Velocity Dependence of Atomic Friction Beyond the Thermally Activated Hopping Regime

Peter Reimann, Mykhaylo Evstigneev (Theory) André Schirmeisen, Lars Jansen, Harald Fuchs (Experiment)

- Experimental set-up and observations
- Simplified theoretical model
- Non-monotonic velocity dependence of atomic friction
- Slip statistics and rate theory

- cantilever dimensions \approx 200 μm \times 50 μm \times 1 μm
- \bullet tip height and basis radius \approx 5 μm \times 1 μm
- \bullet tip apex radius \approx 10 nm
- lattice constant $L \approx$ 0.5 nm

Friction Force Microscopy

- stick-slip motion
- "atomic resolution" ($L \approx 0.5 \text{ nm}$)
- thermal noise effects

Friction Force Microscopy

$ar{F}$ versus

v

Sills and Overney, PRL 91, 095501 (2003) glassy polysterene surface $F_N = 15 \text{ nN}$

• thermal noise matters

Sills and Overney, PRL 91, 095501 (2003) glassy polysterene surface $F_N = 15 \text{ nN}$

• thermal noise matters

Riedo et al., PRL 91, 084502 (2003) mica surface

T = 293 K

• "plateaux" at large v

Model

neglect "fast" thermal fluctuations of molecules

 \Rightarrow 2 "slow" state variables/collective coordinates:

x-coordinate of tip apex (rest position x = 0)

s : position of substrate along x-axis

<u>Model</u>

neglect "fast" thermal fluctuations of molecules \Rightarrow 2 "slow" state variables/collective coordinates: *x*-coordinate of tip apex (rest position x = 0) *s* : position of substrate along *x*-axis

- \bullet given x and s, the entire "global" configuration is uniqely fixed
- x, s "slow" \Leftrightarrow "fast" molecular fluctuations always close to equilibrium
- s = v t externally imposed (still "slow")

<u>Model</u>

neglect "fast" thermal fluctuations of molecules \Rightarrow 2 "slow" state variables/collective coordinates: *x*-coordinate of tip apex (rest position x = 0) *s* : position of substrate along *x*-axis

- \bullet given x and s, the entire "global" configuration is uniquly fixed
- x, s "slow" \Leftrightarrow "fast" molecular fluctuations always close to equilibrium
- s = v t externally imposed (still "slow")

 \Rightarrow goal: equation of motion for x(t)

 $s = v \, t$: position of substrate along x-axis

substrate potential U(x-s) with U(x+L) = U(x)

elastic force $-\kappa x(t) = -F(t)$ [$\kappa \approx 1$ nN/nm]

s = v t: position of substrate along x-axis

substrate potential U(x-s) with U(x+L) = U(x)elastic force $-\kappa x(t) = -F(t)$ [$\kappa \approx 1$ nN/nm]

"fast" fluctuations of molecules \Rightarrow thermal bath effects (close to eq.)

- dissipation of cantilever & tip $\left|-\eta_{c}\dot{x}(t)
 ight|$
- concomitant thermal noise $\sqrt{2\eta_c kT} \xi_c(t)$

//	

s = v t: position of substrate along x-axis

substrate potential U(x-s) with U(x+L) = U(x)elastic force $-\kappa x(t) = -F(t)$ [$\kappa \approx 1$ nN/nm]

"fast" fluctuations of molecules \Rightarrow thermal bath effects (close to eq.)

• dissipation of cantilever & tip $\left|-\eta_{c}\dot{x}(t)\right|$

• concomitant thermal noise $\sqrt{2\eta_c kT} \xi_c(t)$

- dissipation of substrate $-\eta_s (\dot{x}(t) v)$
- concomitant thermal noise $\sqrt{2\eta_s kT} \xi_s(t)$

s = v t: position of substrate along x-axis

substrate potential U(x-s) with U(x+L) = U(x)elastic force $-\kappa x(t) = -F(t)$ [$\kappa \approx 1$ nN/nm]

"fast" fluctuations of molecules \Rightarrow thermal bath effects (close to eq.)

• dissipation of cantilever & tip $\left|-\eta_{c}\dot{x}(t)
ight|$

• concomitant thermal noise $\sqrt{2\eta_c kT} \xi_c(t)$

- dissipation of substrate $\left[-\eta_s \left(\dot{x}(t) v\right)\right]$
- concomitant thermal noise $\sqrt{2\eta_s kT} \xi_s(t)$

 $m\ddot{x}(t) = -U'(x(t) - vt) - \kappa x(t) - \eta_c \dot{x}(t) + \sqrt{2\eta_c kT}\xi_c(t) - \eta_s(\dot{x}(t) - v) + \sqrt{2\eta_s kT}\xi_s(t)$

s = v t: position of substrate along x-axis

substrate potential U(x-s) with U(x+L) = U(x)elastic force $-\kappa x(t) = -F(t)$ [$\kappa \approx 1$ nN/nm]

"fast" fluctuations of molecules \Rightarrow thermal bath effects (close to eq.)

• dissipation of cantilever & tip $\left|-\eta_{c} \dot{x}(t)\right|$

• concomitant thermal noise $\sqrt{2\eta_c kT} \xi_c(t)$

- dissipation of substrate $-\eta_s (\dot{x}(t) v)$
- concomitant thermal noise $\sqrt{2\eta_s kT} \xi_s(t)$

 $m\ddot{x}(t) = -U'(x(t) - vt) - \kappa x(t) - \eta_c \dot{x}(t) + \sqrt{2\eta_c kT}\xi_c(t) - \eta_s(\dot{x}(t) - v) + \sqrt{2\eta_s kT}\xi_s(t)$

 $\eta := \eta_c + \eta_s , \ \vartheta := \eta_c / \eta , \ X(t) := x(t) - vt , \ F(t) = \kappa x(t) = \kappa (X(t) + vt)$

Previous theories: bath effects of cantilever & tip ignored $\Leftrightarrow \vartheta = 0$

Previous theories: bath effects of cantilever & tip ignored $\Leftrightarrow \vartheta = 0$ Elasticities: κ_c (cantilever), κ_t (tip-apex), κ_s (substrate) κ (total): 3 springs in series: $\frac{1}{\kappa} = \frac{1}{\kappa_c} + \frac{1}{\kappa_t} + \frac{1}{\kappa_s}$ Typical values $\kappa_c \approx 75$ nN/nm, $\kappa \approx 1.2$ nN/nm

⇒ deformations mainly within small tip-substrate contact region

Previous theories: bath effects of cantilever & tip ignored $\Leftrightarrow \vartheta = 0$ Elasticities: κ_c (cantilever), κ_t (tip-apex), κ_s (substrate) κ (total): 3 springs in series: $\frac{1}{\kappa} = \frac{1}{\kappa_c} + \frac{1}{\kappa_t} + \frac{1}{\kappa_s}$ Typical values $\kappa_c \approx 75$ nN/nm, $\kappa \approx 1.2$ nN/nm

- ⇒ deformations mainly within small tip-substrate contact region
- ⇒ inertia effects mainly due to acceleration of material within small tip-substrate contact region

Previous theories: bath effects of cantilever & tip ignored $\Leftrightarrow \vartheta = 0$ Elasticities: κ_c (cantilever), κ_t (tip-apex), κ_s (substrate) κ (total): 3 springs in series: $\frac{1}{\kappa} = \frac{1}{\kappa_c} + \frac{1}{\kappa_t} + \frac{1}{\kappa_s}$ Typical values $\kappa_c \approx 75$ nN/nm, $\kappa \approx 1.2$ nN/nm

- ⇒ deformations mainly within small tip-substrate contact region
- ⇒ inertia effects mainly due to acceleration of material within small tip-substrate contact region
- \Rightarrow eff. mass $m \ll$ cantilever mass
- \Rightarrow dynamics overdamped $(m\ddot{X}(t) \simeq 0)$

Previous theories: $m\approx$ cantilever mass \Rightarrow dynamics underdamped

$$\eta \dot{X}(t) = -U'(X(t)) - F(t) - \vartheta \eta v + \sqrt{2\eta kT} \xi(t)$$
$$F(t) = \kappa \left[X(t) + v t \right], \quad \overline{F} := \lim_{t \to \infty} \frac{1}{t} \int_0^t dt' F(t')$$

• $\eta \mapsto \alpha \eta \Leftrightarrow$ shifting $\overline{F}(v)$ curve along $\log(v)$ -axis by $-\log(\alpha)$

• $\overline{F}(v,\vartheta) = \overline{F}(v,\vartheta=0) - \vartheta\eta v$

• Experiment implies $\vartheta > 0.5$

 \Leftrightarrow friction and noise due to tip apex exceed those due to substrate

• first theoretical explanation of "plateaux" in $\bar{F}(v)$

• Prediction of decreasing $\bar{F}(v)$ upon further increasing v

• For perfect fit $U(x) = A \sin(2\pi x/L)$ too simple

- stick-slip amplitude $\widehat{=}$ dissipation
 - $\Rightarrow \bar{F}(v)$ decreasing

- stick-slip amplitude $\widehat{=}$ dissipation
 - $\Rightarrow \bar{F}(v)$ decreasing
- slips: thermally activated transitions

 $\Rightarrow \bar{F}(v)$ increasing

- stick-slip amplitude $\hat{=}$ dissipation $\Rightarrow \bar{F}(v) \underline{\text{decreasing}}$
- slips: thermally activated transitions $\Rightarrow \bar{F}(v)$ increasing

together $|\bar{F}(v)|$ non-monotonic

[Reimann & Evstigneev, New J. Phys. 7, 25 (2005)]

 $\eta \dot{X}(t) = -U'(X(t)) - F(t) - \vartheta \eta v + \sqrt{2\eta kT} \xi(t)$

 $\eta \dot{X}(t) = -U'(X(t)) - F(t) - \vartheta \eta v + \sqrt{2\eta kT} \xi(t)$ Approximation $F(t) \approx \overline{F}$ (exact for $\kappa \to 0$ or $v \to \infty$)

$$v(f) \simeq rac{L \, k \, T \, [1 - e^{-Lf/kT}]}{\eta \int_0^L dx \int_x^{x+L} dy \, e^{[U(x) - U(y) + (x-y)f]/kT}} \quad , \quad \bar{F}(f) \simeq f - \eta v(f)$$

$$v(f) \simeq rac{L \, k \, T \, [1 - e^{-Lf/kT}]}{\eta \int_0^L dx \int_x^{x+L} dy \, e^{[U(x) - U(y) + (x-y)f]/kT}} \quad , \qquad ar{F}(f) \simeq f - \eta v(f)$$

Data for $F_N = 12 \,\text{nN}$ from Riedo et al., PRL 91, 084502 (2003)

$$v(f) \simeq rac{L \, k \, T \, [1 - e^{-Lf/kT}]}{\eta \int_0^L dx \int_x^{x+L} dy \, e^{[U(x) - U(y) + (x-y)f]/kT}} \quad , \qquad ar{F}(f) \simeq f - \eta v(f)$$

 $\vartheta=1,~\eta=20~\mathrm{nN}\,\mu\mathrm{s/nm},~L=0.52~\mathrm{nm},~\kappa=1.2~\mathrm{nN/nm},~T=293~\mathrm{K}$

$$v(f) \simeq rac{L\,k\,T\,[1-e^{-Lf/kT}]}{\eta \int_0^L dx \int_x^{x+L} dy \,\,e^{[U(x)-U(y)+(x-y)f]/kT}} \quad , \qquad ar{F}(f) \simeq f - \eta v(f)$$

 $\vartheta = 1$, $\eta = 20$ nN μ s/nm, L = 0.52 nm, $\kappa = 1.2$ nN/nm, T = 293 K

[Evstigneev, Schirmeisen, Jansen, Fuchs, Reimann, PRL 97, 240601 (2006)]

 $\dot{p}_v(F(t)) = -r(F(t)) p_v(F(t))$

F(t) instantaneous force, r(F) "slip-rate", $p_v(F)$ "stick-probability"

[Evstigneev, Schirmeisen, Jansen, Fuchs, Reimann, PRL 97, 240601 (2006)]

 $\dot{p}_v(F(t)) = -r(F(t)) \, p_v(F(t))$

F(t) instantaneous force, r(F) "slip-rate", $p_v(F)$ "stick-probability"

 $\Rightarrow | -v \ln p_v(F)$ independent of v

[Evstigneev, Schirmeisen, Jansen, Fuchs, Reimann, PRL 97, 240601 (2006)]

 $\dot{p}_v(F(t)) = -r(F(t)) \, p_v(F(t))$

F(t) instantaneous force, r(F) "slip-rate", $p_v(F)$ "stick-probability"

 $\Rightarrow | -v \ln p_v(F)$ independent of v

 $\dot{p}_v(F(t)) = -r(F(t)) p_v(F(t))$

F(t) instantaneous force, r(F) "slip-rate", $p_v(F)$ "stick-probability"

 $\Rightarrow | -v \ln p_v(F)$ independent of v

Summary

- first theoretical explanation of "plateaux" in $\overline{F}(v)$
- prediction of non-monotonic $\overline{F}(v)$ upon further increasing v
- dynamics dominated by deformations of tip apex and contact region
- inertia effects are small (overdamped dynamics)
- damping and noise due to tip apex are crucial
- \bullet single-step rate description breaks down at small v