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General set-up

Let x(s) = (xo(s), x1(s), ..., xn(s)) be the positions of N + 1
particles in R at time s, evolving according to

dx(s) = ~ 21

™ (x(s))ds + odW(s), 0<i<N

where H is potential energy of the chain given by

Hx)= Y Uli—x)

0<i<j<N

and U is a pair potential.
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Main properties of U:
» U has a unique minimum at a > 0
» U has finite range b > 0
» b<2a

Initially we take the chain to be in the minimal energy

configuration:
x(0) = (0, a,2a, ..., Na)

We would like to slowly stretch the chain of particles:
Fix xo = 0 and let xy(s) = Na(1 + ¢s), where ¢ > 0 is small.
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The other N — 1 particles then evolve according to

oH
8X,'

dxi(s) = (x(s),es)ds +odW(s), 1<i<N-1

where H is now the time-dependent potential energy of the chain
given by

H(x,es) = Z U(xi — xj) + Z U(x; — Na(1 +¢5s))

0<i<j<N-1 0<i<N-1
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As the chain is stretched, new minimal energy configurations will
become possible.

We consider the chain to break when its configuration enters a
small neighbourhood of one of these new minima.

We define the break location by which of the new minima is
reached first.

General goal: Writing £ = (o), to identify how different speeds of
stretching affect the break location, as o | 0.
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Three particles

Take N = 3 so that x(s) = (0, x5, 2a(1 + ¢s)).
Only the middle particle is free. It satisfies a one-dimensional
non-autonomous SDE

OH
dxs = —a(xs7 es)ds + od Ws

with initial condition xg = a and time-dependent potential energy
given by
H(x,es) = U(x) + U(2a(1 + es) — x)
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We rescale time as t = es, so that x(t) = (0, x¢,2a(1 + t)) and x;

solves

o
—dW;
€

10H
dxy = —= —(x¢, t)dt + NG

€ 0x

We say the chain breaks as soon as the middle particle is a
distance b from one of its neighbours.

So the chain is unbroken at time t if
xt<b and 2a(l+t)—x<b
which combine to give

2a(1+t)—b<xt < b
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Let
T=inf{t >0:x ¢ (2a(1+1t) - b,b)}

This is the time that the chain breaks. Clearly,
T<bla—1

so the chain breaks in finite time.
The chain breaks on the left-hand side if x, = b.
Otherwise, it breaks on the right-hand side.
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Recall that our potential U has unique minimum at a > 0 and
finite range b > 0, where b < 2a. In addition, we will assume:

There exists ag € (0, a) such that U”(y) = ug > 0 for all
y € (ao, b)
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An example of such a potential is a cut-off quadratic given by

Jyl—a—(b—a)* 0<|y|<b
Uly) = .
0 otherwise

where b < 2a, shown below for a =2,b = 3.

U(x)
3L
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The potential energy H(x,t) = U(x) + U(2a(1 + t) — x) when
t=0
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Notation: f(0) < g(o) means f(c)/g(c) — 0as o | 0.
Theorem (A.,Betz)

1. Fast Stretching

If

12 « e(0) < 1

ollno|
then P{x, = b} — 0 aso | 0.

2. Slow Stretching
If

1 1
~2/3 &P {02/3} < e(o) < ollng|71/?

then P{x, = b} — 1/2 aso | 0.
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In the slow stretching case, we expect the result to hold without
the lower bound on ¢, i.e. for all

e < o|lng| 712

Indeed, when U is quadratic, this is true.

The lower bound is related to the theory of large deviations.
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Deterministic Dynamics

Let x¢°t be solution when o = 0,

d 4u 10H
G

with x§€t = a. A particular solution is given by

ga

xdet — (1 4+ t) — TIECED))

+ 0(£?)

This shows xZ°t lags behind the midpoint of the chain at distance
O(e). So the deterministic chain always breaks on the right-hand
side.
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We expect x; to stay close to xd¢t. Let

det
Yt = Xt — X

For the chain to be unbroken, we require
2a(l+t)—b<xt < b
which is the same as
2a(1+t) — b— x% <y, < b— xget
Using our expression for x¢t, this gives
a(l+t)—b+0()<yr<b—a(l+t)+ O(e)

where the O(¢) terms are both the same and are uniform in t.
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Then the breaking time, 7, can be expressed in terms of y;:

T=inf{t >0:y ¢ (d_(t),ds(t))}

where
di(t)=b—x% =b—a(l+1t)+0O(e)

and
d (t)=2a(1+1t)—b—xI=a(l+t)— b+ O(c)

Now, the chain breaks on the left-hand side if y, = d (7).
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We would like to show that y; never gets too big. The following
lemma is based on a result by Berglund and Gentz.

Lemma
Let 0 < D(0) < 1 be such that

D? D?
2exp{—2} <elo)x 1
g g

[imP

Then
o0 {

sup |yt = D} =0

0<t<r
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The lower bound on ¢ is related to the Eyring-Kramers time.

An excursion of size D corresponds to climbing a potential height

of O(D?), which we expect to occur as soon as t/c is of order
D?/o?
€ .
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Fast Stretching

When | Ino|'/? < £(0) < 1, we can use the lemma with
D = di(b/a—1) to show that |y;| < di(b/a — 1) for all
o<t

10

d.t
05

,0_5:

-10
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Slow Stretching

The process y; can be written

Ye=yl+yt

where y? is a centred Gaussian process with variance O(c?) and
y! satisfies
1 2
el < C sup g

<s <t
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Given D such that

IimIP’{ sup |yl = D} =0
ol0 0<t<r

we can assume that forall 0 <t < 7,
¥ =D* <y <y +D?

since all other cases have zero probability as o | 0.
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Then

P{y, = d (1)} <P{y? + D? hits d, (t) before d_(t)}
and

P{y, = dy(7)} > P{y? — D? hits d(t) before d_(t)}

We must show that the upper and lower bounds tend to 1/2.
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To show

|iT(1)]P>{y? — D? hits d (t) before d_(t)} =1/2

we first rewrite it as

Ii% P{y? hits d(t) + D? before d_(t) + D?} =1/2

We know that y? has an entirely symmetric distribution, so we first
consider the stopping time given by

7L =7(D)=inf{t >0:|y°| > —d_(t) - D?*}
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We need information about the distribution of 7;.
Roughly speaking, we show that 7; is concentrated near
b/a—1-o.
We then show that if

y% = —d_(TL) - D2

then y? hits d, (t) + D? soon after, by picking a suitable interval
[71, 7L + A] and applying the reflection principle.
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Comparison with a linear potential

Suppose U is piecewise linear, as below.

2
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The potential energy H(x,t) = U(x) + U(2a(1 + t) — x) when
t=20

-
N\
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When x is near the middle of the chain, it moves like free
Brownian motion:
Wi

Xt = %
with no drift term making it follow the midpoint of the chain.
Recall that the chain is unbroken if x; satifies

2a(l+t)—b<xt <b

To behave non-deterministically, x; must diffuse with speed O(1).
We see that o = ¢'/2 is the critical scaling.

Hence, we require stronger noise to cause non-deterministic
behaviour.
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Next step

We want to do the same with U differentiable everywhere.
Example:

-y e /B 0|y <3
Uly) = .
0 otherwise
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The potential energy H(x,t) = U(x) + U(2a(1 + t) — x) when
t=20
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Deterministic Dynamics

Let

ze = a(l+ t) — x%t

Assuming that there is a unique xq € (a, b) such that U"(xg) = 0,
we can show there are constants c¢;, ¢, > 0 such that

e/(T—t) 0<t< T —cel/?
Zy <
‘ gl/2 T—c151/2<t< T—|—C261/2

where T is the time bifurcation occurs at midpoint.
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Again we let

_ det
Yt = Xt — X¢

and write it as yy = y? +yt1. Then the variance of y? behaves like

Var(y?) = ?/(T—t) 0<t<T—cel/?
¢ o2e71/2 T—ce2 <t < T+ pel/?

If the typical spreading of y? is bigger than z;, then we expect
equal chance to break on either side. Here, we require

0_5—1/4 > 61/2

That is, we require o >> £3/4 .
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