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General set-up

Let x(s) = (x0(s), x1(s), . . . , xN(s)) be the positions of N + 1
particles in R at time s, evolving according to

dxi (s) = −∂H

∂xi
(x(s)) ds + σdWi (s), 0 6 i 6 N

where H is potential energy of the chain given by

H(x) =
∑

0 6 i<j 6 N

U(xi − xj)

and U is a pair potential.
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Main properties of U:

I U has a unique minimum at a > 0

I U has finite range b > 0

I b < 2a

Initially we take the chain to be in the minimal energy
configuration:

x(0) = (0, a, 2a, . . . ,Na)

We would like to slowly stretch the chain of particles:
Fix x0 ≡ 0 and let xN(s) = Na(1 + εs), where ε > 0 is small.
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The other N − 1 particles then evolve according to

dxi (s) = −∂H

∂xi
(x(s), εs) ds + σdWi (s), 1 6 i 6 N − 1

where H is now the time-dependent potential energy of the chain
given by

H(x, εs) =
∑

0 6 i<j 6 N−1

U(xi − xj) +
∑

0 6 i 6 N−1

U(xi −Na(1 + εs))
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As the chain is stretched, new minimal energy configurations will
become possible.

We consider the chain to break when its configuration enters a
small neighbourhood of one of these new minima.

We define the break location by which of the new minima is
reached first.

General goal: Writing ε = ε(σ), to identify how different speeds of
stretching affect the break location, as σ ↓ 0.
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Three particles

Take N = 3 so that x(s) = (0, xs , 2a(1 + εs)).
Only the middle particle is free. It satisfies a one-dimensional
non-autonomous SDE

dxs = −∂H

∂x
(xs , εs)ds + σdWs

with initial condition x0 = a and time-dependent potential energy
given by

H(x , εs) = U(x) + U(2a(1 + εs)− x)
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We rescale time as t = εs, so that x(t) = (0, xt , 2a(1 + t)) and xt

solves

dxt = −1

ε

∂H

∂x
(xt , t)dt +

σ√
ε
dWt

We say the chain breaks as soon as the middle particle is a
distance b from one of its neighbours.

So the chain is unbroken at time t if

xt < b and 2a(1 + t)− xt < b

which combine to give

2a(1 + t)− b < xt < b
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Let
τ = inf{t > 0 : xt /∈ (2a(1 + t)− b, b)}

This is the time that the chain breaks. Clearly,

τ 6 b/a− 1

so the chain breaks in finite time.

The chain breaks on the left-hand side if xτ = b.

Otherwise, it breaks on the right-hand side.
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Recall that our potential U has unique minimum at a > 0 and
finite range b > 0, where b < 2a. In addition, we will assume:

There exists a0 ∈ (0, a) such that U ′′(y) > u0 > 0 for all
y ∈ (a0, b).
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An example of such a potential is a cut-off quadratic given by

U(y) =

{
(|y | − a)2 − (b − a)2 0 6 |y | 6 b

0 otherwise

where b < 2a, shown below for a = 2, b = 3.
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The potential energy H(x , t) = U(x) + U(2a(1 + t)− x) when
t = 0
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t = 0.05
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t = 0.1
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t = 0.15
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t = 0.2
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t = 0.25
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t = 0.3
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t = 0.35
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t = 0.4
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t = 0.45
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t = 0.5
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Notation: f (σ)� g(σ) means f (σ)/g(σ)→ 0 as σ ↓ 0.

Theorem (A.,Betz)

1. Fast Stretching
If

σ| lnσ|1/2 � ε(σ)� 1

then P{xτ = b} → 0 as σ ↓ 0.

2. Slow Stretching
If

1

σ2/3
exp

{
− 1

σ2/3

}
� ε(σ)� σ| lnσ|−1/2

then P{xτ = b} → 1/2 as σ ↓ 0.
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In the slow stretching case, we expect the result to hold without
the lower bound on ε, i.e. for all

ε� σ| lnσ|−1/2

Indeed, when U is quadratic, this is true.

The lower bound is related to the theory of large deviations.
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Deterministic Dynamics

Let xdet
t be solution when σ = 0,

d
dt

xdet
t = −1

ε

∂H

∂x
(xdet

t , t)

with xdet
0 = a. A particular solution is given by

xdet
t = a(1 + t)− εa

2U ′′(a(1 + t))
+O(ε2)

This shows xdet
t lags behind the midpoint of the chain at distance

O(ε). So the deterministic chain always breaks on the right-hand
side.
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We expect xt to stay close to xdet
t . Let

yt = xt − xdet
t

For the chain to be unbroken, we require

2a(1 + t)− b < xt < b

which is the same as

2a(1 + t)− b − xdet
t < yt < b − xdet

t

Using our expression for xdet
t , this gives

a(1 + t)− b +O(ε) < yt < b − a(1 + t) +O(ε)

where the O(ε) terms are both the same and are uniform in t.
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Then the breaking time, τ , can be expressed in terms of yt :

τ = inf{t > 0 : yt /∈ (d−(t), d+(t))}

where
d+(t) = b − xdet

t = b − a(1 + t) +O(ε)

and

d−(t) = 2a(1 + t)− b − xdet
t = a(1 + t)− b +O(ε)

Now, the chain breaks on the left-hand side if yτ = d+(τ).
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We would like to show that yt never gets too big. The following
lemma is based on a result by Berglund and Gentz.

Lemma
Let σ � D(σ)� 1 be such that

D2

σ2
exp

{
−D2

σ2

}
� ε(σ)� 1

Then

lim
σ↓0

P
{

sup
0 6 t 6 τ

|yt | > D

}
= 0
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The lower bound on ε is related to the Eyring-Kramers time.

An excursion of size D corresponds to climbing a potential height
of O(D2), which we expect to occur as soon as t/ε is of order
eD2/σ2

.
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Fast Stretching

When σ| lnσ|1/2 � ε(σ)� 1, we can use the lemma with
D = d+(b/a− 1) to show that |yt | < d+(b/a− 1) for all
0 6 t 6 τ .

d+HtL

d-HtL

D

-D
0.1 0.2 0.3 0.4 0.5

t

-1.0

-0.5

0.5

1.0

y

Michael Allman Breaking the chain



Slow Stretching

The process yt can be written

yt = y0
t + y1

t

where y0
t is a centred Gaussian process with variance O(σ2) and

y1
t satisfies

|y1
t | 6 C sup

0 6 s 6 t
y2
s
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Given D such that

lim
σ↓0

P
{

sup
0 6 t 6 τ

|yt | > D

}
= 0

we can assume that for all 0 6 t 6 τ ,

y0
t − D2 6 yt 6 y0

t + D2

since all other cases have zero probability as σ ↓ 0.
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Then

P{yτ = d+(τ)} 6 P{y0
t + D2 hits d+(t) before d−(t)}

and

P{yτ = d+(τ)} > P{y0
t − D2 hits d+(t) before d−(t)}

We must show that the upper and lower bounds tend to 1/2.
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To show

lim
σ↓0

P{y0
t − D2 hits d+(t) before d−(t)} = 1/2

we first rewrite it as

lim
σ↓0

P{y0
t hits d+(t) + D2 before d−(t) + D2} = 1/2

We know that y0
t has an entirely symmetric distribution, so we first

consider the stopping time given by

τL = τL(D) = inf{t > 0 : |y0
t | > − d−(t)− D2}
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We need information about the distribution of τL.

Roughly speaking, we show that τL is concentrated near
b/a− 1− σ.

We then show that if

y0
τL

= −d−(τL)− D2

then y0
t hits d+(t) + D2 soon after, by picking a suitable interval

[τL, τL + ∆] and applying the reflection principle.
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Comparison with a linear potential

Suppose U is piecewise linear, as below.
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The potential energy H(x , t) = U(x) + U(2a(1 + t)− x) when
t = 0
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t = 0.05
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t = 0.1

1 2 3 4

-3

-2

-1

1

2

Michael Allman Breaking the chain



t = 0.15
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t = 0.2
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t = 0.25
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t = 0.3
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t = 0.35
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t = 0.4
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t = 0.45
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t = 0.5
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When x is near the middle of the chain, it moves like free
Brownian motion:

xt =
σ√
ε
Wt

with no drift term making it follow the midpoint of the chain.
Recall that the chain is unbroken if xt satifies

2a(1 + t)− b < xt < b

To behave non-deterministically, xt must diffuse with speed O(1).
We see that σ = ε1/2 is the critical scaling.

Hence, we require stronger noise to cause non-deterministic
behaviour.
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Next step

We want to do the same with U differentiable everywhere.
Example:

U(y) =

{
−y2 e−1/(3−y) 0 6 |y | 6 3

0 otherwise
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The potential energy H(x , t) = U(x) + U(2a(1 + t)− x) when
t = 0
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t = 0.05
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t = 0.1
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t = 0.15
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t = 0.2
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t = 0.25
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t = 0.3
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t = 0.35
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t = 0.4
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t = 0.45
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t = 0.5
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Deterministic Dynamics

Let
zt = a(1 + t)− xdet

t

Assuming that there is a unique x0 ∈ (a, b) such that U ′′(x0) = 0,
we can show there are constants c1, c2 > 0 such that

zt �

{
ε/(T − t) 0 6 t 6 T − c1ε

1/2

ε1/2 T − c1ε
1/2 6 t 6 T + c2ε

1/2

where T is the time bifurcation occurs at midpoint.
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Again we let
yt = xt − xdet

t

and write it as yt = y0
t + y1

t . Then the variance of y0
t behaves like

Var(y0
t ) �

{
σ2/(T − t) 0 6 t 6 T − c1ε

1/2

σ2ε−1/2 T − c1ε
1/2 6 t 6 T + c2ε

1/2

If the typical spreading of y0
t is bigger than zt , then we expect

equal chance to break on either side. Here, we require

σε−1/4 � ε1/2

That is, we require σ � ε3/4 .
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