd+1 ∈ (−ε, 0) ∪ (0, ε).



Consider the system of Ito stochastic PDE

∂

∂t
U i − νi∆U i + aU i + fi(U i) + hi(x) = Ẇ (t, x′),

t > 0, x ∈ Di,ε, i = 1, 2,

where Ẇ (t, x′) white noise depending only x′ ∈ Γ.

[Deterministic model: Chueshov & Rekalo (Matem. Sbornik, 2004)]

[Stochastic model: Caraballo, Kloeden & Chueshov (SIAM J. Math.Anal.,

2007)]



Neumann boundary conditions

(∇U i, ni

)
= 0, x ∈ ∂Di,ε \ Γ, i = 1, 2,

on the external part of the boundary of the compound domain Dε, where

n is the outer normal to ∂Dε

Matching condition on Γ

(
−ν1

∂U1

∂xd+1
+ k(x′, ε)(U1 − U2)

) ∣∣∣
Γ

= 0,

(
ν2

∂U2

∂xd+1
+ k(x′, ε)(U2 − U1)

) ∣∣∣
Γ

= 0.



Synchronization as ε−1 → ∞ with the averaged system

∂

∂t
U − ν∆ΓU + aU + f(U) + h(x′) = Ẇ (t, x′), x′ ∈ Γ,

on the spatial domain Γ with the Neumann boundary conditions on ∂Γ

and with

ν =
ν1 + ν2

2
,

f(U) =
f1(U) + f2(U)

2
, h(x′) =

h1(x′, 0) + h2(x′, 0)
2

.

Method : Transform Ito SPDE into a pathwise random PDE.



Assumptions

• fi ∈ C1(R) such that f ′i(v) ≥ −c for all v ∈ R and

vfi(v) ≥ a0|v|p+1 − c, |f ′i(v)| ≤ a1|v|p−1 + c,

aj and c positive constants and 1 ≤ p < 3;

• hi ∈ H1(Di,1), i = 1, 2;

• k(·, ε) ∈ L∞(Γ), k(x′, ε) > 0, x′ ∈ Γ, ε ∈ (0, 1],

lim
ε→0

ε−1k(x′, ε) = +∞, x′ ∈ Γ;

• W (t), t ∈ R, two-sided L2(Γ)-valued Wiener with covariance operator K = K∗ ≥ 0

such that for some β > max
n
1 , d

4

o

tr
h

K (−∆N + 1)2β−1
i

< ∞ ,

∆N Laplacian in L2(Γ) with Neumann boundary conditions on ∂Γ.

• (Ω,F ,P) the corresponding probability space



Theorem 2 Under the above Assumptions the following assertions hold.

1. The coupled SPDE generates an RDS (θ, φ̄ε) in the space

Hε = L2(D1,ε)⊕ L2(D2,ε) ∼ L2(Dε)

given by φ̄ε(t, ω)U0 = U(t, ω), where U(t, ω) = (U1(t, ω); U2(t, ω)) is a strong solu-
tion to the problem and U0 = (U1

0 ; U2
0 ).

2. Similarly, the averaged SPDE generates an RDS (θ, φ̄0) in the space L2(Γ).

3. Cocycles φ̄ε converge to φ̄0 in the sense

lim
ε→0

sup
t∈[0,T ]

1

ε

Z

Dε

|φ̄ε(t, ω)v − φ̄0(t, ω)v|2dx = 0, ∀ω,

for any v(x) ∈ Hε independent of the variable xd+1, and any T > 0.

4. These RDS (θ, φ̄ε) and (θ, φ̄0) have random compact pullback attractors {Āε(ω)}
and {Ā0(ω)} in their corresponding state spaces. Moreover, if K is non-degenerate,
then {Ā0(ω)} is a singleton, i.e. Ā0(ω) = {v̄0(ω)}, where v̄0(ω) is an L2(Γ)-valued
tempered random variable.



5. The attractors {Āε(ω)} are upper semi-continuous as ε → 0 in the sense that for
all ω ∈ Ω

lim
ε→0

sup
v∈Āε(ω)

¡
inf

v0∈Ā0(ω)

1

ε

Z

Dε

|v(x′, xd+1)− v0(x
′)|2dx

¿
= 0.

6. In addition, if

ν1 = ν2 := ν, f1(U) = f2(U) := f(U),

h1(x′, xd+1) = h(x′) = h2(x′, xd+1);

f(U) is globally Lipschitz, i.e. there exists a constant L > 0 such that

|f(U)− f(V )| ≤ L|U − V |, U, V ∈ R,

and also that

k(x′, ε) > kε for x′ ∈ Γ, ε ∈ (0, 1] and lim
ε→0

ε−1kε = +∞,

then, there exists ε0 > 0 such that for all ε ∈ (0, ε0] the random pullback attractor
{Āε(ω)} for (θ, φ̄ε) has the form

Āε(ω) ≡ ľ
v(x′, xd+1) ≡ v0(x′) : v0 ∈ Ā0(ω)

ł
,

where {Ā0(ω)} is the random pullback attractor for the RDS (θ, φ̄0).
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