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Deterministic case

Consider the ordinary differential equations in R¢

dx dy

i (z), - = 9(y),

e f, g regular and satisfy the one-sided Lipschitz conditions
(x1 — 22, f(21) — f(22)) < —Llz1 — 2|7,
(Y1 —v2,9(y1) = 9(y2)) < —Lly1 — y2|?,

on R? for some L > 0,

= globally asymptotically stable equilibria z and ¥.



Now consider the dissipatively coupled system

T f@ vy -a), L =gy) vl

with v > 0.

= globally asymptotically stable equilibrium (z",3").

(z¥,9") — (%, 2) as v — oo, where Z is the unique globally asymptotically

stable equilibrium of the averaged system

dz 1
PTI (f(2) +9g(2))-

This is known as synchronization




Stochastic case
What s the effect of environmental noise on synchronization?

Coupled Ito stochastic differential equations with additive noise

dX, (f(Xe) +v(Yy — Xy)) dt + adW,,

dY, = (9(V3) +v(Xy —Yy)) dt + BdW7

where W/, W2 are independent two-sided scalar Wiener processes and

a, B € R< are constant vectors.

= Junique stochastic stationary solution (X?,Y;”), which is pathwise

globally asymptotically stable.



Moreover on finite time intervals [T, 73] of R

(X7, YY) — (Z°,Z°) as v — o0 pathwise

where Z2° is the unique pathwise globally asymptotically

stable stationary solution of the averaged SDE

g

dZ; = ) dW?2.

Z A
f( t)‘2|‘9( t)dt+%th1+

| Caraballo & Kloeden, Proc. Roy. Soc. London (2005)]



Recall:

e The solutions of Ito stochastic differential equations are pathwise

continuous, but not differentiable.

e [to SDEs are really stochastic integral equations with stochastic

integrals defined in the mean-square or Lo sense.

How do we apply the Lipschitz properties to obtain pathwise estimates?



A technical detour : Consider the Ito SDE

dX, = f(X;) dt + adW,

where f satisfies the one-sided Lipschitz condition.

i.e., the stochastic integral equation

¢
Xy = X¢, + /f ds+a/ dW;

The difference of any two solutions satisfies pathwise

t
XEo X2 =Xk - XE+ [ [0 - £(X2)] ds
to ~~ o

continuous paths




Fundamental theorem of calculus = X} — X? pathwise differentiable.

% [th — Xﬂ = f(X}) — f(X?) pathwise

e Apply the one-sided Lipschitz condition
d 2 2
L |x— X2 = 2(X! - XES(X]) - F(XD) < —2L|X} - X}

= X} - X2P<|xL - X2 [P0 0 as t— o0

i.e. all solutions converge pathwise together — but to what?



Special case : Ito SDE with linear drift f(x) = —x

dX; = — X dt + adW;

explicit solution

¢
X = Xtoe_(t_t()) — oze_t/ e’ dW,

to

The forward limit as ¢ — oo does not exist — moving target!

But the pullback limit as t5 — —oo with ¢ fixed does exist:

t
lim X; = Oy := ae_t/ e® dWy (pathwise)

_)_
to o0 50



replacements
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oo e t

w/ /

t
x('7t07$0>

The Ornstein-Uhlenbeck stochastic stationary process Oy is a solution

of the linear SDE and all other solutions converge pathwise to it in the

forward sense

| X¢ — O¢| — 0 as t— o0 (pathwise)



Random dynamical systems : Let (2, 7,P) be a probability space and
(X, dx) a metric space.

A random dynamical system (6, ¢) on 2 x X consists of

e a metric dynamical system 6 on (2, which models the noise,

e a cocycle mapping ¢ : R™ x Q2 x X — X, which represents the dynamics
on the state space X and satisfies

). ¢(0,w,x0) = x0 (initial condition)
2). o(s+t,w,z0) = ¢(s, 0w, p(t,w, xp)) (cocycle property)
3). (t,x0) — ¢(t,w, xo) is continuous (continuity)
4). wr d(t,w,z0) is F-measurable (measurability)

forall s, ¢t > 0, xg € X and w € Q.



Random attractors

A random attractor is a family of nonempty measurable compact subsets
of X

A={AWw):weN}

which 1is

e ¢-invariant ¢(f,w, A(w)) = A(iw) for all t > 0,

e pathwise pullback attracting in the sense that

distx (¢ (t,0_1w, D(0_1w)),A(w)) — 0 for t— 400

AN

for all suitable families D = {D(w) : w € 2} of nonempty measurable
bounded subsets of X.



Theorem (Crauel, Flandoli, Schmalfuf etc)

Let (0,¢) be an RDS on Q x X such that ¢(t,w,-) : X — X is a compact
operator for each fixed t > 0 and w € (.

If there exists a pullback absorbing family B = {B(w) : w € Q} of nonempty
closed and bounded measurable subsets of X, i.e. there exists a Ts., = 0 such
that

¢ (t,0_ww,D(0_+w)) C B(w) forall t>Tp

for all D = {D(w) : w € Q} in a given attracting universe.

Then the RDS Q x X has a random attractor A with component subsets given
by

Alw) = ﬂ U o (t,0_tw, B(0_iw)) for each w € €.

s>0t>s



General case again

Substract the integral version of the linear SDE for O, from the integral

version of the nonlinear SDE
dXt = f(Xt) dt + « th

to obtain

t
Xt — Ot = Xto — Oto + / [f(XS) + OS] ds

to

=V, := X;—0O is pathwise differentiable and satisfies the pathwise ODE

d _ _
%W = f(Vi4 + O¢) + Oy (pathwise)



e Apply the one-sided Lipschitz condition pathwise to

@ [X, ~ 0 = [£(X) ~ (O] + [£(0) + O] (pathwisc)

to obtain the pathwise estimate

t
2 ot / oL (O] + 0s]?) ds

Vi* < V3, |* e H010) 4 Zem
L tO

e Take pathwise pullback convergence as tg — —oo to obtain

_ _ 9 ¢ _ _
Xo- 0 < Rem 1t 2 [ B (IF(0 + 10.f7) ds

— O

for ¢t > T' depending on suitable bounded sets of initial values.



e i.e., there exists a family of compact pullback absorbing balls centered

on O; with random radius R;.

e Dynamical systems limit set ideas
=  there exists a compact setvalued stochastic process A; inside

these absorbing balls which pathwise pullback attracts the solutions.

e BUT the solutions converge together pathwise in forwards sense, so

the sets A; are in fact all singleton sets

= 3 stochastic stationary solution Xj.



General Principles

o All regular Ito SDE in R? can be transformed into pathwise ODE

|Imkeller & Schmalfuf$ (2001), Imkeller & Lederer (2001,2002)]
e and generate random dynamical systems

=  pathwise theory and numerics for Ito SDE

e Pullback convergence enables us to construct moving targets.




e Stochastic stationary solutions are a simple singleton set version of
more general random attractors

=  theory of random dynamical systems

e.g., Ludwig Arnold (Bremen)

e parallel theory of deterministic skew product flows

e.g., almost periodic ODE : George Sell (Minneapolis)

= A theory of nonautonomous dynamical systems

e.g., pullback attractors



Effects of discretization on synchronization
Numerical Ornstein-Uhlenbeck process

For the linear SDE with additive noise,
dX, = — X, dt + adW,,

the drift-implicit Euler-Maruyama scheme with constant step size h > 0
1S

Xna1 :Xn—th_|_1—|—()zAWn, n=ng,no+1,...,
which simplifies algebraically to

«
n — —Xn
At = TR T

AW,

Here the AW,, = Wi, (41) — Why are mutually independent and N (0, k)
distributed



It follows that

n—1

1 Q 1
X, = X, - AW
At hyrme T T h 2o (@ pynid

J=no

and the pathwise pullback limit, i.e. with n fixed and ng — —oo, gives
the discrete time numerical Ornstein-Uhlenbeck process

O = — AW;, nel (1)
n 1 —|_h J

which is an entire solution of the numerical scheme and a discrete time
stochastic stationary process.

One can show that it converges pathwise to the continuous time Ornstein-
Uhlenbeck process in the sense that

6éh) — O as h — 0.



Discretization of an isolated stochastic system

Consider the nonlinear SDE in R%with additive noise,

dXt = f(Xt) dt + « th,

where the drift coefficient f is continuously differentiable and satisfies
the one-sided dissipative Lipschitz condition with constant L.

The drift-implicit Euler-Maruyama scheme with constant step size h >
0 applied to this SDE is

Xn—|—1 = X, + hf(Xn—i—l) + aAWna

which is, in general, an implicit algebraic equation and must be solved
numerically for X,, 1 for each n.



The difference of any two solutions

Xn—|—1 Xr,,»b_|_1 (X X/ ) + h (f(Xn—l—l) o f(Xoll—i—l))

does not contain a driving noise term. Then

Xnt1 — X;H—l‘Q — <Xn+1 N n+1’X X/>
+h <Xn—|—1 — X 1, f(Xna1) — f( 7/z+1)>

2
< ’Xn—i—l - X7/1—|—1‘ | Xn — X7/z| —hL ‘X’er o X7/%+1} ’
= X1 — X! < —— X, - X/
X = X € g7 X — X0,
1
= X, — X | < A5 Lh) | Xo— Xyl =0 as n— oc.

i.e. all numerical solutions converge pathwise to each other forward in
time.



Change variables to U, = X, — 57({7’), where (35{7“) is the numerical
Ornstein-Uhlenbeck process, to obtain the numerical scheme

Unt1=Uy +hf< n+1 +On+1> + hOW.

Taking the inner product of both sides with U, 1 we obtain

Unia* = (Uns1,Un) + b (Unsr, f (Ungs + 0L ) ) + 1 (Unia, OP)

< |Unsa] Unl 4+ b (Unsa, f (Unss + O ) ) +

Rearranging, using the one-sided Lipschitz condition and simplifying
gives

Unsr| < |Unl = LR |Upsa| + 1| £ (O5))| + 1|08
_I_




1 h
= [Uny1] < [Un| + B,

1+ Lh 14+ Lh ™
where R R
Ba(h) = |1 (00| + |04
1 h 1 )
= U,| < U, B,
Unl < (1+ Lh)»—mo | 0’+1+Lh jZ (14 h)n—1-7
=Ny

Taking the pullback limit as ng — —oo with n ﬁx_ed, it follows that U,
is pathwise pullback absorbed into the ball B4[0, R,] in R¢ centered on
the origin with squared radius

n—1
_ h n)
R? =1 (
" 1 Ih j:z_:oo (L+h)n=t=3 )

Note that R,, is random, but finite.



From the theory of random dynamical systems we conclude that the dis-
crete time random dynamical system generated by drift-implicit Euler-
Maruyama scheme has a random attractor with component sets in the
corresponding balls By[0, R,,].

Since all of the trajectories converge together pathwise forward in time,
the random attractor consists of a single stochastic stationary process

which we shall denote by ﬁy(bh).

Transforming back to the original variable, we have shown that the drift-
implicit Euler-Maruyama scheme applied to the nonlinear SDE has a
stochastic stationary solution

)qu(lh) 1= (7@ + 57(?), n € 2,

taking values in the random balls By [(37@?), R,], which attracts all other
solutions pathwise in both the forward and pullback senses.



Discretization of the coupled stochastic systems

Consider the coupled stochastic system in R?? (now «, [ are nonzero
scalars)

dX; = (f(Xy)+v(Y:—Xy)) dt +adW},
Y, = (9(Y2)+v(Xy—Y,)) dt + BdW?,

The corresponding drift-implicit Euler-Maruyama scheme with constant
step size,

Xnt1 = X +h(f(Xpt1) +v(Yosr — Xos)) +a AW,
Yiv1 = Yo +h(9(Yns1) +v(Xng1 — Yaga)) + ﬂAWﬁ,
can be written as the 2d-dimensional vector system

Xni1 =X, +h(F(X,11) +vBX,11) + AAW,



with the 2d-dimensional vectors

< (5) (i), o

and the 2d x 2d-matrices

e[ b)) el )
d

where [; is the d x d identity matrix.
The function G := R?? — R?? defined by
G(X) :=F(X)+vBX
satisfies a dissipative one-sided Lipschitz condition with constant L.

i.e. the vector scheme has essentially the same structure as the scheme
for the uncoupled nonlinear equation, but in a higher dimensional space.



The previous analysis can be repeated almost verbatim to give the exis-
tence of a unique stochastic stationary process

N v (h.v)
%%h,l/) — ( ;?h,u) > , n < Z,

which attracts all other solutions pathwise in both the forward and pull-
back senses.

Moreover, the X" take values in the random balls Bgd[D(h) R, ] for

appropriately defined R, (which are independent of v), where Dq(»b) is
the discrete time Ornstein-Uhlenbeck stochastic stationary solution for
the discrete time 2d-dimensional linear system

1 1



Theorem 1

K ) 7 (h:o0)
AN B W ACED

pathwise uniformly on bounded integer intervals [N1, N3] as v — oo,

where (ZS"’O‘”)%Z 1s the discrete time stationary stochastic solution of
the drift-itmplicit Euler-Maruyama scheme with constant step size

1 1 1
Ziny1 = Zin + ih (f(Zn+1) + 9(Zny1)) + 504AW7% + §ﬁAW3

applied to the averaged SDE

1 1 1
Az = 5 (£(Z:) + 9(Zy)) dt + 5adW,} + §Bth2.



Synchronization of SDE with linear noise

A Stratonovich stochastic differential equation with linear noise
dXt = f(Xt) dt + CVXt ©) th

can be transformed to the pathwise random ordinary differential equation

dx _ ~ S
X P, 04(w) = O f (00) + Oy(w)

using the transformation

z(t,w) = e~ %) X, (w).

with the Ornstein-Uhlenbeck process O; := ae™? fioo es dW.

NOTE: F' satisfy the one-sided Lipschitz condition if f does.



Similar a pair of Stratonovich SDEs
dX; = f(X¢)dt+ aX,odW},
Y, = g(V)dt+ BY,0dW?,

can be transformed to the RODESs

dx e —O} (w O (w o
= F(w,0} () = "% (2¢)z) + O} (w) a.
dy 2 02w, (O () 52

o = G(y,0; (w)) == ( 30+0AW%

with the transformations

L, ) t
r(t,w) = e @) X, (w) O; = oze_t/ e dW}
., B t
y(t,w) = e %@y (w). 0?7 .= ﬂe_t/ e dW?



The coupled system of random ordinary differential eqautions (RODES)

dx =1
dt

Y~ Gy, 03()) + vlx — 1)

has a pathwise asymptotically stable random attractor consisting of
single stochastic stationary process (%, (t,w), ¥, (t,w)) with

(fu(tvw)azjl/(t?w)) — (Z(t,w),i(t,w)) as VvV — 00,



where Z(t,w) is the pathwise asymptotically stable stochastic stationary
process of the averaged RODE

d 1 . ~
— =5 [F(z.01) +G(=,07)]
1.e.
dz  1[ _o1, A : Lol 40
= [0 (0k2) + O (032)] + 5 [0} + OF) -

or the equivalent Stratonovich SDE

1 1 1
dZt = 5 [e_"tf(emZt) + e"tg(e_mZt)} dt + 50& o thl + iﬂ O thZ.

where 1, := (0} — O3).



Direct synchronization of the SDE

The corresponding system of coupled SDE is

dX; = (f(Xt> + Vv (eég_éfyt — Xt)> dt + a X; o thl,
aY, = (g(¥) + v (e OO X, V) ) dt + Vi 0 dWE.

has a unique stochastic stationary solution

nathwvrico ann Brite £1ve trtorvale [T T2] AF TR



Stochastic reaction-diffusion system

on a thin two-layer domain

Let Dy . and D5 . be thin bounded domains in R4t d > 1,
Dy =T x(0,¢), Dy. =T x (—¢,0),
with 0 < ¢ < 1 and I a bounded C?-domain in R¢.
Write
re€D.:=D1.UDy. as z=(2',2441)
where

' el and z4y1 € (—&,0) U (0,¢).



Consider the system of Ito stochastic PDE

%Ui—ViAUi+an‘|‘fi(Ui)+hi(£U) = W(t,2),

t>0, ZEEDZ',E, ?::1,2,

where W (t,z’) white noise depending only 2’ € T

[Deterministic model: Chueshov & Rekalo (Matem. Sbornik, 2004)]

[Stochastic model: Caraballo, Kloeden & Chueshov (STAM J. Math.Anal.,
2007)]



Neumann boundary conditions

(VU*,n;) =0, z€dD; . \T, i=1,2,

on the external part of the boundary of the compound domain D., where

n is the outer normal to 0D,

Matching condition on I

8U1 / 1 2
(-m Goy TR AU U )) )F —0,

( o +k(w’7s)(U2—U1)>| —0.

V2
8£Ud_|_1 r



1

Synchronization as €~ — oo with the averaged system

%U—uAﬂhuw+f@U+Mf%ﬂWwf% v’ el

on the spatial domain I' with the Neumann boundary conditions on 0I'

and with

_V1‘|‘l/2
vV = 5 :
fy = hO+RO) @0 £ ha(',0)

2 2

Method : Transform Ito SPDE into a pathwise random PDE.



Assumptions

e fi € C1(R) such that f/(v) > —c for all v € R and
ofi(0) > aololP* — e, |f1(0)] < arfolrt 4,

a; and c positive constants and 1 < p < 3;
e hy e H'(D;1), i=1,2;
o k(-,e) € L>(T), k(x',e) >0,2" €T, e € (0,1],

lirrb e k(2 ) = 400, 2’ €T
E—

o W(t), t € R, two-sided L2(I')-valued Wiener with covariance operator K = K* >0
such that for some [ > max {1 : %}

tr [K(—AN —l—l)Qﬁ_l] < 00,

Apn Laplacian in Lg(I") with Neumann boundary conditions on OT.

e (2, F,P) the corresponding probability space



Theorem 2 Under the above Assumptions the following assertions hold.

1. The coupled SPDE generates an RDS (0, ¢¢) in the space
He = La(D1,e) @ La(Da,c) ~ La(De)

given by ¢c(t,w)Ug = U(t,w), where U(t,w) = (UL (t,w); U%(t,w)) is a strong solu-
tion to the problem and Uy = (Ud; UZ).

2. Similarly, the averaged SPDE generates an RDS (0, ¢o) in the space Lo(T).

3. Cocycles ¢ converge to ¢g in the sense

1 _ _
lim sup —/ | e (t, w)v — do(t,w)v|?de =0, Vw,
€c—=0¢cl0,1] € /D,

for any v(z) € He independent of the variable x4y1, and any T > 0.

4. These RDS (0, ¢¢) and (0, ¢o) have random compact pullback attractors {A€(w)}
and {A°(w)} in their corresponding state spaces. Moreover, if K is non-degenerate,
then {A°(w)} is a singleton, i.e. A% (w) = {vo(w)}, where vg(w) is an Lo(T)-valued
tempered random variable.



5. The attractors {A°(w)} are upper semi-continuous as € — 0 in the sense that for
all w € )

1
lim sup inf —/ lv(z’, £ar1) —vo(z")|?de = 0.
e—0 veﬂe(w) 0 EQ[O((,U) € De

6. In addition, of
vi =ve:=v, fi1(U)= f2(U):= f(U),
hi(z',2q11) = h(z') = ha (2, 2441);
f(U) is globally Lipschitz, i.e. there exists a constant L > 0 such that
fFU)=f(VISLIU-V], UV EeR,
and also that

k(z',€) > ke fora' €T, e€ (0,1 and lime 'ke = 400,

e—0

then, there exists eg > 0 such that for all € € (0, eo] the random pullback attractor
{A(w)} for (0, pe) has the form

A(w) = v(z’,zq41) = vo(z') : vo € A (w)

where {AY(w)} is the random pullback attractor for the RDS (0, ¢o).
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