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Motivation

Motivation

Metastability is a common phenomenon of non linear dynamics, related to first

order phase transition.

gas

T

P

liquid

If the parameters of the system changes along the line of the first order phase

transition, the system moves from one metastable state to the new equilibrium.
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Motivation

Two main properties characterizing the metastability are:

1. The existence of quasi-invariant subspaces Si.

2. The presence of multiple, separated time scales:

• on a short time scale, every Si reaches a local equilibrium

• on a longer metastable time scale the system moves from Si to Sj.
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The model and the dynamics

The Random Field Curie-Weiss (RFCW) model

• System of N particles described by configurations σ = {σi}
N
i=1 ∈ {−1, 1}N .

• The energy of a configuration is specified by the random Hamiltonian

HN(σ) = −
1

2N

N
∑

i,j=1

σiσj −
N

∑

i=1

hiσi

hi, i ∈ N are i.i.d. (continuous) random variables called external fields.
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The model and the dynamics

The Random Field Curie-Weiss (RFCW) model

• System of N particles described by configurations σ = {σi}
N
i=1 ∈ {−1, 1}N .

• The energy of a configuration is specified by the random Hamiltonian

HN(σ) = −
1

2N

N
∑

i,j=1

σiσj −
N

∑

i=1

hiσi

hi, i ∈ N are i.i.d. (continuous) random variables called external fields.

• At the equilibrium the system is described by the probability Gibbs measure

µN(σ) =
e−βHN(σ)

ZN
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The model and the dynamics

Glauber dynamics

• Consider a discrete time Glauber dynamics for the RCFW model.

This is a Markov chain on {−1, 1}N reversible w.r.t. µN .

Generator: (Lf)(σ) =
∑N

i=1 p(σ, σi)(f(σi) − f(σ))

where

p(σ, σi) =
1

N
e−β[HN(σi)−HN(σ)]+

are the Metropolis transition probabilities.
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The model and the dynamics

Glauber dynamics

• Consider a discrete time Glauber dynamics for the RCFW model.

This is a Markov chain on {−1, 1}N reversible w.r.t. µN .

Generator: (Lf)(σ) =
∑N

i=1 p(σ, σi)(f(σi) − f(σ))

where

p(σ, σi) =
1

N
e−β[HN(σi)−HN(σ)]+

are the Metropolis transition probabilities.

• The dynamics follows the direction of lower energy, but the system can be

trapped in a local minimum for long time before arriving to the global one.

How long will it take the system to escape from local minima?
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Energy landscape and metastability

Energy landscape

Macroscopic parameter:

Define the magnetization mN(σ) = 1
N

∑N

i=1 σi taking value on

ΓN = {−1,−1 + 2/N, . . . ,+1}
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Energy landscape and metastability

Energy landscape

Macroscopic parameter:

Define the magnetization mN(σ) = 1
N

∑N

i=1 σi taking value on

ΓN = {−1,−1 + 2/N, . . . ,+1}

A simple case: h = constant

• HN(σ) = −N
2 mN(σ)2 − hmN(σ) =⇒

the dynamics just depends on mN(σ).

• the induced measure on ΓN : QN(m) ≡ µN(mN(σ) = m) = e−NβFN (m)

ZN

where FN(m) is the free energy.

• The critical points of FN(m) satisfy m∗ = tanh(β(h + m∗)).
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Energy landscape and metastability

A simple example: h = constant

Remark 1. When h = constant, the induced process m(σ(t)) is Markovian.

In particular, it is a nearest-neighbors RW on ΓN reversible w.r.t. QN . The

analysis of the metastability can then be reduced to the macroscopic setting.
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Energy landscape and metastability

General case: hi’s i.i.d. continuous random variables

The Hamiltonian does not depend only on m(σ), but:

• Using sharp large deviation estimates, we get

QN(m) = KN(m)
e−NβFN(m)

ZN
(1 + o(1)) ,

where FN(m) is the free energy.

• Asymptotically and Ph-a.s, the critical points of FN are solutions of

m∗ = Eh tanh(β(m∗ + hi))
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Energy landscape and metastability

General case: hi’s i.i.d. continuous random variables

-1.0 -0.5 0.5 1.0

-0.482

-0.481

-0.480

-0.479

-0.478

From now on, we will assume β and the distribution of the fields {hi}
N
i=1, such

that there exist at least two minima of FN(m).
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Metastable time: results

Main question

• Let m∗ be a local minimum and consider the set of “deeper” local minima

M = {m : FN(m) ≤ FN(m∗)}.

• For any A ⊂ ΓN , let S[A] = {σ ∈ SN : mN(σ) ∈ A}.

Then define the metastable exit time:

τS[M ] = inf{t > 0|σ(t) ∈ S[M ]} .

What can we say about EστS[M ]for σ ∈ S[m∗]?
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Metastable time: results

Example of energy landscape

ΓN

FN(m)

m∗ M

z∗

ℓ
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Metastable time: results

Example of energy landscape

Ω

ΓN

FN(m)

m∗ M

z∗

ℓ

σ(0) σ(τS[M ])

S[m∗]
S[M ]
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Metastable time: results

Mean metastable time

Following the potential theory approach:

THM 1. [B., Bovier, Ioffe] Let m∗ be a local minimum of FN and let

z∗ be the minimax between m∗ from M . Then, Ph-a.s.,

EντS[M ] = c(m∗, z∗) eβN(FN (z∗)−FN (m∗)) (1 + o(1)) ,

where ν is a probability measure on S[m∗] and c(m∗, z∗) is the prefactor (explicit

formula).
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Preliminary tools

Potential theory approach

Preliminary tools:

A, B ⊂ {−1, 1}N , A ∩ B = ∅;

L = P − 1 generator of the dynamics

Equilibrium potential, hA,B : {−1, 1}N 7→ R, is the solution of

Dirichlet problem











(LhA,B)(σ) = 0 if σ 6∈ A ∪ B

hA,B(σ) = 1 if σ ∈ A

hA,B(σ) = 0 if σ ∈ B

Probabilistic interpretation: if σ 6∈ A ∪ B then hA,B(σ) = Pσ[τA < τB]

=⇒ formula for the mean metastable time from A to B, i.e.
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Preliminary tools

for a suitable probability measure ν on A (last exit measure):

EντB ≡
∑

σ∈A ν(σ)EστB = 1
cap(A,B)µN(hA,B)

where cap(A, B) is the capacity of the capacitor A, B.
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Preliminary tools

for a suitable probability measure ν on A (last exit measure):

EντB ≡
∑

σ∈A ν(σ)EστB = 1
cap(A,B)µN(hA,B)

where cap(A, B) is the capacity of the capacitor A, B.

More explicitly:

ν(σ) =
µ(σ)Pσ[τB < τA]

cap(A,B)
; cap(A, B) =

∑

σ∈A

µ(σ)Pσ[τB < τA]
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Preliminary tools

for a suitable probability measure ν on A (last exit measure):

EντB ≡
∑

σ∈A ν(σ)EστB = 1
cap(A,B)µN(hA,B)

where cap(A, B) is the capacity of the capacitor A, B.

More explicitly:

ν(σ) =
µ(σ)Pσ[τB < τA]

cap(A,B)
; cap(A, B) =

∑

σ∈A

µ(σ)Pσ[τB < τA]

Thus we need

• precise control of capacities.

• some rough control of the equilibrium potential.
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Two variational principles for capacities

Variational principle I

Let Φ(f) be the Dirichlet form of f associated to L, i.e Φ(f) = 〈Lf, f〉µN
.

By the Dirichlet principle,

cap(A, B) = inf
h∈HA,B

Φ(h) ,

and the unique minimizer is given by the harmonic function hA,B.

Any test function in HA,B provides an upper bound on capacities

−→ the goal is to find an approximated harmonic function.
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Two variational principles for capacities

Variational principle II

Let f be a non-negative cycle free unit flow from A to B, and P
f be the law on

paths X : A → B induced by a stopped Markov chain driven by f .

Let X = (a0, a1, . . . , a|X |).

By the variational principle due to Berman and Konsowa [1990],

cap(A, B) = sup
f∈UA,B

E
f





|X|−1
∑

ℓ=0

f(aℓ, aℓ+1)

µ(aℓ)p(aℓ, aℓ+1)





−1

,

and the maximizer is given by the harmonic flow.

Any flow in UA,B provides a lower bound on capacities

−→ the goal is to find an approximated harmonic flow.
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Application to the RFCW model

RFCW model: Coarse graining

• Ik, k ∈ {1, . . . , n}: partition of the support of h.

• Λk = {i ∈ {1, . . . , N} : hi ∈ Ik}: random partition of the set {1, . . . , N}.

Order parameters: mk(σ) = 1
N

∑

i∈Λk
σi , m(σ) = (mk(σ))n

k=1
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Application to the RFCW model

RFCW model: Coarse graining

• Ik, k ∈ {1, . . . , n}: partition of the support of h.

• Λk = {i ∈ {1, . . . , N} : hi ∈ Ik}: random partition of the set {1, . . . , N}.

Order parameters: mk(σ) = 1
N

∑

i∈Λk
σi , m(σ) = (mk(σ))n

k=1

Example:

.

−
−

−
−−

−
++

+ +

Λ1 Λ2

Λ3

Λ4

N = 10, n = 4

m(σ) = (−1
5,−

1
10,

1
10, 0)

m(σ) =
∑n

i=1 mi(σ) = −1
5
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Application to the RFCW model

=⇒ Rewrite the Hamiltonian as

HN(σ) = −NE(m(σ)) +
n

∑

k=1

∑

i∈Λk

σih̃i
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Application to the RFCW model

=⇒ Rewrite the Hamiltonian as

HN(σ) = −NE(m(σ)) +
n

∑

k=1

∑

i∈Λk

σih̃i

• E(m) = 1
2 (

∑n
k=1 mk)

2
+

∑n
k=1 h̄kmk
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Application to the RFCW model

=⇒ Rewrite the Hamiltonian as

HN(σ) = −NE(m(σ)) +
n

∑
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∑

i∈Λk

σih̃i

• E(m) = 1
2 (
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+
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Application to the RFCW model

=⇒ Rewrite the Hamiltonian as

HN(σ) = −NE(m(σ)) +
n

∑

k=1

∑

i∈Λk

σih̃i

• E(m) = 1
2 (

∑n
k=1 mk)

2
+

∑n
k=1 h̄kmk

• h̃i = hi − h̄k, i ∈ Λk. Note |h̃i| ≤ c/n ≡ ǫ
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Application to the RFCW model

=⇒ Rewrite the Hamiltonian as

HN(σ) = −NE(m(σ)) +
n

∑

k=1

∑

i∈Λk

σih̃i

• E(m) = 1
2 (

∑n
k=1 mk)

2
+

∑n
k=1 h̄kmk

• h̃i = hi − h̄k, i ∈ Λk. Note |h̃i| ≤ c/n ≡ ǫ

Strategy: Analyze the metastable behavior of the model as a perturbation of the

model: HN(σ) = −NE(m(σ)).
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Application to the RFCW model

In conclusion:

Let A = S[m∗] and B = S[M ]. Then:

• Ph-a.s. and for every fixed n ∈ N, it holds

cap(A, B) = K(z∗, n)e−βNFN (z∗)

ZN
(1 + O(ǫ))

• Using super-harmonic functions techniques, we get

µN(hA,B) = K(m∗)e−βNFN (m∗)

ZN
(1 + o(1))

Altogether, taking n large enough, we get

EντB = K(m∗, z∗) eβN(FN(z∗)−FN (m∗))(1 + o(1))
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Heuristics and results

From average to pointwise estimates

Questions:

• Does the metastable time really depend on the last exit measure ν?

• Under which conditions can we deduce pointwise estimates?

• Can we say something about the distribution?
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Heuristics and results

From average to pointwise estimates

Questions:

• Does the metastable time really depend on the last exit measure ν?

• Under which conditions can we deduce pointwise estimates?

• Can we say something about the distribution?

Previous results:

(1) P. Mathieu, P. Picco (JSP, 1998) [ binary distribution]

(2) A. Bovier, M. Eckhoff, V. Gayrard, M. Klein (PTRF, 2001) [discrete finite distribution]

(3) A. Bovier, F. Manzo (JSP, 2002) [ Ising model in the low-temperature limit]
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Heuristics and results

Heuristics:

The time spent in the starting well before reaching B is much larger then the

mixing time of the dynamics conditioned to stay in the well. Thus we infer

EστB ∼ EντB , ∀σ ∈ A

After the system is mixed, the return times to A are i.i.d. random variables, and

the number of returns to A is geometric. Provided that the mixing time is small

enough respect to EντB , the metastable time is expected to be exponential.

A Bσ σ(τB)

Ω
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Heuristics and results

Main result

Consider the RFCW model with continuous random fields.

With the same notation introduced before, it holds the following:

THM 2. [BBI, 2008] Ph-a.s., for all n ≥ n0 and for all σ, η ∈ S[m∗],

EστS[M ] = EητS[M ](1 + o(1)).

In particular, for all σ ∈ S[m∗], EστS[M ] = EντS[M ](1 + o(1))
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Heuristics and results

Consequences

• Sharp estimates on the metastable time between any two minima.

Corollary 1. Let m1 and m2 be two minima of FN(m), let z∗ be the

minmax between them. Assume FN(m1) ≥ FN(m2).

Then Ph-a.s., for all σ ∈ S[m1],

EστS[m2] = c(m1,m2)e
βN(FN(m1)−FN(m2))(1 + o(1))
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Heuristics and results

Consequences

• Sharp estimates on the metastable time between any two minima.

Corollary 1. Let m1 and m2 be two minima of FN(m), let z∗ be the

minmax between them. Assume FN(m1) ≥ FN(m2).

Then Ph-a.s., for all σ ∈ S[m1],

EστS[m2] = c(m1,m2)e
βN(FN(m1)−FN(m2))(1 + o(1)).

• Distribution of the metastable time: work in progress.
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Coupling in potential wells

Coupling in potential wells

D.A. Levin, M. Luczak, Y. Peres (arXiv:0712.0790).

The authors use coupling techniques to estimate the mixing time of the restricted

dynamics in the standard CW model (for h = 0 and β > 1).
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Coupling in potential wells

Coupling in potential wells

D.A. Levin, M. Luczak, Y. Peres (arXiv:0712.0790).

The authors use coupling techniques to estimate the mixing time of the restricted

dynamics in the standard CW model (for h = 0 and β > 1).

Generalization to the RFCW model. A simple case

Assume that fields take only finitely many values, i.e. hi ∈ A = {a1, . . . , an}.

Define as before m(σ) = (m1(σ), . . . ,mn(σ)) and recall that

HN(σ) = HN(m(σ)) = −(
n

∑

i=1

mi(σ))2 −
n

∑

i=1

aimi

=⇒ the microscopic dynamics only depends on the mesoscopic variables m.
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Coupling in potential wells

Construction of the coupling: a simple case

Let σ, η ∈ S[m∗] and assume that at time t, m(σ(t)) = m(η(t)).
PSfrag replacements

σ(t)

η(t)

Λ1 Λ2

+ =
− =
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Coupling in potential wells

Construction of the coupling: a simple case

Let σ, η ∈ S[m∗] and assume that at time t, m(σ(t)) = m(η(t)).

σ(t)

η(t)

Λ1 Λ2

+ =
− =i

1/N

Choose a particle i u.a.r. (with prob= 1/N ).
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Coupling in potential wells

Construction of the coupling: a simple case

Let σ, η ∈ S[m∗] and assume that at time t, m(σ(t)) = m(η(t)).

σ(t + 1)

η(t + 1)

Λ1 Λ2

+ =
− =i

∈ { , }

If σi(t) = ηi(t) =⇒ σi(t + 1) = ηi(t + 1) with probability one.
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Coupling in potential wells

Construction of the coupling: a simple case

Let σ, η ∈ S[m∗] and assume that at time t, m(σ(t)) = m(η(t)).

replacements

σ(t + 1)

η(t + 1)

Λ1 Λ2

+ =
− =

For example, update to σi(t + 1) = ηi(t + 1) = − with probability

p(σ(t), σi,−(t)) = p(η(t), ηi,−(t))

Second Workshop on Random Dynamical Systems, Bielefeld, 17-19 Nov. 2008 28



Coupling in potential wells

Construction of the coupling: a simple case

Let σ, η ∈ S[m∗] and assume that at time t, m(σ(t)) = m(η(t)).

σ(t)

η(t)

Λ1 Λ2

+ =
− =i

1/N

If σi(t) 6= ηi(t) =⇒
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Coupling in potential wells

Construction of the coupling: a simple case

Let σ, η ∈ S[m∗] and assume that at time t, m(σ(t)) = m(η(t)).

σ(t)

η(t)

Λ1 Λ2

+ =
− =i

1/N

j

1/|Λi
2|

Choose, u.a.r, a particle j s.t. i, j ∈ Λk and σi(t) = ηj(t).
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Coupling in potential wells

Construction of the coupling: a simple case

Let σ, η ∈ S[m∗] and assume that at time t, m(σ(t)) = m(η(t)).

σ(t + 1)

η(t + 1)

Λ1 Λ2

+ =
− =

∈ { , }

i j

Then let σi(t + 1) = ηj(t + 1) with probability one.
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Coupling in potential wells

Construction of the coupling: a simple case

Let σ, η ∈ S[m∗] and assume that at time t, m(σ(t)) = m(η(t)).

σ(t + 1)

η(t + 1)

Λ1 Λ2

+ =
− =i j

For example, update to σi(t + 1) = ηj(t + 1) = + with probability

p(σ(t), σi,+(t)) = p(η(t), ηj,+(t))
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Coupling in potential wells

Notice that along the coupling, d(σ(t), η(t)) never increases.

In particular

E(d(σ(t), η(t))) ≤ Ne−ct/N

which implies that the processes σ(t) and η(t) couple in time of order N log N .

Idea: Extend this coupling to the general case (continuous random fields) using

the many returns of the dynamics to S[m∗] before hitting S[M ].
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Coupling in potential wells

Extended coupling

• Let hi’s i.i.d continuous variables.

• Fix n ∈ N large enough, and define m(σ) as usually.

Notice that the dynamics depends on the specific choice of i ∈ Λk where the

configuration is updated, and not only from Λk as before.

On the other hand, the variation of the hi’s in any Λk is of order ǫ = c/n.

Then for all σ, η ∈ S[m] and i, j ∈ Λk,

|p(σ, σi) − p(η, ηj)| ≤ ǫ
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Coupling in potential wells

Extended coupling

• Let hi’s i.i.d continuous variables.

• Fix n ∈ N large enough, and define m(σ) as usually.

Notice that the dynamics depends on the specific choice of i ∈ Λk where the

configuration is updated, and not only from Λk as before.

On the other hand, the variation of the hi’s in any Λk is of order ǫ = c/n.

Then for all σ, η ∈ S[m] and i, j ∈ Λk,

|p(σ, σi) − p(η, ηj)| ≤ ǫ

• Let Vi, i ∈ N, i.i.d. random variables, s.t.

P(Vi = 1) = 1 − P(Vi = 0) = 1 − ǫ.
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Coupling in potential wells

Construction of the coupling: general case

Let σ, η ∈ S[m∗] and proceed as before, unless σi(t) 6= ηi(t) =⇒
choose a particle j s.t. i, j ∈ Λk and σi(t) = ηj(t), and toss a coin corresponding

to a variable Vi(t).

• if Vi(t) = 1, then let σi(t + 1) = ηj(t + 1) with probability one.

• if Vi(t) = 0, then let σi(t + 1) 6= ηj(t + 1) with probability one (suitable choice of

rates).

Warning: it may happens that m(σ(t)) 6= m(η(t)) for some t.
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Coupling in potential wells

How to proceed?

• Stop the coupling and let the dynamics σ(t) run until the first hitting time in

S[m∗].

• Make a second attempt of coupling between σ(τS[m∗]) and η, proceeding as

before.

• Do this iteratively until the stopping time

T := τσ
S[M ] ∧ τ

η

S[M ]

Second Workshop on Random Dynamical Systems, Bielefeld, 17-19 Nov. 2008 36



Coupling in potential wells

How to proceed?

.

S[m∗] S[M ]

σ η
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Coupling in potential wells

How to proceed?

.

S[m∗] S[M ]

σ η
m(σ(t)) 6= m(η(t))
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Coupling in potential wells

How to proceed?

.

S[m∗] S[M ]

σ η

σ(τS[m∗])
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Coupling in potential wells

How to proceed?

.

S[m∗] S[M ]

σ η

σ(τS[m∗])

σ(t) = η(t)
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Coupling in potential wells

Good and bad events

• If τcoup ≪ T =⇒ EστS[M ] = EητS[M ](1 + o(1))

• The probability of the event E = {τcoup ≪ T} is estimated from below by

the probability of an event F ⊂ E.

• Due to the particular construction of the coupling, F is defined as intersection

of independent events. Their probability can then be easily computed.

• For all n large enough, P(E)
N↑∞
−→ 1. This concludes the proof.
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Thank you for your attention!
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