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1. Paleoclimatic time series

Lisiecki, Raymo, Paleoceanography 2005 concentration variation of 18O to 16O
taken from marine sediments at 57 globally distributed sites (e.g. Brunhes,
Matuyama, Jaramillo):

global average temperature time series

basic feature:

• from 0 to -1 Myr periodicity ∼ 100 000 y

• from -1 Myr to -1.8 Myr periodicity ∼ 44 000 y

• Milankovich cycles: axial tilt (41 000 y) and eccentricity (100 000 y)
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2. Dansgaard-Oeschger events

temperature indicators: 18O, 16O, methane, calcium etc.

GRIP ice core data: 20 abrupt changes in climate of Greenland during last ice
age (-91 000 to -11 000 y) (D/O events).
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• rapid warming by 5-10◦C within one decade

• subsequent slower cooling
within a few centuries

• fast return to stable cold ground state

simulations: Ganopolsky/Rahmstorf,

Potsdam Institute for Climate Impact

Research



SIMPLE DYNAMICAL MODELS INTERPRETING CLIMATE DATA AND THEIR METASTABILITY 3

2. Dansgaard-Oeschger events. Statistical analysis
Calcium signal from GRIP: about 80 000 samples for 80 000 y

typical waiting time between D/O events: 1000 – 2000 y,
waiting times between D/O events: multiples of ∼1470 years.

What triggers the transitions?

modeling by Langevin equation:

dX(t) = −U ′(t,X(t))dt+NOISE

U — multi well potential, wells correspond to climate states

P. Ditlevsen (Geophys. Res. Lett. 1999): power spectrum analysis of time
series:
NOISE contains strong α-stable component with α ≈ 1.75.
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3. p-Variation as test statistic
Which model of noise fits best with time series: parametrized test.

Ditlevsen’s analysis: power spectrum of residua of time series

Problem: Stationarity?

Aim: better test statistics than peaks of power spectrum.

Model assumption: with some U interpret data as

Xε(t) = x−
∫ t

0

U ′(Xε(s−))ds +εL(t)= Y ε(t)+Lε(t)

L Lévy process containing α-stable component with unknown α, Y ε of
bounded variation; test α

Idea: p-variation characteristic for fluctuation behavior of noise processes.

V p,nt (X) =
[nt]∑
i=1

|X(
i

n
)−X(

i− 1
n

)|p, V pt = lim
n→∞

V p,nt
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4. p-Variation and the Blumenthal-Getoor Index

L α-stable process with jump measure ν; then p-variation identified by

Blumenthal-Getoor index

βL = inf{s ≥ 0 :
∫
{|y|≤1}

|y|sν(dy) <∞}

γL = inf{p > 0 : V p1 (L) <∞}

Thm 1
L symmetric α-stable. Then

γL= βL= α.

Problem: How to read γL= α off the sequence (V p,nt (L))n∈N?

Calls for results about the asymptotic behavior of the sequence.
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5. The case α = 2: Brownian motion
For n ∈ N V p,n1 (W ) consists of n independent increments and

E(V p,n1 (W )) = n1−p2E(|W (1)|p)

Thm 2 (LLN type)

n−1+p
2V p,nt (W )→ tE(|W (1)|p) in probability,

Y of bounded variation. Then also

n−1+p
2V p,nt (W + Y )→ tE(|W (1)|p) in probability.

Thm 3 (CLT type)

(n
1
2[n−1+p

2V p,nt (W )− tE(|W (1)|p)])t≥0 = (n−
1
2+

p
2V p,nt (W )− n1

2tE(|W (1)|p))t≥0

→ ((var(|W (1)|p))1
2W̃ (t))t≥0

weakly with respect to the Skorokhod metric, and an independent Brownian
motion W̃ .
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6. The case α < 2

(Lit: Corcuera, Nualart, Wörner ’07; case p < α for LLN type, p < α
2 for CLT

type)

Problem: p < α
2 < 1 not satisfactory for paleo-climatic data! Beyond α

2 no CLT
type result available, no asymptotic normality, but asymptotically of different
type.

Thm 4 (LT type)
L α-stable with α ∈]0, 2[. Then

(V p,nt (L)−Bnt (α, p))t≥0 → L̃

weakly with respect to the Skorokhod metric, and an independent αp -stable
process L̃. Here

Bnt (α, p) =

 n1−pαtE(|L(1)|p), α
2 < p < α,

nt2E(sin((nt)−1|L(1)|p)), p = α,
0, α < p.

Same result with L+ Y instead of L if Y is of finite p-variation and α
2 < p < 1

or p > α.
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7. Methods of Proof

• show that (|L(n)− L(n− 1)|p)n∈N is in domain of attraction of αp -stable law;
use tails and characteristic functions

• use Aldous’ criterion for tightness of sequence (Xn)n∈N in Skorokhod
metric:

(i) lim
K→∞

sup
n∈N

P (sup
t≥N
|Xn(t)| > K) = 0 for all N ≥ 0,

(ii) lim
θ↓0

lim sup
n→∞

sup
S≤T≤S+θ

P (|Xn(T )−Xn(S)| ≥ ε) = 0, for all N ≥ 0, ε > 0

S, T stopping times

• adding processes of smaller variation: new notion of Lipschitz continuity on
large sets; comparison of small and large jumps
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8. The p-variation process of a diffusion

p-variation of diffusion perturbed by 1.5-stable Levy process

large jump

V_p^n(X)_t

n=10 000

p=1.0

p=1.5
p=2.2

t

with increasing p, big jumps get stronger weight, continuous parts less
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9. Test for α with real and simulated data
Thm 4: law of V 2α,n(X) converges to 1

2-stable law if data of time series X
have α-stable residuals

Kolmogorov-Smirnov statistics: distance between empirical law of V 2α,n(X)
and 1

2-stable law, as a function of α; minimum of curve: right α
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10. Simple system with Levy noise

consider SDE driven by α-stable Lévy noise of small intensity

Xε(t) = x−
∫ t

0

U ′(Xε(s−)) ds+εL(t), ε ↓ 0.

• L is α-stable symmetric Lévy process, α ∈ (0, 2)

multi well potential U
• n local minima mi

• n− 1 local maxima si
• U ′′(mi) > 0, U ′′(si) < 0

x

U(x)

m

m

s
s

1

1

n

n−1

τ 1

aim: investigate exit and transition rates, meta-stability.
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11. α-stable Lévy Processes
L Lévy process with characteristics (d, γ, ν) iff

E(exp(iuL(t))) = exp(t(−1
2
du2+iγu+

∫
R
[eiuy−1−iuy1{|y|≤1}]ν(dy))), u ∈ R, t ≥ 0,

ν measure on Borel sets in R with ν({0}) = 0,
∫
R[|y|2 ∧ 1]ν(dy) <∞.

L α-stable symmetric Lévy process if

E(exp(iuL(t))) = exp(−c(α)t|u|α), ν(dy) =
1

|y|α+1
dy, u, y ∈ R.
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12. Probabilistic approach of exit times

L(t) = ξε(t) + ηε(t)

νεξ = ν|[− 1√
ε
, 1√
ε
], νεη = ν|[− 1√

ε
, 1√
ε
]c

νεξ(R) =∞ νεη(R) =
2
α
εα/2 = βε

εξε sum of ε·BM and small jump (≤
√
ε) process

εηε big jump (≥
√
ε) compound Poisson process

big jumps at τk, inter-jump time Tk with exponential law

E(Tk) = (βε)−1 = α
2ε
−α/2
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13. The small and large jump parts
U with stable state 0, exit from [−b, a] for a, b > 0

between big jumps Xε is Y perturbed by εξε

Xε(t)= x−
∫ t
0
U ′(Xε(s−)) ds+ εξε(t), t ∈ [0, T1), Y (t)= x−

∫ t
0
U ′(Y (s)) ds

ε

−εγ

γ T1
R(  )ε

Yt

deviation P

(
sup
[0,T1)

|Xε(t)− Y (t)| ≥ εγ

2

)
≤ P

(
sup
[0,T1)

|εξε(t)| ≥ εγ

C

)
≤ e−1/εδ

relaxation T (x, ε) =
∫ x

εγ/2

dy

|U ′(y)|
≈
∫ x

δ

dy

|U ′(y)|
+
∫ δ

εγ/2

dy

My

≈ Const +
γ

M
| ln ε| ≤R(ε) = O(| ln ε|)

asymptotically, big jumps coincide with exits
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15. 14: comparison of Gaussian and Lévy dynamics
σ̂ = inf{t ≥ 0 : X̂ε(t) /∈ [−b, a]} σ = inf{t ≥ 0 : Xε(t) /∈ [−b, a]}

−b a

x

U(x)

h

h = U(−b) < U(a)

X̂ε(t) = x−
∫ t
0
U ′(X̂ε(t)) ds+ εW (t)

Thm 5 (Freidlin-Wentzell):

Px(e(2h−δ)/ε
2
< σ̂ < e(2h+δ)/ε

2
)→ 1

Kramers’ law (’40, Williams, Bovier et al.):

Exσ̂ ≈ ε
√
π

|U ′(−b)|
√
U ′′(0)

e2h/ε
2

Exponential law (Day, Bovier et al.)

Px( σ̂
Exσ̂

> u) ∼ exp (−u)

−b a

x

U(x)

h

h = U(−b) < U(a)

Xε(t) = x−
∫ t
0
U ′(Xε(s−)) ds+ εL(t)

Thm 6

Px( 1
εα−δ

< σ < 1
εα+δ)→ 1

Exσ ≈ 1
εα

( ∫
R\[−b,a]

dy
|y|1+α

)−1

Px( σ
Exσ

> u) ∼ exp (−u)
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14. Gaussian versus α-stable revisited
W Wiener process L symmetric α-stable Lévy process

Tail behavior

P (|W (1)| ≥ x) ∼ exp(−cx2) P (|L(1)| ≥ x) ∼ c 1
xα
, x→∞

X̂ε(t) = x−
∫ t
0
U ′(X̂ε(t)) ds+ εW (t) Xε(t) = x−

∫ t
0
U ′(Xε(s−)) ds+ εL(t)

σ̂ = inf{t ≥ 0 : X̂ε(t) /∈ [−b, a]} σ = inf{t ≥ 0 : Xε(t) /∈ [−b, a]}

−b a

x

U(x)

h

h = U(−b) < U(a)

Exσ̂ ≈ ε
√
π

|U ′(−b)|
√
U ′′(0)

exp(2h
ε2

)

−b a

x

U(x)

h

h = U(−b) < U(a)

Exσ ≈ 1
εα

( ∫
R\[−b,a]

dy
|y|1+α

)−1
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14. Gaussian versus α-stable revisited
Conjecture: make tails of Lévy process exponentially light to recover
Gaussian exit behavior.

Tail behavior

L Lévy process with jump measure having tails

P (|L(1)| ≥ x) ∼ exp(−cxα), x→∞

sub-exponential tails: α < 1 super-exponential tails: α > 1

Consider

Xε(t) = x−
∫ t

0

U ′(Xε(s−)) ds+εL(t)

σ(ε) = inf{t ≥ 0 : Xε(t) /∈ [−1, 1]}

Conjecture:

Ex(σ(ε)) ∼ε→0 exp(
c

ε2
) as α ↑ 2.



SIMPLE DYNAMICAL MODELS INTERPRETING CLIMATE DATA AND THEIR METASTABILITY 18

15. The phase transition at α = 1
Thm 7 [sub-exponential tails] For δ > 0 there is ε0 > 0 such that for all
0 < ε ≤ ε0, t ≥ 0:

(1− δ) exp(−C1−δ
ε t) ≤ sup

|x|≤1

Px(σ(ε) > t) ≤ exp(−1
2Cεt),

with Cε := 2ν([1ε,∞)). Hence for |x| < 1

lim
ε→0

εα lnExσ(ε) = 1.

Thm 8 [super-exponential tails] qε ε-quantile of jump measure ν. Then for
δ > 0 there is ε0 > 0 such that for all 0 < ε ≤ ε0, t ≥ 0:

(1− δ) exp(−D1−δ
ε t) ≤ sup

|x|≤1

Px(σ(ε) > t) ≤ (1 + δ) exp(−D1+δ
ε t),

where Dε = exp(−dα | ln ε|εqε
) and dα = α(α− 1)

1
α−1. Hence for |x| < 1

d−1
α lim

ε→0
ε| ln ε| 1α−1 lnExσ(ε) = 1.
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15. α-stable towards Gaussian. The phase transition at α = 1
Comparison of regimes for mean exit time

Power tails jump tails ν([x,∞)) = x−r, x ≥ 1 for some r > 0. Then

2 lim
ε→0

εrExσ(ε) = 1.

Sub-exponential tails jump tails ν([u,∞)) = exp(−uα), u ≥ 1, α < 1. Then

lim
ε→0

εα lnExσ(ε) = 1.

Super-exponential tails jump tails ν([u,∞)) = exp(−uα), u ≥ 1, α > 1. Then

d−1
α lim

ε→0
ε| ln ε| 1α−1 lnExσ(ε) = 1.

Gaussian diffusion no jumps, L one-dimensional Brownian motion. Then

1
2(U(−1) ∧ U(1))−1 lim

ε→0
ε2 lnExσ(ε) = 1.
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16. Heuristics of exits: climbing versus jumping
The Brownian case
LD theory: diffusion has to climb potential in order to exit at lowest saddle
point

The power tail case
for ε > 0 split L = ηε + ξε, compound Poisson pure jump part ηε with jumps
of height larger than 1√

ε
; small jump and Gaussian part ξε with jumps not

exceeding 1√
ε
; exit asymptotically due to one big jump, as shown in first talk

The case of exponential tails
for ε > 0 split L = ηε + ξε, compound Poisson pure jump part ηε with jumps
of height larger than gε; small jump and Gaussian part ξε with jumps not
exceeding this bound;

choose gε individually according to sub- and super-exponential tails

show that exit before time T while not returning to an interval around stable
fixed point 0 of radius δ > 0 requires that either increments of ξε exceed
certain bounds (for which probability is small enough), or sum of large
jumps before time T exceeds bound 1− δ

in any case large jumps responsible for exits
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16. Heuristics of exits: climbing versus jumping
NT random number of large jumps before time T

Wi jump no i, i ∈ N.

NT Poisson with expectation βεT , where βε = ν([−gε, gε]c) = 2 exp(−xα)

For n fixed, probability that sum of large jumps exceeds bound 1− δ
estimated by

P (NT > n) +
n∑
k=1

P (NT = k)P (
k∑
i=1

|εWi| > 1− δ)

Idea for estimation:
for n ∈ N

P (NT > n) ≤ (1 + δ) exp(−n lnn) (Stirling’s formula)

choose n = nε suitably
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16. Heuristics of exits: climbing versus jumping
essential term to estimate for 1 ≤ k ≤ nε

P (
k∑
i=1

|εWi| > 1− δ)

law of i.i.d. random variables (|Wi|)i∈N: β−1
ε 2ν|[gε,∞[

hence

P (
k∑
i=1

|εWi| > 1− δ) ≤ β−kε exp(− inf{
k∑
i=1

xαi :
k∑
i=1

xi ≥
1− δ
ε

, xi ∈ [gε,∞[})

= β−kε exp(− inf{
k∑
i=1

xαi :
k∑
i=1

xi =
1− δ
ε

, xi ∈ [gε,∞[})

minimization problem in the exponent of this estimate causes phase
transition
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16. Heuristics of exits: climbing versus jumping
By suitable choice of gε: lower boundary for xi in inf can be taken 0.

sub-exponential tails

inf{
k∑
i=1

xαi :
k∑
i=1

xi = 1, xi ≥ 0} = 1

The minimum is taken on the boundary of the simplex, and
xi = 1

n, 1 ≤ i ≤ n, corresponds to maximum of the function

(x1, · · · , xn) 7→
n∑
i=1

xαi
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16. Heuristics of exits: climbing versus jumping
Super-exponential tails

inf{
k∑
i=1

xαi :
k∑
i=1

xi = 1, xi ≥ 0} = n(
1
n
)α

The minimum is taken for xi = 1
n, 1 ≤ i ≤ n, the unique local minimum of

the function

(x1, · · · , xn) 7→
n∑
i=1

xαi

Bifurcation in the asymptotic behavior:
phase transition due to switch from concavity to convexity at α = 1 of

x 7→ xα, x ≥ 0,

big jumps of the Lévy process govern asymptotic behavior

α < 1: biggest jump responsible for exit

α > 1: cumulative action of several large jumps responsible for exit


