

2nd Workshop on Random Dynamical Systems, Bielefeld

Stabilization due to Additive Noise

Dirk Blömker

Introduction

Numerics

Burgers Eq. Linear Op. Noise

Amplitude Eq.

formal theorem

Stabilization

small noise degenerate noise formal theorem

More Noise

Summary

Stabilization due to Additive Noise

Dirk Blömker

November 17, 2008

joint work with : Greg Pavliotis (Imperial College) Wael Wagih M. Elhaddad (Augsburg)

(日)、

Stabilization due to Noise

Stabilization due to Additive Noise

Dirk Blömker

Introduction

Numerics

Burgers Eq. Linear Op. Noise

Amplitude Eq.

formal theorem

Stabilization

small noise degenerate noise formal theorem

More Noise

Summary

Well known phenomenon due to Multiplicative Noise.

- 1. By Itô noise, due to Itô-Stratonovic correction, or Stratonovic noise due to averaging over stable and unstable directions
 - For SDE: [Arnold, Crauel, Wihstutz '83], [Pardoux, Wihstutz '88 '92].....
 - For SPDE: [Kwiecinska '99],[Caraballo, Mao et.al. '01], [Cerrai '05], [Caraballo, Kloeden, Schmallfuß '06]....

ヘロト 人間ト 人注ト 人注ト

2. By Rotation: [Baxendale et.al.'93], [Crauel et.al.'07].....

Consider here:

- Degenerate additive noise
- Effect of noise transported by the nonlinearity
- Stabilization effect on dominating behaviour

Introduction

Stabilization due to Additive Noise

Dirk Blömker

Introduction

Numerics

Burgers Eq. Linear Op. Noise

Amplitude Eq. formal theorem

Stabilization

small noise degenerate noise formal theorem

More Noise

Summary

- SPDEs of Burgers-type near a change of stability
- Dominant modes evolve on a slow time-scale
- Stable modes decay on a fast time-scale
- Evolution of dominant modes given by Amplitude eq.
- Formal derivation well known [Cross, Hohenberg, '93]

AIM:

- Rigorous error estimates for Amplitude equations
- Understand interplay between noise and nonlinearity

イロト 不得 トイヨト イヨト

-

Examples

Stabilization due to Additive Noise

Dirk Blömker

Introduction

Numerics

Burgers Eq. Linear Op.

Noise

Amplitude Eq.

formal theorem

Stabilization

small noise degenerate noise formal theorem

More Noise

Summary

1. Burgers equation

$$\partial_t u = \partial_x^2 u + \nu u + u \partial_x u + \sigma \xi$$

2. Surface Growth

$$\partial_t h = -\partial_x^4 h - \nu \partial_x^2 h - \partial_x^2 |\partial_x h|^2 + \sigma \xi$$

(日)、

э

Rayleigh Bénard Convection
 3D-Navier-Stokes coupled to a heat equation

Some Related Multiscale Results

Stabilization due to Additive Noise

Dirk Blömker

Introduction

Numerics

Burgers Eq. Linear Op. Noise

Amplitude Eq.

formal theorem

Stabilization

small noise degenerate noise formal theorem

More Noise

Summary

1. [Majda, Timofeyev, Vanden-Eijnden '01, '02, '03]

- truncated Burgers system
- formal expansion
- rigorous via Kurtz theorem
- no error estimates

2. [Roberts '03]

- formal expansion using computer algebra
- numerical examples for stabilization
- no error estimates

3. [A. Hutt '08]

- Similar effects for different models
- formal calculation and numerical results

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

-

Numerical Example

Stabilization due to Additive Noise

Dirk Blömker

Introduction

Numerics

Burgers Eq. Linear Op. Noise

Amplitude Eq.

formal theorem

Stabilization

small noise degenerate noise formal theorem

More Noise

Summary

Example: Burgers-type equation

$$\partial_t u = (\partial_x^2 + 1)u + \frac{1}{100}u + u\partial_x u + \frac{\sigma}{10}\xi$$

(B)

-

•
$$u(t,x) \in \mathbb{R}$$
, $t > 0$, $x \in [0,\pi]$

Dirichlet boundary conditions (u(t, 0) = u(t, π) = 0))
 ξ(t, x) = ∂_tβ(t) sin(2x) − highly degenerate noise

・ロト ・ 雪 ト ・ ヨ ト

Stabilization due to Additive Noise Dirk Blömker

Introduction Numerics

Burgers Eq. Linear Op. Noise

formal theorem Stabilization

small noise

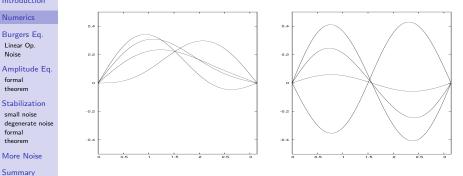
formal

theorem More Noise

Summary

Snapshots of solutions

u(t,x) over x for different values of t



 $\sigma = 2$

 $\sigma = 10$

(日)、 э

First Fouriermode

Stabilization due to Additive Noise

Dirk Blömker

Introduction

Numerics Burgers Eq.

Linear Op. Noise

Amplitude Eq.

theorem

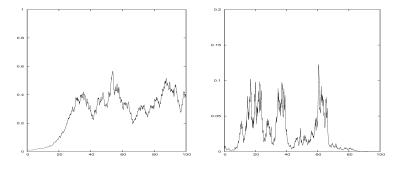
Stabilization

small noise degenerate noise formal theorem

More Noise

Summary

Stabilization of first mode due to larger noise.



 $\sigma = 2$

 $\sigma = 10$

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 臣 … のへで

Second Fouriermode

Dirk Blömker

Introduction

Numerics

Burgers Eq. Linear Op. Noise

Amplitude Eq.

formal theorem

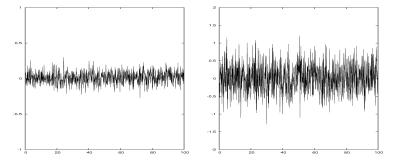
Stabilization

small noise degenerate noise formal theorem

More Noise

Summary

There is only noise on the second mode.



 $\sigma = 2$

 $\sigma = 10$

◆□ > ◆□ > ◆三 > ◆三 > 三 のへの

Numerical Observations

Stabilization due to Additive Noise

Dirk Blömker

Introduction

Numerics

Burgers Eq. Linear Op. Noise

Amplitude Eq.

formal theorem

Stabilization

small noise degenerate noise formal theorem

More Noise

Summary

Observation:

 0 is is stabilized (sin destabilized) by large noise (see [Roberts '03])

イロト 不得 トイヨト イヨト

э

► Large noise acting on sin(2x)

An Equation of Burgers type

Stabilization due to Additive Noise

Dirk Blömker

Introduction

Numerics

Burgers Eq.

Linear Op. Noise

Amplitude Eq

formal theorem

Stabilization

small noise degenerate noise formal theorem

More Noise

Summary

For simplicity only a scalar Burgers equation in this talk.

Equation of Burgers type

$$\partial_t u = (\partial_x^2 + 1)u + \nu \epsilon^2 u + \frac{1}{2} \partial_x u^2 + \epsilon^2 \xi$$
 (B)

•
$$u(t,x) \in \mathbb{R}, t > 0, x \in [0,\pi]$$

Dirichlet boundary conditions

$$(u(t,0) = u(t,\pi) = 0))$$

イロト 不得 トイヨト イヨト

- $\nu \epsilon^2 u$ linear (in)stability
- $|
 u\epsilon^2| \ll 1$ distance from bifurcation
- $\xi(t, x)$ Gaussian white noise

The Linear Operator

Stabilization due to Additive Noise

Dirk Blömker

Introduction

Numerics

Burgers Eq. Linear Op. Noise

Amplitude Eq. formal theorem

Stabilization

small noise degenerate noise formal theorem

More Noise

Summary

The Linear Operator:

$$L=-\partial_x^2-1$$
 Dirichlet b. c. on $[0,\pi]$

- Orthonormal system generated by sin(kx), k = 1, 2, ...
- Eigenvalues: $\lambda_k = k^2 1$, k = 1, 2, ...

$$0 = \lambda_1 < \omega < \lambda_2 < \ldots < \lambda_k \to \infty$$

The dominant mode

 $\mathcal{N} = \operatorname{span}\{\operatorname{sin}\}$ – the kernel of L

The Noise

Stabilization due to Additive Noise

Dirk Blömker

Introduction

Numerics

Burgers Eq. Linear Op. Noise

Amplitude Eq. formal theorem

Stabilization

small noise degenerate noise formal theorem

More Noise

Summary

Two cases of noise:

► First:

White noise acting directly on ${\cal N}$

Later:

Degenerate noise not acting on $\ensuremath{\mathcal{N}}$

イロト 不得 トイヨト イヨト

э

Stabilization due to Additive Noise Dirk Blömker

Wiener Process

$$\partial_t u = -Lu + \nu \epsilon^2 u + \frac{1}{2} \partial_x u^2 + \epsilon^2 \xi$$
 (B)

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э

Noise: $\xi(t, x) = \partial_t W(t, x)$

$$W(t,x) = \sum_{k=1}^{\infty} \sigma_k \beta_k(t) \sin(kx)$$

Amplitude Eq. formal theorem

Numerics Burgers Eq. Linear Op. Noise

Stabilization

small noise degenerate noise formal theorem

More Noise

Summary

$$\sigma_k \in \mathbb{R}, \quad |\sigma_k| \leq C$$

• $\{\beta_k\}_{k\in\mathbb{N}}$ i.i.d. Brownian motions

Remark: For space-time white noise $\sigma_k = 1 \ \forall k$.

Question:

How does noise affects the dynamics of dominant modes in \mathcal{N} ?

Stabilization due to Additive Noise Dirk Blömker

Introduction Numerics Burgers Eq. Linear Op.

Noise Amplitude Eq.

formal theorem Stabilization small noise degenerate noise formal theorem

The Amplitude Equation

$$\partial_t u = -Lu + \nu \epsilon^2 u + \frac{1}{2} \partial_x u^2 + \epsilon^2 \partial_t W \tag{B}$$

Ansatz:

$$u(t,x) = \epsilon a(\epsilon^2 t) \sin(x) + \mathcal{O}(\epsilon^2)$$

Result: Amplitude Equation

$$\partial_T a = \nu a - \frac{1}{12}a^3 + \partial_T \beta,$$
 (A)

where
$$\beta(T) = \epsilon \sigma_1 \beta_1(\epsilon^{-2}T)$$
 rescaled noise in \mathcal{N} .

Interesting fact:

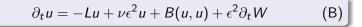
More Noise Summary

Nonlinearity $B(u, v) = \frac{1}{2}\partial_x(uv)$ does not map \mathcal{N} to \mathcal{N} ! Higher order modes are involved!

Stabilization

due to Additive Noise Dirk Blömker

Formal Calculation



Ansatz:

Introduction

Burgers Eq. Linear Op. Noise

Amplitude Eq. formal theorem

Stabilization

small noise degenerate noise formal theorem

More Noise

Summary

$$u(t,x) = \epsilon \underbrace{A(\epsilon^2 t)}_{\in \mathcal{N}} + \epsilon^2 \underbrace{\psi(\epsilon^2 t)}_{\perp \mathcal{N}} + \dots$$

Thus $(T = \epsilon^2 t, P_c \text{ Projection onto } \mathcal{N}, P_s = I - P_c)$ as $P_c B(A, A) = 0$

 $\partial_T A = \nu A + 2P_c B(A, \psi) + \partial_T P_c \tilde{W} + \mathcal{O}(\epsilon)$

and

$$\epsilon^{2} \partial_{T} \psi = -L\psi + P_{s} B(A, A) + \epsilon \partial_{T} P_{s} \tilde{W} + \mathcal{O}(\epsilon) ,$$

where $\tilde{W}(T) = \epsilon W(\epsilon^{-2}T).$

Formal Calculation II

Stabilization due to Additive Noise

Dirk Blömker

Introduction

Numerics

Burgers Eq. Linear Op. Noise

Amplitude Eq.

formal theorem

Stabilization

small noise degenerate noise formal theorem

More Noise

Summary

Neglecting all small terms leads to

$$\partial_T A = \nu A + 2P_c B(A, \psi) + \partial_T P_c \tilde{W}$$

with

$$\psi = L^{-1} P_s B(A, A) \; .$$

Using $A(T) = a(T) \sin t$

$$\partial_T a = \nu a - \frac{1}{12}a^3 + \partial_T \beta,$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

(A)

э

where $-\frac{1}{12} = 2P_c B(\sin, L^{-1}P_s B(\sin, \sin)).$

The Theorem

$\partial_t u = -Lu + \nu \epsilon^2 u + \frac{1}{2} \partial_x u^2 + \epsilon^2 \partial_t W$ (B) $\partial_T a = \nu a - \frac{1}{12} a^3 + \partial_T \beta$ (A)

Theorem – Approximation [B. '07] [B., Elhaddad '08]

u is solution of (B) – *a* is solution of (A) $u(0) = \epsilon a(0) \sin + \epsilon^2 \psi_0$ with $\psi_0 \perp \sin$ and $a(0), \psi_0 = \mathcal{O}(1)$.

Then for κ , T_0 , p > 0 there is C > 0 such that

$$\mathbb{P}\Big(\sup_{t\in[0,T_0\epsilon^{-2}]}\|u(t)-\epsilon a(t\epsilon^2)\sin\|>\epsilon^{2-\kappa}\Big)< C\epsilon^p.$$

Stabilization due to Additive Noise

Dirk Blömker

Introduction

Numerics

Burgers Eq. Linear Op. Noise

Amplitude Eq. formal theorem

Stabilization

small noise degenerate noise formal theorem

More Noise

Summary

Impact of the Noise

Stabilization due to Additive Noise

Dirk Blömker

Introduction

Numerics

Burgers Eq. Linear Op. Noise

Amplitude Eq. formal theorem

Stabilization

small noise degenerate noise formal theorem

More Noise

Summary

Recall:

Ν

Dominant modes driven only by noise acting on $\ensuremath{\mathcal{N}}.$

lo impact of
$$\beta_2, \ \beta_3, \ \dots$$

$$\partial_T a = \nu a - \frac{1}{12}a^3 + \partial_T \beta$$
, (A)

・ロト ・ 四ト ・ ヨト ・ ヨト

э

where
$$\beta(T) = \epsilon \sigma_1 \beta_1(\epsilon^{-2}T)$$
 rescaled noise in \mathcal{N} .

Stabilization

Stabilization due to Additive Noise

Dirk Blömker

Introduction

Numerics

Burgers Eq. Linear Op. Noise

Amplitude Eq.

formal theorem

Stabilization

small noise degenerate noise formal theorem

More Noise

Summary

Can degenerate noise have an effect on the dominant mode?

Does this lead to the Stabilization?

イロト 不得 トイヨト イヨト

э

Stabilisation due to Additive Noise - Setting

Stabilization due to Additive Noise

Dirk Blömker

Introduction

Numerics

Burgers Eq. Linear Op. Noise

Amplitude Eq. formal theorem

Stabilization

small noise degenerate noise formal theorem

More Noise

Summary

Assumption:

No noise on the dominant mode - highly degenerate noise

Question: How does noise interact with the nonlinearity?

$$\partial_t u = -Lu + \nu \epsilon^2 u + \frac{1}{2} \partial_x u^2 + \sigma_\epsilon \phi$$

- Dirichlet boundary conditions on [0, π]
- $\mathcal{N} = \text{span}\{\sin\}$ One dominating mode
- $\phi(t,x) = \partial_t \beta_2(t) \sin(2x)$ Noise only on 2nd mode

▲□▼▲□▼▲□▼▲□▼ □ ● ●

Previous Result

Stabilization due to Additive Noise

Dirk Blömker

Introduction

Numerics

Burgers Eq. Linear Op. Noise

Amplitude Eq.

theorem

Stabilization

small noise degenerate noise formal theorem

More Noise

Summary

Previous Approximation Result:

f
$$\sigma_{\epsilon} = \sigma \epsilon^2$$
, then for $t \in [0, T_0 \epsilon^{-2}]$
 $u(t) = \epsilon a(\epsilon^2 t) \sin + \mathcal{O}(\epsilon^2)$ and $\partial_T a = \nu a - \frac{1}{12}a^3$

No impact of Noise!

Need larger Noise!

Stabilisation due to Additive Noise - Result

Stabilization due to Additive Noise

Dirk Blömker

Introduction

Numerics

Burgers Eq. Linear Op. Noise

Amplitude Eq.

formal theorem

Stabilization

small noise degenerate noise formal theorem

More Noise

Summary

Consider larger noise (i.e.,
$$\sigma_\epsilon=\sigma\epsilon$$
)

$$\partial_t u = -Lu + \nu \epsilon^2 u + \frac{1}{2} \partial_x u^2 + \sigma \epsilon \phi$$
 (B2)

Amplitude Equation [DB, Hairer, Pavliotis, 07] $da = (\nu - \frac{\sigma^2}{88})adT - \frac{1}{12}a^3dT + \frac{\sigma}{6}a \circ d\tilde{\beta}_2 \qquad (A2)$ in Stratonovic sense, with $\tilde{\beta}_2(T) = \epsilon\beta_2(\epsilon^{-2}T)$.

- ► For $\nu \in (0, \sigma^2/88)$ Stabilisation of 0 \longleftrightarrow Destabilisation of sin
- ► Technical problem: $u(t) - \epsilon a(\epsilon^2 t) \sin \approx \frac{\epsilon^2}{\lambda_1} \underbrace{\partial_T \tilde{\beta}_2(T)}_{\downarrow\downarrow\downarrow} \sin(2 \cdot) + \mathcal{O}(\epsilon^2)$

white noise

▲□▼▲□▼▲□▼▲□▼ □ ● ●

Formal Motivation

Stabilization due to Additive Noise

Dirk Blömker

Introduction

Numerics

Burgers Eq. Linear Op. Noise

Amplitude Eq.

formal theorem

Stabilization

small noise degenerate noise formal theorem

More Noise

Summary

$$da = \left(\nu - \frac{\sigma^2}{88}\right) a dT - \frac{1}{12} a^3 dT + \frac{\sigma}{6} a \circ d\tilde{\beta}_2$$
(A2)

Stabilization effect

Itô to Stratonovic correction is $-\frac{\sigma^2}{72}a$ Where does the other term comes from?

Consider slow time: $(u(t) = \epsilon \psi(\epsilon^2 t))$

$$\partial_{T}\psi = -\epsilon^{-2}L\psi + \nu\psi + \epsilon^{-1}B(\psi,\psi) + \epsilon^{-1}\partial_{T}\tilde{\Phi}$$
 (B2')

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Formal Calculation

Stabilization due to Additive Noise

Dirk Blömker

Introduction Numerics

Burgers Eq. Linear Op. Noise

Amplitude Eq. formal

theorem Stabilization

small noise degenerate noise formal theorem

More Noise

Summary

$$\partial_{\mathcal{T}}\psi = -\epsilon^{-2}L\psi + \nu\psi + \epsilon^{-1}B(\psi,\psi) + \epsilon^{-1}\partial_{\mathcal{T}}\tilde{\Phi}_{2}$$

Ansatz with $\psi_k \in \operatorname{span}(\operatorname{sin}(kx))$:

$$\psi(T) = \psi_1(T) + \psi_2(T) + \epsilon \psi_3(T) + \mathcal{O}(\epsilon)$$

1st mode: (using $B_n(\psi_k, \psi_l) = 0$ for $n \notin \{|k - l|, k + l\}$)

$$\partial_T \psi_1 = \nu \psi_1 + 2\epsilon^{-1} B_1(\psi_2, \psi_1) + 2B_1(\psi_2, \psi_3) + \mathcal{O}(\epsilon)$$

2nd mode:
$$L\psi_2 = \epsilon B_2(\psi_1, \psi_1) + \epsilon \partial_T \tilde{\Phi}_2 + \mathcal{O}(\epsilon^2)$$

3rd mode: $L\psi_3 = 2B_3(\psi_2, \psi_1) + \mathcal{O}(\epsilon)$

New contribution to 1st mode:

$$4\epsilon^2 B_1(L^{-1}\partial_T\tilde{\Phi}_2, L^{-1}B_3(\partial_T\tilde{\Phi}_2, \psi_1))$$

(日) (同) (日) (日)

ж

Formal Motivation

Stabilization due to Additive Noise Dirk Blömker

Introduction

Numerics

Burgers Eq. Linear Op. Noise

Amplitude Eq.

formal theorem

Stabilization

small noise degenerate noise formal theorem

More Noise

Summary

New contribution to 1^{st} mode ($\psi_1 = a \sin$):

$$4\epsilon^2 B_1(L^{-1}\partial_T \tilde{\Phi}_2, L^{-1}B_3(\partial_T \tilde{\Phi}_2, \psi_1)) = c(\epsilon \partial_T \tilde{\beta}_2)^2 a$$

What is noise²?

Instead of
$$\epsilon \partial_T \tilde{\beta}_2$$
 we use $Z_{\epsilon}(T) = \epsilon^{-1} \int_0^T e^{-3(T-s)\epsilon^{-2}} d\tilde{\beta}_2(s)$.

Lemma [B,Hairer,Pavliotis '07] Averaging with error bounds

Some assumptions on Hölder-Quotients of a, then

$$\int_0^T a(s) Z_{\epsilon}(s)^2 ds = \frac{1}{6} \int_0^T a(s) ds + r_{\epsilon}(T)$$

where
$$\mathbb{E} \sup_{[0, T_0]} |r_{\epsilon}|^p \leq C_{T_0, \kappa, p} \epsilon^{\frac{p}{2} - \kappa}$$
.

Stabilisation due to Additive noise - Theorem

Stabilization due to Additive Noise

Dirk Blömker

Introduction

Numerics

Burgers Eq.

Linear Op. Noise

Amplitude Eq.

formal theorem

Stabilization

small noise degenerate noise formal theorem

More Noise

Summary

Theorem [B, Hairer, Pavliotis '07]

Let *u* be a continuous $H_0^1([0, \pi])$ -valued solution of (B2) with $u(0) = \epsilon a(0) \sin + \epsilon \psi_0$,

where $\psi_0 \perp \sin$ and $a(0), \psi_0 = \mathcal{O}(1)$.

Let a be a solution of (A2) and define

$$R(t) = e^{-Lt}\psi_0 + \sigma\left(\int_0^t e^{-3(t-s)}d\beta_2(s)\right)\sin(2\cdot),$$

then for all $\kappa, p, T_0 > 0$ there is a constant C such that

$$\mathbb{P}\Big(\sup_{t\in[0,T_0\epsilon^{-2}]}\|u(t)-\epsilon a(\epsilon^2 t)\sin-\epsilon R(t)\|_{H^1}>\epsilon^{3/2-\kappa}\Big)\leq C\epsilon^p.$$

More Noise - Near White Noise

Stabilization due to Additive Noise

Dirk Blömker

Introduction

Numerics

Burgers Eq. Linear Op. Noise

Amplitude Eq.

formal theorem

Stabilization

small noise degenerate noise formal theorem

More Noise

Summary

What about more noise?

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

3

More Noise – Near White Noise

Stabilization due to Additive Noise

Dirk Blömker

Introduction

Numerics

Burgers Eq. Linear Op. Noise

Amplitude Eq.

formal theorem

Stabilization

small noise degenerate noise formal theorem

More Noise

Summary

$$\partial_t u = -Lu + \nu \epsilon^2 u + \frac{1}{2} \partial_x u^2 + \epsilon \partial_t W$$
 (B3)

with $W(t,x) = \sum_{k=2}^{\infty} \beta_k(t) \sin(kx)$ (near white noise)

Amplitude Equation

There is a Brownian motion *B* and constants (ν_0 , σ_a , σ_b) s. t.

$$da = \nu_0 a \ dT - \frac{1}{12} a^3 dT + \sqrt{\sigma_a a^2 + \sigma_b} \ dB$$
. (A3)

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Multiplicative AND Additive Noise!

Additive noise arises from noise² times independent noise.

Relies on martingale approximation result (one-dimensional) Error estimate depends on estimate for quadratic variations.

More Noise – Near White Noise

Stabilization due to Additive Noise Dirk Blömker

Introduction

Burgers Eq.

Amplitude Eq. formal theorem Stabilization small noise degenerate noise formal theorem More Noise Summary

Linear Op. Noise

Numerics

Lemma [B, Hairer, Pavliotis, '07]

M(t) continuous martingale with quadratic variation fg arbitrary adapted increasing process with g(0) = 0. Then, with respect to an enlarged filtration, there exists a continuous martingale $\tilde{M}(t)$ with quadratic variation g such that, for every $\gamma < 1/2$ there exists a constant C with

$$\begin{split} \mathbb{E} \sup_{t\in[0,T]} |M(t)-\tilde{M}(t)|^p \\ &\leq C \big(\mathbb{E}g(T)^{2p}\big)^{1/4} \big(\mathbb{E} \sup_{t\in[0,T]} |f(t)-g(t)|^p\big)^\gamma \\ &+ C\mathbb{E} \sup_{t\in[0,T]} |f(t)-g(t)|^{p/2} \,. \end{split}$$

More Noise - Theorem

[B, Hairer, Pavliotis, 07

Stabilization due to Additive Noise

Dirk Blömker

Introduction

Numerics

Burgers Eq.

Linear Op. Noise

Amplitude Eq.

formal theorem

Stabilization

small noise degenerate noise formal theorem

More Noise

Summary

For $\alpha \in [0, \frac{1}{2})$ let u be a cont. $H_0^{\alpha}([0, \pi])$ -valued sol. of (B3) with $u(0) = \epsilon a(0) \sin + \epsilon \psi_0$, where $\psi_0 \perp \sin$ and $a(0), \psi_0 = \mathcal{O}(1)$. Let a be a solution of (A3) and define

$$R(t) = e^{-tL}\psi_0 + \int_0^t e^{-(t-s)L} dW(s) \; .$$

Then for all $\kappa, p, T_0 > 0$ there is a constant C > 0 such that

$$\mathbb{P}\left(\sup_{t\in[0,T_0\epsilon^{-2}]}\|u(t)-\epsilon a(\epsilon^2 t)\sin-\epsilon R(t)\|_{H^{\alpha}}>\epsilon^{\frac{5}{4}-\kappa}\right)\leq C\epsilon^p.$$

Summary

- Stabilization due to Additive Noise
- Dirk Blömker
- Introduction
- Numerics
- Burgers Eq. Linear Op. Noise
- Amplitude Eq.
- theorem

Stabilization

- small noise degenerate noise formal theorem
- More Noise
- Summary

- SPDEs of Burgers type near a change of stability
- Approximation of transient dynamics via amplitude equations
- Stabilisation due to additive noise
- Effect of noise on dominant modes
- Noise transported by nonlinearity between Fourier-modes

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

- Further results:
 - Attractivity results
 - Approximation of moments
 - Approximation of invariant measures