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1. Paleoclimatic time series
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Lisiecki, Raymo, Paleoceanography 2005 concentration variation of 130 to 1°O
taken from marine sediments at 57 globally distributed sites (e.g. Brunhes,
Matuyama, Jaramillo):

global average temperature time series

basic feature:
e from 0 to -1 Myr periodicity ~ 100 000 y
e from -1 Myr to -1.8 Myr periodicity ~ 44 000 y

e Milankovich cycles: axial tilt (41 000 y) and eccentricity (100 000 y)
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2. Dansgaard-Oeschger events
temperature indicators: 130, 1°O, methane, calcium etc.

GRIP ice core data: 20 abrupt changes in climate of Greenland during last ice
age (-91 000 to -11 000 y) (D/O events).
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Age (thousands of years before present)

e rapid warming by 5-10°C within one decade

basle state
(stadial)

e subsequent slower cooling
within a few centuries

simulations: Ganopolsky/Rahmstorf,

Potsdam Institute for Climate Impact

e fast return to stable cold ground state

Research
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2. Dansgaard-Oeschger events. Statistical analysis
Calcium signal from GRIP: about 80 000 samples for 80 000 y
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typical waiting time between D/O events: 1000 — 2000 v,
waiting times between D/O events: multiples of ~1470 years.

What triggers the transitions?
modeling by Langevin equation:

dX(t) = -U'(t, X (t))dt+NOISE
U — multi well potential, wells correspond to climate states

P. Ditlevsen (Geophys. Res. Lett. 1999): power spectrum analysis of time
series:
NOISE contains strong «-stable component with o ~ 1.75.
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3. p-Variation as test statistic
Which model of noise fits best with time series: parametrized test.
Ditlevsen’s analysis: power spectrum of residua of time series
Problem: Stationarity?
Aim: better test statistics than peaks of power spectrum.

Model assumption: with some U interpret data as

X5(t) = o — /0 t U'(X%(s—))ds +eL(t)= Y=(t)+L(t)

L Lévy process containing a-stable component with unknown «, Y© of
bounded variation; test o

Idea: p-variation characteristic for fluctuation behavior of noise processes.

, — 1
—)lP, VP = lim VP

n n— 00

[nt] )
VIT(X) = DX () - X



SIMPLE DYNAMICAL MODELS INTERPRETING CLIMATE DATA AND THEIR METASTABILITY

4. p-Variation and the Blumenthal-Getoor Index

L «-stable process with jump measure v; then p-variation identified by

Blumenthal-Getoor index

B = int{s >0 / yl*v(dy) < oo)

{lyl<1}

v = inf{p >0: V(L) < o}

Thm 1
L symmetric a-stable. Then
Y= PrL= o
Problem: How to read ~,= « off the sequence (V""" (L)), en?

Calls for results about the asymptotic behavior of the sequence.
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5. The case o = 2: Brownian motion

Forn € N V”""(1/) consists of n independent increments and
BV (W) =n'ZE(W (1))
Thm 2 (LLN type)

n~ VPN (W) — tE(]W(1)|P)  in probability,
Y of bounded variation. Then also

n~IHIVPYN (W +Y) — tE(]W(1)[P)  in probability.
Thm 3 (CLT type)

(2~ FEVP (W) —tB(W()P))iso = (0 THEVPW) — 3t E(W (1)) 0
— ((var(W (1)|")2W (£))s>0

weakly with respect to the Skorokhod metric, and an independent Brownian
motion W.
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6. The case a < 2

(Lit: Corcuera, Nualart, Worner '07; case p < « for LLN type, p < 5 for CLT
type)

Problem: p < 5 < 1 not satisfactory for paleo-climatic data! Beyond 5 no CLT
type result available, no asymptotic normality, but asymptotically of different

type.

Thm 4 (LT type)
L a-stable with o €]0, 2[. Then

(VL) = B (a,p))iz0 — L

weakly with respect to the Skorokhod metric, and an independent %-stable
process L. Here

n'=EE( L)), 2 <p<a,
Bi'(a,p) = ¢ nt?E(sin((nt) L(1)[P), p=a,
0, a < p.

Same result with L 4 Y instead of L if Y is of finite p-variation and § < p < 1
orp > «.
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7. Methods of Proof

e show that (|L(n) — L(n — 1)?),cn is in domain of atiraction of —-stable law;
use tails and characteristic functions

e use Aldous’ criterion for tightness of sequence (X"),n in Skorokhod
metric:
(i) lim sup P(sup |X"(t)] > K)=0 forall N >0,
K—ocopneN >N

(22) limlimsup sup P(|X"™(T)—X"(S)|>¢)=0, forall N>0,e>0
0l0 n—oco S<T<S+06

S, T stopping times

e adding processes of smaller variation: new notion of Lipschitz continuity on
large sets; comparison of small and large jumps



SIMPLE DYNAMICAL MODELS INTERPRETING CLIMATE DATA AND THEIR METASTABILITY

8. The p-variation process of a diffusion

p-variation of diffusion perturbed by 1.5-stable Levy process

V_p™n(X)_t
(X)) =10
n=10 000
p=1.5
p=2.2
~ large jump
{

with increasing p, big jumps get stronger weight, continuous parts less
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9. Test for o with real and simulated data

Thm 4: law of V?*"(X) converges to 3-stable law if data of time series X
have a-stable residuals

Kolmogorov-Smirnov statistics: distance between empirical law of V2% (X)
and :-stable law, as a function of a; minimum of curve: right o

0.8 -
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simulated time series of a 0.6-stable Levy process, n = 200

real time series from the Greenland ice, n = 200
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10. Simple system with Levy noise

consider SDE driven by a-stable Lévy noise of small intensity
t

Xe(t)=x — / U'(X®(s—))ds+eL(t), €]0.
0

e [ is a-stable symmetric Lévy process, a € (0,2)

multi well potential U

e 1 local minima m;

e n — 1 local maxima s;

e U"(m;) >0,U"(s;) <0

aim: investigate exit and transition rates, meta- -stability.
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11. a-stable Lévy Processes
L Lévy process with characteristics (d, v, v) iff

1 :
E(exp(iuL(t))) = exp(t(—idu2+i7u+/ "V —1—iuyly, <iylv(dy))), v e R,t >0,
R

v measure on Borel sets in R with v({0}) = 0, [;[ly|* A 1]v(dy) < cc.
L «o-stable symmetric Lévy process if

E(exp(iuL(t))) = exp(—c(a)t|ul®), v(dy)= ‘y‘iﬂdy, u,y € R.

| 1
t [
| w ’MVV\'.‘V»
- : e T »\; \
— J,"

a=0.75 a=1.75
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12. Probabilistic approach of exit times

L(t) = &°(t) +m7(¢)

Ve =V , Ve =v 1 1jec
g 2 (8%
(R = oo R = 22 o,

££° sum of e-BM and small jump (< /) process
en® big jump (> /&) compound Poisson process
big jumps at 7, inter-jump time 73 with exponential law
E(Ty) = () = geo/?
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13. The small and large jump parts
U with stable state 0, exit from [—b, a] for a,b > 0
between big jumps X ¢ is Y perturbed by £°

Xe(t)=x — [JU(X?(s—))ds +e€5(t), te€[0,Th), Y(t)=z— [[U'(Y(s))ds

_gY
deviation P sup [X5(t) = Y(t)| > | <P sup [s6°(t)| > 5 | <™/
[0,77) (0,77)
: ’ dy ’ dy 0 dy
relaxation T(x,¢) —/ ~ / + 7
e /2 ‘U,(y)‘ o ‘U/(y)’ e /2 My

~ Const + %y Ine| <R(e) = O(|nel)

asymptotically, big jumps coincide with exits
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15. 14: comparison of Gaussian and Lévy dynamics

G=1inf{t >0 : X°(t) ¢ [~b,a]} o=inf{t >0 : X°(t) & [-b,al}
U(x) Ux)
h=U(-b) < U(a) h=U(-b) < U(a)
h h
" . " .
Xe(t) =x — f(f U'(XE(t)ds +eW(t)  Xe(t) =z — fo’f U'(X%(s—))ds + eL(t)
Thm 5 (Freidlin-Wentzell): Thm 6
P, (eh=0)/" < 5 < Cht)/) 1 P, (-l < 0 < —5) — 1

Kramers’ law ('40, Williams, Bovier et al.):

5 e/ 2h/€2 ~ 1
UHTT0) Bao ~ o

d —1
Je(=b.a) Ty

X

Exponential law (Day, Bovier et al.)

A

P75 > u) ~ exp (—u) Py(525 > u) ~ exp (—u)
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14. Gaussian versus a-stable revisited
W Wiener process L symmetric a-stable Lévy process

Tail behavior

P(W(1)] > 2) ~ exp(—ca?) P(L()| 2 ) ~ g @ — o0

A

Xe(t)y=a— [fU(X(t))ds +eW(t) X°(t) =2 — [[U(X*(s—))ds +eL(t)

& =inf{t >0 : X°(t) ¢ [=b,a]} o=inf{t >0 : X°(t) ¢ [-b,a]}
U(x) U(x)
h=U(-b) < U(a) h=U(-b) < U(a)
h h
" — > —

A

B0 2 oy PR Boo ~ & (r\ (b0 pit7e)
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14. Gaussian versus o-stable revisited

Conjecture: make tails of Lévy process exponentially light to recover
Gaussian exit behavior.

Tail behavior

L Lévy process with jump measure having tails
P(|IL(1)] = z) ~ exp(—cz®), = — o0

sub-exponential tails: o <1  super-exponential tails: a > 1
Consider .
Xe(t) == —/ U'(X®(s—))ds+eL(t)
0

o(e) = inf{t >0 : X°(t) ¢ [~1,1]}

Conjecture:

Eu(a(£)) ~eo exp(g—(;) as a2

17
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15. The phase transitionat o =1

Thm 7 [sub-exponential tails] For 6 > 0 there is ¢ > 0 such that for all
0<e<egg,t>0:

(1 —68)exp(—C1 %) < sup Py(o(e) > t) < exp(—3C.t),
2| <1

with C. := 2v([%, 00)). Hence for |z| < 1

liH(l) e*InE,o(e) =1.

Thm 8 [super-exponential tails] ¢. e-quantile of jump measure v. Then for
0 > 0thereisey > 0suchthatforall0 < e <egg,t > 0:

(1 —08)exp(=D!7%t) < sup Py(o(e) > t) < (14 8)exp(—D1T¢),
||<1

| Ine|
€qe

where D. = exp(—d, )and d, = a(a — 1)%—1. Hence for || < 1

d.! lin% €| ln&?\%_l InE,o(e) =1.

18
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15. a-stable towards Gaussian. The phase transitionat o =1
Comparison of regimes for mean exit time

Power tails jump tails v(|z,00)) = 27", x > 1 for some r > 0. Then

2lime"E,o(e) = 1.

e—0

Sub-exponential tails jump tails v(|u,00)) = exp(—u®), u > 1, a < 1. Then

lin% e*InE,o(e) = 1.

Super-exponential tails jump tails v(|u, c0)) = exp(—u®), u > 1, a« > 1. Then

d* hH(l) el 11”18’%_1 InE,o(e) = 1.

(61

Gaussian diffusion no jumps, L one-dimensional Brownian motion. Then

%(U(—l) A U(l))_1 lim 2 1n E.o(e) = 1.

e—0
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16. Heuristics of exits: climbing versus jumping

The Brownian case
LD theory: diffusion has to climb potential in order to exit at lowest saddle
point

The power tail case
fore > 0 split L = n*° + £%, compound Poisson pure jump part n° with jumps
of height Iarger than f, small jump and Gaussian part £ with jumps not

exceeding — 7 exit asymptotically due to one big jump, as shown in first talk

The case of exponential tails

fore > 0 split L = n® + £, compound Poisson pure jump part »° with jumps
of height larger than g.; small jump and Gaussian part £° with jJumps not
exceeding this bound;

choose g. individually according to sub- and super-exponential tails

show that exit before time 7" while not returning to an interval around stable
fixed point O of radius 6 > 0 requires that either increments of £© exceed
certain bounds (for which probability is small enough), or sum of large
jumps before time T exceeds bound 1 — ¢

In any case large jumps responsible for exits
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16. Heuristics of exits: climbing versus jumping
Nr random number of large jumps before time T
W; jump n° i, i € N.
Nr Poisson with expectation 5.7, where 5. = v([—g., g:|°) = 2exp(—z%)

For n fixed, probability that sum of large jumps exceeds bound 1 — ¢
estimated by

Idea for estimation:
forn e N

P(Np >n) < (1+6§)exp(—nlnn) (Stirling’s formula)

choose n = n. suitably
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16. Heuristics of exits: climbing versus jumping

essential term to estimate for 1 < k£ < n,
k
P(Z ‘&“WZ‘ > 1 — 5)
1=1

law of i.i.d. random variables (|W;|)ien: 8- 20|15, oo

hence

k k 1—3§
P Wz 1—9 < f iZ—ai )
(W >1-0) < ftem(- m{zx Doz e foeool)

k
1—9
— ﬁ;kexp(—mf{ E 33? : E X; = ?7$7§ - [96700[})

minimization problem in the exponent of this estimate causes phase
transition
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16. Heuristics of exits: climbing versus jumping
By suitable choice of g.: lower boundary for z; in inf can be taken 0.

sub-exponential tails

k k
inf{foj‘ : sz =1l,2; >0} =1
i=1 i=1

The minimum is taken on the boundary of the simplex, and
r; = 1,1 < i< n, corresponds to maximum of the function

T on

n
(xla'” 7xn) I sza
1=1

23



SIMPLE DYNAMICAL MODELS INTERPRETING CLIMATE DATA AND THEIR METASTABILITY

16. Heuristics of exits: climbing versus jumping
Super-exponential tails

k k
1
inf{z o sz =1,2, >0} = n(ﬁ)a
i=1 i=1

The minimum is taken for z; = 1,1 < i < n, the unique local minimum of
the function

n
(@1, ) = Yy af
1=1

Bifurcation in the asymptotic behavior:
phase transition due to switch from concavity to convexity at o = 1 of

xr—x% x>0,
big jumps of the Lévy process govern asymptotic behavior

a < 1: biggest jump responsible for exit

a > 1: cumulative action of several large jumps responsible for exit

24



