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Stochastic PDEs

Consider a stochastic reaction-diffusion equation with a Dirichlet boundary condi-

tion on a bounded domain D in R
d with smooth boundary.

dUt = {AUt + f(Ut)} dt + g(Ut) dWt, (1)

Assume that

• the eigenvalues λj and the corresponding eigenfunctions φj ∈ H
1,2
0 (D) of the

operator −A, i.e.,

−Aφj = λjφj , j = 1, 2, . . . ,

form an orthonormal basis in L2(D) with λj → ∞ as j → ∞

• Wt is a cylindrical Q-Wiener process – more details later



An old result

W. Grecksch and P.E. Kloeden, Time-discretised Galerkin approximation of parabolic stochastic

PDEs, Bull. Austral. Math. Soc., 54 (1996), 79-85.

• Assume that Wt is a scalar Wiener process, i.e. one-dimensional

• Consider the Galerkin approximation of the SPDE (1), i.e. an N–dimensional

Ito SDE obtained by projecting the SPDE onto the N–dimensional subspace XN of

L2(D) spanned by the {φ1, · · · , φN}

dUN
t =

{

ANUN
t + fN(UN

t )
}

dt + gN(UN
t ) dWt (2)

where we write UN synonomously for (UN,1, · · · , UN,N)⊤ ∈ R
N or

∑N
j=1 UN,jφj ∈

XN according to the context

Here AN =PNA
∣

∣

XN
, fN = PNf

∣

∣

XN
and gN =PNg

∣

∣

XN
where f and g are now inter-

preted as mappings of L2(D) or H
1,2
0 (D) into itself, where PN is the projection of

L2(D) or H
1,2
0 (D) onto XN

• Apply an order γ strong Taylor scheme with constant time–step h to the Ito-

Galerkin SDE (2)



Y N
k+1 = Y N

k +
∑

α∈Aγ\{v}

F N
α

(

Y N
k

)

Iα,k,h, (3)

with coefficient functions F N
α and multiple stochastic integrals Iα,k,∆.

e.g. Euler-Maruyama scheme γ =
1

2
, Milstein scheme γ = 1

Theorem 1 The global space–time discretization error of the order γ strong

Taylor scheme (3) with constant time–step h applied to the N–dimensional

Ito–Galerkin SDE (2) of the SPDE(1) has the form

E|Uk∆ − Y N
k | ≤ K

(

λ
− 1

2

N+1 + λ
[γ+ 1

2
]+1

N hγ
)

, (4)

where [x] is the integer part of the real number x and the constant K depends

on E‖U0‖2, bounds on the f and g coefficients of the SPDE and the length of

the time interval [0, T ] under consideration.

Similar results in

E. Hausenblas, Approximation for semilinear stochastic evolution equations, Potential Analysis,

18 (2003), 141-186.



Shortcomings

• Wt is only one-dimensional in Grecksch & Kloeden — more general in Hausenblas

• proofs of the convergence of Taylor schemes for SDE in the Kloeden & Platen

and Milstein monographs assume that partial derivatives of the coefficient functions

of the SDE are uniformly bounded on R
N .

• to obtain an overall convergence rate we need to balance the two components of

the error bound. This requires the time–step h to become very small as N increases

due to product

λ
[γ+ 1

2
]+1

N hγ

since λN → ∞ as N → ∞.



Overall rate

Suppose that a numerical scheme with time–step h = T
M

requires N arithmetical

operations, random number and function evaluations per time–step to calculate the

next iterate Y
N,M
k , then the computational cost of the scheme is K = N · M .

If the scheme has error bound

sup
k=0,...,M

(

E

∣

∣

∣
Utk − Y

N,M
k

∣

∣

∣

2
)

1

2

≤ C

(

1

Nα
+

1

Mβ

)

(5)

for α, β > 0, then the optimal overall rate is
αβ

α + β
with respect to the computational

cost, i.e.

sup
k=0,...,M

(

E

∣

∣

∣
Utk − Y

N,M
k

∣

∣

∣

2
)

1

2

≤ C · K
−

αβ

α + β .

For example, if α =
1

2
and β = 1, then obtain the overall rate is

1

3



Other results in the literature

Much of the literature is concerned with consider a semilinear stochastic heat equa-

tion with additive space-time white noise on the one dimensional domain [0, 1] over

the time interval [0, T ] with T = 1, i.e.

∂u

∂t
=

∂2u

∂x2
+ f(u) + Ẇt (6)

with the Dirichlet boundary condition.

• Gyöngy & Nualart (1995) introduced an implicit numerical scheme for the SPDE

(6) and showed that it converges strongly to the exact solution without giving a rate.

• Shardlow (1999) applied finite differences to the SPDE (6) to obtain a spatial dis-

cretization which he then discretized in time with a θ-method. This had an overall

convergence rate
1

6
with respect to the computational cost.

• Gyöngy (1998, 1999) also applied finite differences an SPDE driven by space-time

white noise and then used several temporal implicit and explicit schemes, in partic-

ular, the linear-implicit Euler scheme. He showed that these schemes converge with

order
1

2
in the space and with order

1

4
in time (assuming a smooth initial value).

Hence, he obtained an overall convergence rate of
1

6
with respect to the computa-

tional cost in space and time.

• Davie & Gaines (2000) showed that any numerical scheme applied to the SPDE

(6) with f = 0 which uses only values of the noise Wt cannot converge faster than

the rate of
1

6
with respect to the computational cost.

A.M. Davie and J.G. Gaines, Convergence of numerical schemes for the solution of parabolic

stochastic partial differential equations, Mathematics of Computation, 70 (2000), 121-134.



• Müller-Gronbach & Ritter (2007) also showed that this is a lower bound for the

convergence rate. They even showed that one cannot improve this rate of conver-

gence by choosing non-uniform time steps.

T. Müller-Gronbach and K. Ritter, Lower bounds and nonuniform time discretization for approx-

imation of stochastic heat equations. Found. Comput. Math. 7 (2007), no. 2, 135–181.

• Hausenblas (2003) applied the linear-implicit and explicit Euler scheme and the

Crank-Nicholson scheme to an SPDE (6) driven by an infinite dimensional noise. In

the case of a smoother noise, i.e. trace-class noise, she obtained the order
1

4
with

respect to the computational cost. However, in the general case of space-time white

noise the convergence rate is no better
1

6
.

• Lord & Rougemont (2004) also considered the SPDE (6) with a smoother noise.

They discretized the Galerkin-SDE in time with numerical scheme that uses the

factor eAN t with AN = PNA for A = ∆.

X
N,M
k+1 = eAN h

(

X
N,M
k + hfN (XN,M

k ) + W N
tk+1

− W N
tk

)

(7)

They showed that this scheme is useful when the noise is very smooth in space, in

particular with Gevrey regularity. However, in the general case of space-time white

noise the scheme (7) converges also only with the rate of
1

6
with respect to the

computational cost as a consequence of the work of Davie & Gaines (2000).



A numerical scheme of higher order

Davie & Gaines (2000, page 129) remarked that it may be possible to improve the

convergence rate by using suitable linear functionals of the noise. This suggestion

was used in the following paper.

A. Jentzen and P.E. Kloeden, Overcoming the order barrier in the numerical approximation of

SPDEs with additive space-time noise, Proc. Roy. Soc. London (to appear)

Let fix T > 0, let (Ω,F , P) be a probability space with a normal filtration Ft,

t ∈ [0, T ], and let (H, 〈·, ·〉) be a separable Hilbert space with norm |·|.

We consider a parabolic SPDE with additive noise,

dUt = [AUt + f(Ut)] dt + dWt, U0 = u0, (8)

where A is an in general unbounded operator (for example A = ∆), f is a nonlinear

continuous function and Wt is a cylindrical Wiener process.

We interpret the SPDE (8) in such a space H in the mild sense, i.e. as satisfying

the integral equation

Ut = eAtu0 +

∫ t

0

eA(t−s)f(Us) ds +

∫ t

0

eA(t−s) dWs. (9)

and introduce a finite dimensional SDE in the space HN := PNH (or, equivalently,

in R
N) by

dUN
t =

(

ANUN
t + fN(UN

t )
)

dt + dW N
t , (10)

which is the Galerkin projection of the SPDE (8) onto HN , where AN = PNA is the

(matrix) operator AN : HN → HH .



Assumptions

(A1) Assumption: Linear operator A

There exist sequences of real eigenvalues 0 < λ1 ≤ λ2 ≤ . . . and eigenfunctions

{en}n≥1 of A such that the linear operator A : D(A) ⊂ H → H is given by

Av =

∞
∑

n=1

−λn 〈en, v〉 en

for all v ∈ D(A) with D(A) =
{

v ∈ H
∣

∣

∑∞
n=1 |λn|2 |〈en, v〉|2 < ∞

}

.

(A2) Assumption: Cylindrical Brownian motion Wt

There exist a sequence qn ≥ 0, n ≥ 1, of positive real numbers, a real number γ > 0

such that
∞
∑

n=1

(λn)2γ−1qn < ∞

and independent real valued Ft-Brownian motions βn
t , t ≥ 0, for n ≥ 1, i.e. each βn

t

is Ft-adapted and the increments βn
t+h − βn

t , h > 0, are independent of Ft. Then,

the cylindrical Brownian motion Wt is given by

Wt =

∞
∑

n=1

√
qn en βn

t . (11)



(A3) Assumption: Nonlinearity f

The nonlinearity f : H → H is two times continuously Frechet differentiable and its

derivatives satisfy

|f ′(x) − f ′(y)| ≤ L |x − y| ,
∣

∣(−A)(−r)f ′(x)(−A)rv
∣

∣ ≤ L |v|

for all x, y ∈ H , v ∈ D((−A)r) and r = 0, 1
2
, 1, and

∣

∣A−1f ′′(x)(v, w)
∣

∣ ≤ L
∣

∣

∣
(−A)−

1

2 v
∣

∣

∣

∣

∣

∣
(−A)−

1

2 w
∣

∣

∣

for all v, w, x ∈ H , where L > 0 is a positive constant.

(A4) Assumption: Initial value u0

u0 is a D(Aγ) valued random variable, which satisfies

E |(−A)γu0|4 < ∞,

where γ > 0 given in Assumption (A2).



Remarks

• Under Assumptions (A1)-(A4) that the SPDE (8) has a unique mild solution Ut

on the time interval [0, T ], where Ut is the predictable stochastic process in D(Aγ)

given by (9). (Da Prato & Zabczyk (1992), Prévot & Röckner (2007))

• Since Assumption (A3) also applies to fN , the SDE (10) also has a unique solu-

tion on [0, T ], which is given (implicitly) by

UN
t = eAN tuN

0 +

∫ t

0

eAN (t−s)fN (UN
s ) ds +

∫ t

0

eAN (t−s) dW N
s . (12)

• The function f is usually given as a real valued function of a real variable, but in

the SPDE (8) it is considered as a function defined on H and taking values in some

function space such as a subspace of H .

• The above series (11) for the cylindrical Wiener process may not converge in H ,

but in some space U1 into which H can be embedded.

Our formalism allows us to consider space-time white noise (in one-dimensional

domains) as well as trace class noise.



The exponential Euler scheme

V
N,M
k+1 = eAN hV

N,M
k + A−1

N

(

eAN h − I
)

fN(V N,M
k )

+

∫ tk+1

tk

eAN (tk+1−s) dW N
s (13)

with time–step h =
T

M
for some M ∈ N and discretization times tk = kh for

k = 0, 1, . . . , M .

This scheme is easier to simulate than may seem on the first sight. Denoting the

components of V
N,M
k and fN by

V
N,M
k,i =

〈

ei, V
N,M
k

〉

, f i
N = 〈ei, fN〉 , i = 1, . . . , N,

we can rewrite the numerical scheme (13) as

V
N,M
k+1,1 = e−λ1hV

N,M
k,1 +

(1 − e−λ1h)

λ1
f 1

N(V N,M
k ) +

(

q1

2λ1
(1 − e−2λ1h)

)
1

2

R1
k

...
...

...

V
N,M
k+1,N = e−λN hV

N,M
k,N +

(1 − e−λN h)

λN

fN
N (V N,M

k ) +

(

qN

2λN

(1 − e−2λN h)

)
1

2

RN
k ,

where the Ri
k for i = 1, . . . , N and k = 0, 1, . . . , M − 1 are independent, standard

normally distributed random variables.



The following theorem states the strong convergence of the exponential Euler scheme

(13) and provides a rate for this strong convergence.

Theorem 2 Suppose that Assumptions (A1-(A4) are satisfied. Then, there is

a constant CT > 0 such that

sup
k=0,...,M

(

E

∣

∣

∣
Utk − V

N,M
k

∣

∣

∣

2
)

1

2

≤ CT

(

λ
−γ
N +

log(M)

M

)

(14)

holds for all N, M ∈ N, where Ut is the solution of SDE (8), V
N,M
k is the

numerical solution given by (13), tk = T
k

M
for k = 0, 1, . . . , M , and γ > 0 is

the constant given in Assumption (A2).

In fact, the exponential Euler scheme (13) converges in time with a strong order

1 − ε for an arbitrary small ε > 0 since log(M) can be estimated by Mε, so

log(M)

M
∼ h log

1

h
≈ h1−ε

Importantly, the error coefficient CT does not depend on the dimension N of the

Ito-Galerkin SDE.

WHY? the integral
∫ tk+1

tk
eAN (tk+1−s) dW N

s includes includes more information about

the noise on the discretization interval



Main novelty in proof

In the literature the error component

E1 =

∣

∣

∣

∣

∣

k
∑

l=0

∫ tl+1

tl

eAN (tk+1−s)Il,s(e
AN (s−tl) − I)UN

tl
ds

∣

∣

∣

∣

∣

where

Il,s :=

∫ 1

0

f ′
N (UN

tl
+ r(UN

s − UN
tl

)) dr

is usually estimated as

E1 ≤
k
∑

l=0

∫ tl+1

tl

∣

∣eAN (tk+1−s)Il,s

(

eAN (s−tl) − I
)

UN
tl

∣

∣ ds

≤ C

k
∑

l=0

∫ tl+1

tl

∣

∣

(

eAN (s−tl) − I
)

UN
tl

∣

∣ ds

= C

k
∑

l=0

∫ tl+1

tl

∣

∣

(

eAN (s−tl) − I
)

(−AN )γ
∣

∣

∣

∣(−AN )−γUN
tl

∣

∣ ds

≤ Chγ

k
∑

l=0

∫ tl+1

tl

∣

∣(−AN )−γUN
tl

∣

∣ ds,

which yields

|E1|L2(Ω) ≤ Chγ .

In this way one can only obtain a convergence rate of γ in time, which for our ex-

ample would be γ =
1

4
− ε for ε > 0 arbitrarily small.

To obtain a higher order, we need to use the smoothening effect of the term eAN (tk+1−s)

as we did above, which is based on the estimate

∣

∣ANeAN τ
∣

∣ ≤ C
1

τ
.



First we see that

E1 ≤
k
∑

l=0

∫ tl+1

tl

∣

∣eAN (tk+1−s)Il,s(e
AN (s−tl) − I)UN

tl

∣

∣ ds,

where

∣

∣

∣

∣

∫ tk+1

tk

∣

∣eAN (tk+1−s)Il,s(e
AN (s−tl) − I)UN

tl

∣

∣ ds

∣

∣

∣

∣

L2(Ω)

≤ C

∣

∣

∣

∣

∫ tk+1

tk

∣

∣UN
tl

∣

∣ ds

∣

∣

∣

∣

L2(Ω)

≤ Ch

due to Assumption (A3). Hence

|E1|L2(Ω) ≤ Ch +
k−1
∑

l=0

∣

∣

∣

∣

∫ tl+1

tl

∣

∣eAN (tk+1−s)Il,s(e
AN (s−tl) − I)UN

tl

∣

∣ ds

∣

∣

∣

∣

L2(Ω)

≤ Ch +

k−1
∑

l=0

∣

∣

∣

∣

∫ tl+1

tl

∣

∣ANeAN (tk+1−s)
∣

∣

∣

∣A−1
N Il,s(e

AN (s−tl) − I)UN
tl

∣

∣ ds

∣

∣

∣

∣

L2(Ω)

≤ Ch + C

(

k−1
∑

l=0

∣

∣

∣

∣

∫ tl+1

tl

(tk − tl)
−1
∣

∣A−1
N (eAN (s−tl) − I)UN

tl

∣

∣ ds

∣

∣

∣

∣

L2(Ω)

)

≤ Ch + C

(

k−1
∑

l=0

∣

∣

∣

∣

∫ tl+1

tl

(k − l)−1
∣

∣UN
tl

∣

∣ ds

∣

∣

∣

∣

L2(Ω)

)

≤ Ch + C

(

k−1
∑

l=0

(k − l)−1

∣

∣

∣

∣

∫ tl+1

tl

∣

∣UN
tl

∣

∣ ds

∣

∣

∣

∣

L2(Ω)

)

due to Assumption (A3). Finally, we obtain

|E1|L2(Ω) ≤ Ch + Ch

(

k−1
∑

l=0

(k − l)−1

)

= Ch + Ch

(

k
∑

l=1

1

l

)

≤ Ch

(

M
∑

l=1

1

l

)

≤ C log(M)

M
,

which is the claim for E1.



Numerical results

We consider the semilinear stochastic heat equation (6) on the one dimensional

domain [0, 1] with f(u) =
1

2
u, i.e.

∂u

∂t
=

∂2u

∂x2
+

1

2
u + Ẇt (15)

with the Dirichlet boundary condition and the initial value u0(x) =
∑∞

n=1 n−0.6 sin nπx.

Since f to be linear here since we have an exact solution for comparison with the

numerical solution.

Linear-implicit Euler scheme

E
N,M
k+1 = (I − hAN )−1

([

1 +
1

2
h

]

E
N,M
k + W N

tk+1
− W N

tk

)

Lord-Rougemont scheme

X
N,M
k+1 = eANh

([

1 +
1

2
h

]

X
N,M
k + W N

tk+1
− W N

tk

)

.

Exponential Euler scheme

V
N,M
k+1 = eANhV

N,M
k +

1

2
A−1

N

(

eAN h − I
)

V
N,M
k

+

∫ tk+1

tk

eAN (tk+1−s) dW N
s

These schemes all converge with order
1

2
in the spatial variable, so we consider their

convergence rate in time.



Fix N = 200 (space discretization) and then apply the above schemes with different

M = 10, 20, 25, 40, 50, 80, 100, 200, 500, 1000 (time discretization).
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  Mean Square Error vs. Timesteps for a 200−dim SDE

Linear Implicit Euler
Lord−Rougemont
Exponential Euler
Orderlines 0.25 and 1

Figure 1: Mean Square Error vs. Timesteps for a 200-dim SDE as log-log plot.

The linear-implicit Euler and Lord-Rougemont schemes converge with temporal rate
1

4
, while the exponential Euler scheme converges with temporal rate 1.



We now consider the convergence rate with respect to their computational cost.
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r

  Mean Square Error vs. Computational Effort for a SPDE

Linear Implicit Euler
Lord−Rougemont
Exponential Euler
Orderlines 1/6 and 1/3

Figure 2: Mean Square Error vs. Computational Effort as log-log plot.

Here the linear-implicit Euler and Lord-Rougemont schemes clearly converge with

the rate
1

6
, while the exponential Euler scheme converges with the rate

1

3
. All three

schemes thus converge with their theoretically predicted order.



Shortcomings once again

Theorem 2 has several serious shortcomings:

• we need to know the eigenvalues and eigenfunctions of the operator A

but finite elements ???

• Assumption A2 on the nonlinearity f is very restrictive and excludes functions

like

f(u) =
u

1 + u2
, f(u) = u − u3

⋆ This problem also arises for finite dimensional Ito SDE for which it can be

overcome by using pathwise convergence rather than strong convergence

A. Jentzen, P.E. Kloeden, A. Neuenkirch, Convergence of numerical approximations of stochastic

differential equations on domains: higher order convergence rates without global Lipschitz coeffi-

cients, Numerische Mathematik (to appear)

A. Jentzen, higher order pathwise numerical approximation of SPDEs with additive noise, SIAM

Numer. Anal. (submitted)

⋆ Another problem is the Fréchet differentiability of the function f when cos-

nidered as a mapping between function spaces.

• For Taylor expansions of solutions of SPDE in Hilbert spaces and Taylor schemes

for SPDE see

A. Jentzen and P.E. Kloeden, Taylor-expansions of solutions of stochastic partial differential equa-

tions with additive noise, Annals of Probab. (submitted)


