Breaking the chain

Michael Allman
Mathematics Institute
University of Warwick
Coventry, UK

Bielefeld, 18 November 2008

PhD supervisor: Volker Betz (Warwick)

General set-up

Let $\mathbf{x}(s)=\left(x_{0}(s), x_{1}(s), \ldots, x_{N}(s)\right)$ be the positions of $N+1$ particles in \mathbb{R} at time s, evolving according to

$$
\mathrm{d} x_{i}(s)=-\frac{\partial H}{\partial x_{i}}(\mathbf{x}(s)) \mathrm{d} s+\sigma \mathrm{d} W_{i}(s), \quad 0 \leqslant i \leqslant N
$$

where H is potential energy of the chain given by

$$
H(\mathbf{x})=\sum_{0 \leqslant i<j \leqslant N} U\left(x_{i}-x_{j}\right)
$$

and U is a pair potential.

Main properties of U :

- U has a unique minimum at $a>0$
- U has finite range $b>0$
- $b<2 a$

Initially we take the chain to be in the minimal energy configuration:

$$
\mathbf{x}(0)=(0, a, 2 a, \ldots, N a)
$$

We would like to slowly stretch the chain of particles:
Fix $x_{0} \equiv 0$ and let $x_{N}(s)=N a(1+\varepsilon s)$, where $\varepsilon>0$ is small.

The other $N-1$ particles then evolve according to

$$
\mathrm{d} x_{i}(s)=-\frac{\partial H}{\partial x_{i}}(\mathbf{x}(s), \varepsilon s) \mathrm{d} s+\sigma \mathrm{d} W_{i}(s), \quad 1 \leqslant i \leqslant N-1
$$

where H is now the time-dependent potential energy of the chain given by

$$
H(\mathbf{x}, \varepsilon s)=\sum_{0 \leqslant i<j \leqslant N-1} U\left(x_{i}-x_{j}\right)+\sum_{0 \leqslant i \leqslant N-1} U\left(x_{i}-N a(1+\varepsilon s)\right)
$$

As the chain is stretched, new minimal energy configurations will become possible.
We consider the chain to break when its configuration enters a small neighbourhood of one of these new minima.
We define the break location by which of the new minima is reached first.
General goal: Writing $\varepsilon=\varepsilon(\sigma)$, to identify how different speeds of stretching affect the break location, as $\sigma \downarrow 0$.

Three particles

Take $N=3$ so that $\mathbf{x}(s)=\left(0, x_{s}, 2 a(1+\varepsilon s)\right)$.
Only the middle particle is free. It satisfies a one-dimensional non-autonomous SDE

$$
\mathrm{d} x_{s}=-\frac{\partial H}{\partial x}\left(x_{s}, \varepsilon s\right) \mathrm{d} s+\sigma \mathrm{d} W_{s}
$$

with initial condition $x_{0}=a$ and time-dependent potential energy given by

$$
H(x, \varepsilon s)=U(x)+U(2 a(1+\varepsilon s)-x)
$$

We rescale time as $t=\varepsilon s$, so that $\mathbf{x}(t)=\left(0, x_{t}, 2 a(1+t)\right)$ and x_{t} solves

$$
\mathrm{d} x_{t}=-\frac{1}{\varepsilon} \frac{\partial H}{\partial x}\left(x_{t}, t\right) \mathrm{d} t+\frac{\sigma}{\sqrt{\varepsilon}} \mathrm{d} W_{t}
$$

We say the chain breaks as soon as the middle particle is a distance b from one of its neighbours.
So the chain is unbroken at time t if

$$
x_{t}<b \quad \text { and } \quad 2 a(1+t)-x_{t}<b
$$

which combine to give

$$
2 a(1+t)-b<x_{t}<b
$$

Let

$$
\tau=\inf \left\{t \geqslant 0: x_{t} \notin(2 a(1+t)-b, b)\right\}
$$

This is the time that the chain breaks. Clearly,

$$
\tau \leqslant b / a-1
$$

so the chain breaks in finite time.
The chain breaks on the left-hand side if $x_{\tau}=b$.
Otherwise, it breaks on the right-hand side.

Recall that our potential U has unique minimum at $a>0$ and finite range $b>0$, where $b<2 a$. In addition, we will assume:

There exists $a_{0} \in(0, a)$ such that $U^{\prime \prime}(y) \geqslant u_{0}>0$ for all $y \in\left(a_{0}, b\right)$.

An example of such a potential is a cut-off quadratic given by

$$
U(y)= \begin{cases}(|y|-a)^{2}-(b-a)^{2} & 0 \leqslant|y| \leqslant b \\ 0 & \text { otherwise }\end{cases}
$$

where $b<2 a$, shown below for $a=2, b=3$.

The potential energy $H(x, t)=U(x)+U(2 a(1+t)-x)$ when $t=0$

$$
t=0.05
$$

$$
t=0.1
$$

$t=0.15$

$$
t=0.2
$$

$$
t=0.25
$$

$$
t=0.3
$$

$$
t=0.35
$$

$$
t=0.4
$$

$$
t=0.45
$$

$$
t=0.5
$$

Notation: $f(\sigma) \ll g(\sigma)$ means $f(\sigma) / g(\sigma) \rightarrow 0$ as $\sigma \downarrow 0$.
Theorem (A.,Betz)

1. Fast Stretching

If

$$
\sigma|\ln \sigma|^{1 / 2} \ll \varepsilon(\sigma) \ll 1
$$

then $\mathbb{P}\left\{x_{\tau}=b\right\} \rightarrow 0$ as $\sigma \downarrow 0$.
2. Slow Stretching

If

$$
\frac{1}{\sigma^{2 / 3}} \exp \left\{-\frac{1}{\sigma^{2 / 3}}\right\} \ll \varepsilon(\sigma) \ll \sigma|\ln \sigma|^{-1 / 2}
$$

then $\mathbb{P}\left\{x_{\tau}=b\right\} \rightarrow 1 / 2$ as $\sigma \downarrow 0$.

In the slow stretching case, we expect the result to hold without the lower bound on ε, i.e. for all

$$
\varepsilon \ll \sigma|\ln \sigma|^{-1 / 2}
$$

Indeed, when U is quadratic, this is true.
The lower bound is related to the theory of large deviations.

Deterministic Dynamics

Let $x_{t}^{\text {det }}$ be solution when $\sigma=0$,

$$
\frac{\mathrm{d}}{\mathrm{~d} t} x_{t}^{\mathrm{det}}=-\frac{1}{\varepsilon} \frac{\partial H}{\partial x}\left(x_{t}^{\mathrm{det}}, t\right)
$$

with $x_{0}^{\text {det }}=a$. A particular solution is given by

$$
x_{t}^{\mathrm{det}}=a(1+t)-\frac{\varepsilon a}{2 U^{\prime \prime}(a(1+t))}+\mathcal{O}\left(\varepsilon^{2}\right)
$$

This shows $x_{t}^{\text {det }}$ lags behind the midpoint of the chain at distance $\mathcal{O}(\varepsilon)$. So the deterministic chain always breaks on the right-hand side.

We expect x_{t} to stay close to $x_{t}^{\text {det }}$. Let

$$
y_{t}=x_{t}-x_{t}^{\mathrm{det}}
$$

For the chain to be unbroken, we require

$$
2 a(1+t)-b<x_{t}<b
$$

which is the same as

$$
2 a(1+t)-b-x_{t}^{\mathrm{det}}<y_{t}<b-x_{t}^{\mathrm{det}}
$$

Using our expression for $x_{t}^{\text {det }}$, this gives

$$
a(1+t)-b+\mathcal{O}(\varepsilon)<y_{t}<b-a(1+t)+\mathcal{O}(\varepsilon)
$$

where the $\mathcal{O}(\varepsilon)$ terms are both the same and are uniform in t.

Then the breaking time, τ, can be expressed in terms of y_{t} :

$$
\tau=\inf \left\{t \geqslant 0: y_{t} \notin\left(d_{-}(t), d_{+}(t)\right)\right\}
$$

where

$$
d_{+}(t)=b-x_{t}^{\mathrm{det}}=b-a(1+t)+\mathcal{O}(\varepsilon)
$$

and

$$
d_{-}(t)=2 a(1+t)-b-x_{t}^{\mathrm{det}}=a(1+t)-b+\mathcal{O}(\varepsilon)
$$

Now, the chain breaks on the left-hand side if $y_{\tau}=d_{+}(\tau)$.

We would like to show that y_{t} never gets too big. The following lemma is based on a result by Berglund and Gentz.

Lemma
Let $\sigma \ll D(\sigma) \ll 1$ be such that

$$
\frac{D^{2}}{\sigma^{2}} \exp \left\{-\frac{D^{2}}{\sigma^{2}}\right\} \ll \varepsilon(\sigma) \ll 1
$$

Then

$$
\lim _{\sigma \downarrow 0} \mathbb{P}\left\{\sup _{0 \leqslant t \leqslant \tau}\left|y_{t}\right| \geqslant D\right\}=0
$$

The lower bound on ε is related to the Eyring-Kramers time. An excursion of size D corresponds to climbing a potential height of $\mathcal{O}\left(D^{2}\right)$, which we expect to occur as soon as t / ε is of order $\mathrm{e}^{D^{2} / \sigma^{2}}$.

Fast Stretching

When $\sigma|\ln \sigma|^{1 / 2} \ll \varepsilon(\sigma) \ll 1$, we can use the lemma with $D=d_{+}(b / a-1)$ to show that $\left|y_{t}\right|<d_{+}(b / a-1)$ for all $0 \leqslant t \leqslant \tau$.

Slow Stretching

The process y_{t} can be written

$$
y_{t}=y_{t}^{0}+y_{t}^{1}
$$

where y_{t}^{0} is a centred Gaussian process with variance $\mathcal{O}\left(\sigma^{2}\right)$ and y_{t}^{1} satisfies

$$
\left|y_{t}^{1}\right| \leqslant C \sup _{0 \leqslant s \leqslant t} y_{s}^{2}
$$

Given D such that

$$
\lim _{\sigma \downarrow 0} \mathbb{P}\left\{\sup _{0 \leqslant t \leqslant \tau}\left|y_{t}\right| \geqslant D\right\}=0
$$

we can assume that for all $0 \leqslant t \leqslant \tau$,

$$
y_{t}^{0}-D^{2} \leqslant y_{t} \leqslant y_{t}^{0}+D^{2}
$$

since all other cases have zero probability as $\sigma \downarrow 0$.

Then

$$
\mathbb{P}\left\{y_{\tau}=d_{+}(\tau)\right\} \leqslant \mathbb{P}\left\{y_{t}^{0}+D^{2} \text { hits } d_{+}(t) \text { before } d_{-}(t)\right\}
$$

and

$$
\mathbb{P}\left\{y_{\tau}=d_{+}(\tau)\right\} \geqslant \mathbb{P}\left\{y_{t}^{0}-D^{2} \text { hits } d_{+}(t) \text { before } d_{-}(t)\right\}
$$

We must show that the upper and lower bounds tend to $1 / 2$.

To show

$$
\lim _{\sigma \downarrow 0} \mathbb{P}\left\{y_{t}^{0}-D^{2} \text { hits } d_{+}(t) \text { before } d_{-}(t)\right\}=1 / 2
$$

we first rewrite it as

$$
\lim _{\sigma \downarrow 0} \mathbb{P}\left\{y_{t}^{0} \text { hits } d_{+}(t)+D^{2} \text { before } d_{-}(t)+D^{2}\right\}=1 / 2
$$

We know that y_{t}^{0} has an entirely symmetric distribution, so we first consider the stopping time given by

$$
\tau_{L}=\tau_{L}(D)=\inf \left\{t \geqslant 0:\left|y_{t}^{0}\right| \geqslant-d_{-}(t)-D^{2}\right\}
$$

We need information about the distribution of τ_{L}.
Roughly speaking, we show that τ_{L} is concentrated near $b / a-1-\sigma$.
We then show that if

$$
y_{\tau_{L}}^{0}=-d_{-}\left(\tau_{L}\right)-D^{2}
$$

then y_{t}^{0} hits $d_{+}(t)+D^{2}$ soon after, by picking a suitable interval $\left[\tau_{L}, \tau_{L}+\Delta\right]$ and applying the reflection principle.

Comparison with a linear potential

Suppose U is piecewise linear, as below.

The potential energy $H(x, t)=U(x)+U(2 a(1+t)-x)$ when $t=0$

$$
t=0.05
$$

$$
t=0.1
$$

$$
t=0.15
$$

$$
t=0.2
$$

$$
t=0.25
$$

$$
t=0.3
$$

$$
t=0.35
$$

$$
t=0.4
$$

$$
t=0.45
$$

$$
t=0.5
$$

When x is near the middle of the chain, it moves like free Brownian motion:

$$
x_{t}=\frac{\sigma}{\sqrt{\varepsilon}} W_{t}
$$

with no drift term making it follow the midpoint of the chain. Recall that the chain is unbroken if x_{t} satifies

$$
2 a(1+t)-b<x_{t}<b
$$

To behave non-deterministically, x_{t} must diffuse with speed $\mathcal{O}(1)$. We see that $\sigma=\varepsilon^{1 / 2}$ is the critical scaling.
Hence, we require stronger noise to cause non-deterministic behaviour.

Next step

We want to do the same with U differentiable everywhere. Example:

$$
U(y)= \begin{cases}-y^{2} \mathrm{e}^{-1 /(3-y)} & 0 \leqslant|y| \leqslant 3 \\ 0 & \text { otherwise }\end{cases}
$$

The potential energy $H(x, t)=U(x)+U(2 a(1+t)-x)$ when $t=0$

$$
t=0.05
$$

$t=0.1$

$t=0.15$

$t=0.2$

$$
t=0.25
$$

$t=0.3$

$t=0.35$

$t=0.4$

$$
t=0.45
$$

$t=0.5$

Deterministic Dynamics

Let

$$
z_{t}=a(1+t)-x_{t}^{\operatorname{det}}
$$

Assuming that there is a unique $x_{0} \in(a, b)$ such that $U^{\prime \prime}\left(x_{0}\right)=0$, we can show there are constants $c_{1}, c_{2}>0$ such that

$$
z_{t} \asymp \begin{cases}\varepsilon /(T-t) & 0 \leqslant t \leqslant T-c_{1} \varepsilon^{1 / 2} \\ \varepsilon^{1 / 2} & T-c_{1} \varepsilon^{1 / 2} \leqslant t \leqslant T+c_{2} \varepsilon^{1 / 2}\end{cases}
$$

where T is the time bifurcation occurs at midpoint.

Again we let

$$
y_{t}=x_{t}-x_{t}^{\mathrm{det}}
$$

and write it as $y_{t}=y_{t}^{0}+y_{t}^{1}$. Then the variance of y_{t}^{0} behaves like

$$
\operatorname{Var}\left(y_{t}^{0}\right) \asymp \begin{cases}\sigma^{2} /(T-t) & 0 \leqslant t \leqslant T-c_{1} \varepsilon^{1 / 2} \\ \sigma^{2} \varepsilon^{-1 / 2} & T-c_{1} \varepsilon^{1 / 2} \leqslant t \leqslant T+c_{2} \varepsilon^{1 / 2}\end{cases}
$$

If the typical spreading of y_{t}^{0} is bigger than z_{t}, then we expect equal chance to break on either side. Here, we require

$$
\sigma \varepsilon^{-1 / 4} \gg \varepsilon^{1 / 2}
$$

That is, we require $\sigma \gg \varepsilon^{3 / 4}$.

