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Motivation

Metastability is a common phenomenon related to the dynamics of first order
phase transitions:

gas

T

P

liquid

Thermally activated transitions between comformations

If the parameters of a systems are changed rapidly across the line of a first
order phase transition, the system will persist for a long time in a metastable
state before transiting rapidly to the new equilibrium state under the influence of
random fluctuations.
The most standard example is the vapour-liquid transition from oversaturated
vapour through nucleation.
Surprisingly, this is still a rather unsettled problem. In this talk I will present some
partial results in a reasonable context.
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Kawasaki Dynamics

Conservative dynamics of lattice gas: Λβ ⊂ Zd, η ∈ {0, 1}Λβ.
Canonical ensemble

X
nβ

β ≡ {η :
∑

x∈Λβ

ηx = nβ}

Interaction:

HΛβ
(η) = −U

∑

x∼y∈Λβ

ηxηy

Dynamics: Change a configuration η to η′ at
rate

exp(−β[H(η′) − H(η)]+)

for all η′ obtainable from η via

P
(y)(x)

Λβ

exchange of the values of occupation numbers between two neighboring sites.
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Kawasaki Dynamics

This model mimics the behaviour of a gas in the canonical ensemble. We con-
sider the asymptotic situation where

. the temperature, β−1, is a small parameter,

. the box Λβ is exponentially large in β, and

. the density of the gas is ρβ = exp(−β∆).

We are interested in the regime when the canonical Gibbs measure is concen-
trated on configurations with a single solid droplet of particles in a sea of density
exp(−β2U ) � ρβ. We call this state �.

The metastable set, �, will be configurations that contain no large droplets of
particles. This occurs when ∆ ∈ (U, dU ). We call this the metastable regime.
We would be interested in understanding on how the system goes from an initial
configuration � to a final configuration �.
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Kawasaki Dynamics

Heuristically, the metastable behaviour is the result of the competition between
evaporation and adsorption:

.Small droplets typically evaporate before additional particles from the
reservoir attach to them;

.Large droplets grow rapidly by condensation;

.Nucleation is triggered by the first, random, appearance of a critical droplet.

In d = 2:

`c

`c−1

1
0

Λ

In d = 3:
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Kawasaki Dynamics

The analysis of the nucleation dynamics of this system requires three basic
ingredients:

.The analysis of the rather complex energy landscape and the connectivity
graph of the dynamics. In particular, one needs to identify the critical droplets
and the local structure of the graph around them.

.Understanding of the dynamical production of entropy, which in contrast to
earlier work on local Kawasaki dynamics is crucial.

.Probabilistic techniques that allow to derive from these information in nucle-
ation times and their probability distributions.
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Critical droplets (d = 2)

We need to identify the minimal saddle points that a process � → � must cross.
For this we need to take entropy into account:

Clustering k particles together generates a loss of en-
tropy of kβ∆. The maximal energy gain is achieved by
forming a square. The free energy of squares of side-
length ` has a maximum at `c =

[

2U
2U−∆

]

and is given by
Γ∗

2 = 2U (`c + 1) − (2U − ∆)(`c(`c − 1) + 2).
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Earlier results: dynamics in finite open boxes

First rigorous results on Kawasaki dyanamics concern a simplified model where:
.The volume Λ is finite and indepent of β;

.particles enter the box with rate exp(−∆β) at the
boundary of Λ, and leave there with rate 1;

This corresponds to approximating the dynamics
in a finite box by replacing the gas outside of it by
an ideal gas.

Λinteraction zone

reservoir

Here one is interested in the time the dynamics takes to move from an empty
box, � to a full box, �.

This problem was studied by den Hollander, Nardi, Olivieri, and Scoppola using
large deviation methods, and by B, den Hollander, and Nardi via potential theory.
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Results via Large Deviations

THEOREM. (den Hollander, Olivieri, and Scoppola 2000, den Hollander, Nardi,
Olivieri, Scoppola, 2002)

(i)
lim

β→∞
P�(e(Γ∗−δ)β < τ� < e(Γ∗+δ)β) = 1 ∀ δ > 0.

(ii)
lim

β→∞
P�(τC∗ < τ� | τ� < τ�) = 1.

Assertion (i) identifies the nucleation time to exponential order in β, with expo-
nent Γ∗. Assertion (ii) states that C∗ is a gate for the nucleation.
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Results via potential theory

Theorem:(B, den Hollander, Nardi, ’06)
(i) In d = 2,

E�τ� = K2 exp (βΓ∗
2)

(

1 + O(e−O(β))
)

and

K2 =
1

4πN(`c)

ln |Λ|

Λ

where
N(`c) =

1

3
(`c − 1)`2

c(`c + 1)

(ii) In d = 3,
E�τ� = K3 exp (βΓ∗

3)
(

1 + O(e−(β))
)

where
K3 =

1

M(`c, Λ)N
)

1

|Λ|

N : cardinality of D modulo shifts, and
M(`c, Λ): ∼ capacity of a `c-cube in Zd, (Λ ↑ Zd, and `c ↑ ∞).
Moreover,

P�[τ� > tE�τ�] → e−t
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Metastable and supercritical ensembles

Define

SL = {σ ∈ S: no box of size Lβ contains more than L particles in Λβ}
and
DM = {σ ∈ S: ∃ a full M × M -square in Λβ}
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Main theorem

Theorem. (B, den Hollander, Spitoni ’08) Let d = 2. Assume that
.U < ∆ < 2∆ and
. limβ→∞ |Λβ| ρβ = ∞, limβ→∞ |Λβ| e

−βΓ∗
2 = 0.

Then, for `c ≤ M ≤ 2`c − 1,

lim
β→∞

|Λβ|
4π

β∆
e−βΓ∗

2EνSL

(

τDM

)

=
1

N

Here:
.Γ∗

2:free energy of a critical droplet;
.N = 1

3
`2
c(`

2
c − 1): number of critical droplets with fixed lower left corner.

. 4π
β∆: escape probability of a particle from a critical droplet to a distance eβ∆.
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Elements of the proof: 1. Potential theory

Equilibrium potential for A ∩ B = ∅, −L = P − 1 generator, solution of

(LhB,A)(σ) = 0, σ 6∈ A ∪ B,

with boundary conditions hB,A(σ) = 1, if σ ∈ B, hB,A(σ) = 0, if σ ∈ A.

Equilibrium measure eB,A(σ) ≡ −(LhB,A)(σ).

Capacity:
∑

σ∈B µ(σ)eB,A(σ) ≡ cap(B, A).
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Elements of the proof: 1. Potential theory

Equilibrium potentials and equilibrium measures also determine the Green’s
function:

hB,A(σ) =
∑

σ′∈B

GSN\A(σ, σ′)eA,B(σ′)

Mean hitting times:
∑

σ∈B

µ(σ)eA,B(σ)EστA =
∑

σ′∈SN

µ(σ′)hA,B(σ′),

or
∑

σ∈B

νB,A(σ)EστA =
1

cap(B, A)

∑

σ′∈SN

µ(σ′)hB,A(σ′).

Thus we need

.precise control of capacities and some

. rough control of equilibrium potential.
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Computation of capacities

Variational principle for capacities offers a two convenient options for upper and
lower bounds:

Dirichlet principle:

cap(A, B) = inf
h∈HA,B

1

2

∑

x,y

Q(x)p(x, y)[h(x − h(y)]2

HA,B space of functions with boundary constraints; minimizer harmonic function.

Berman-Konsowa principle:

cap(A, B) = sup
f∈UA,B

Ef

[

∑

e∈X

f(e)

Q(ea)p(e)

]−1

UA,B space of unit flows; maximizer harmonic flow. Ef : law of a directed Markov
chain with transition probabilities proportional to to flow.
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Conclusion and Future Challenges

We have shown that it is possible to compute very precisely the nucleation times
in exponentially large volumes. In the regime we treat, there is typically at most
one droplet (and occasionally an extra particle) in the reaction zone.
This ignores all effects of competition between several droplets.

Major challenges:

.Detailled treatment of the growth phase of the supercritical droplet.

.Extension of the general theory to infinite volumes, allowing multiple nucle-
ation points.

.Extension to higher temperatures.
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