Stochastic Travelling Waves in Neural Tissue

Gabriel Lord Heriot Watt University, Edinburgh

gabriel@ma.hw.ac.uk, http://www.ma.hw.ac.uk/~gabriel

With Vera Thümmler - Bielefeld thuemmler@math.uni-bielefeld.de With Emma Coutts - Heriot-Watt emmac@ma.hw.ac.uk With Steve Coombes - Nottingham& Yulia Timofeeva - Warwick

- Computing stochastic travelling wave (Nagumo)
- Baer-Rinzel model and SDS model
- Filtering low pass filter

Neurons and Synapses

... interested in travelling wave propagation

Deterministic Nagumo - axon wave propagation

$$u_t = \begin{bmatrix} u_{xx} + u(1-u)(u-\alpha) \end{bmatrix} \quad u(x,t) \in \mathbb{R}, \ x \in \mathbb{R}, \ t > 0$$

where $\alpha \in (0, \frac{1}{2})$. • Explicit TW solution connecting $u \equiv 1$ and $u \equiv 0$

$$u_{det}(x - \lambda t) = \left(1 + e^{\frac{\lambda t - x}{\sqrt{2}}}\right)^{-1}$$
, wavespeed $\lambda = \sqrt{2} \left(\frac{1}{2} - \alpha\right)$

> Suppose we have a TW with wavespeed λ for

$$u_t = \Big[u_{xx} + f(u)\Big].$$

Into co-moving frame $u(x, t) = u(x - \lambda t, t)$

$$u_t = u_{xx} + \lambda u_x + f(u), \quad x \in \mathbb{R}, \quad t \ge 0$$
 (1)

of which the travelling wave u is a stationary solution $(u_t = 0)$.

Deterministic case II

$$u_t = \begin{bmatrix} u_{xx} + f(u) \end{bmatrix}$$
 $u(x, t) \in \mathbb{R}, x \in \mathbb{R}, t > 0.$

What if we do not know wavespeed or if wavespeed a func. of t?
Co-moving frame : unknown position γ(t) and wavespeed λ(t)
u(x, t) = u(x − γ(t), t)

$$u_t = u_{\xi\xi} + \lambda(t)u_{\xi} + f(u)$$

Position of wave $\gamma(t) = \int_0^t \lambda(s) ds$.

Have an extra variable $\lambda(t)$ – add a phase condition $0 = \psi(u, \lambda)$.

Example phase condition : Given a reference function \hat{u} , min $||u - \hat{u}||_2^2$.

Stochastic Nagumo

Effects of noise

$$du = \left[u_{xx} + u(1-u)(u-\alpha)\right]dt + (\nu + \mu u(1-u))dW(t)$$

on large finite domain [0, L], Dirichlet BC's. Multiplicative noise : $\nu = 0$, $\mu \neq 0$ – parameter α (wave speed). Assume Wiener processes of the form

$$W(x,t) = \sum_{n \in \mathbb{Z}} b_n \phi_n(x) eta_n(t) \ , \qquad eta_n ext{ iid Brownian motions}.$$

Stochastic Nagumo

Effects of noise

$$du = \left[u_{xx} + u(1-u)(u-\alpha)\right]dt + (\nu + \mu u(1-u))dW(t)$$

on large finite domain [0, L], Dirichlet BC's. Multiplicative noise : $\nu = 0$, $\mu \neq 0$ – parameter α (wave speed). Assume Wiener processes of the form

$$W(x,t) = \sum_{n \in \mathbb{Z}} b_n \phi_n(x) \beta_n(t) , \qquad \beta_n \text{ iid Brownian motions.}$$

White in time and correlated in space: length scale ξ
 C(x) = ¹/_{2ξ} = exp (−πx²/4ξ²).
 Space-time white

Stochastic Nagumo

Effects of noise

$$du = \left[u_{xx} + u(1-u)(u-\alpha)\right] dt + (\nu + \mu u(1-u))dW(t)$$

on large finite domain [0, L], Dirichlet BC's. Multiplicative noise : $\nu = 0$, $\mu \neq 0$ – parameter α (wave speed). Assume Wiener processes of the form

$$W(x,t) = \sum_{n \in \mathbb{Z}} b_n \phi_n(x) \beta_n(t) , \qquad \beta_n \text{ iid Brownian motions.}$$

White in time and correlated in space: length scale ξ
 C(x) = ¹/_{2ξ} = exp (−πx²/4ξ²).
 Space-time white

Space-time write

Ito & Stratonovich Noise.

Stochastic Travelling wave

Typically :

Reference to deterministic wave (eg small noise, mean profiles)
 Mikhailov, Schimansky–Geier & Ebeling '83

 Evolution of a level set : eg sFKPP Tribe, Elworthy& Zhao, Mueller & Sowers & Doering,

Wavespeed increases with noise intensity (Stratonovich).
 [Armero, Sancho, Lacasta, Ramirez-Piscina, Sagues, 1996]
 For reviews see for example : Garcia-Ojalvo & Sancho or Panja

Freezing a Stochastic Travelling wave

$$du = \left[u_{xx} + f(u)\right] dt + g(u, t) dW(t)$$

1) Add convection term to freeze wave

$$du = \left[u_{xx} + f(u) + \lambda u_{x}\right] dt + g(u, t) dW(t),$$

2) For some reference function û want : min ||u - û||²/₂
 ▶ SPDE has a travelling wave u if there exists a rv λ s.t.

$$du = [u_{xx} + \lambda(t)u_x + f(u)] dt + g(u)dW, \quad u(0) = u^0$$

$$0 = \langle \hat{u}_x, u - \hat{u} \rangle$$
(2)

Implementation : SPDAE on [0, L]

$$du = [u_{xx} + \lambda(t)u_x + f(u)] dt + g(u)dW, \quad u(0) = u^0$$

$$0 = \langle \hat{u}_x, u - \hat{u} \rangle$$

Discretize in space (eg finite differences $A \approx \Delta$ etc)

Ito: Semi-implicit Euler-Maruyama scheme in time gives :

$$u^{n+1} = u^n + \Delta t \left[A u^n + \lambda^n D_{\lambda^n} u^n + f(u^n) \right] + g(u^n) \Delta W_n$$
$$0 = \langle \hat{u}_x, u^{n+1} - \hat{u} \rangle$$

where $\Delta W_n = (W(t_{n+1}) - W(t_n))$ is our Brownian increment

Implementation : SPDAE on [0, L]

$$du = [u_{xx} + \lambda(t)u_x + f(u)] dt + g(u)dW, \quad u(0) = u^0$$

$$0 = \langle \hat{u}_x, u - \hat{u} \rangle$$

Discretize in space (eg finite differences $A \approx \Delta$ etc)

Ito: Semi-implicit Euler-Maruyama scheme in time gives :

$$u^{n+1} = u^n + \Delta t \left[A u^n + \lambda^n D_{\lambda^n} u^n + f(u^n) \right] + g(u^n) \Delta W_n$$
$$0 = \langle \hat{u}_x, u^{n+1} - \hat{u} \rangle$$

where $\Delta W_n = (W(t_{n+1}) - W(t_n))$ is our Brownian increment Stratonovich : semi-implicit Euler-Heun

$$z = u^{n} + g(u^{n})\Delta W_{n}$$
$$u^{n+1} = u^{n} + \Delta t \left[Au^{n+1} + \lambda^{n}D_{\lambda^{n}}u^{n} + f(u^{n})\right] + \frac{1}{2}\left(g(z) + g(u^{n})\right)\Delta W_{n}$$
$$0 = \langle \hat{u}_{x}, u^{n+1} - \hat{u} \rangle$$

Implementation : SPDAE on [0, L]

$$du = [u_{xx} + \lambda(t)u_x + f(u)] dt + g(u)dW, \quad u(0) = u^0$$

$$0 = \langle \hat{u}_x, u - \hat{u} \rangle$$

Discretize in space (eg finite differences $A \approx \Delta$ etc)

Ito: Semi-implicit Euler-Maruyama scheme in time gives :

$$u^{n+1} = u^n + \Delta t \left[A u^n + \lambda^n D_{\lambda^n} u^n + f(u^n) \right] + g(u^n) \Delta W_n$$
$$0 = \langle \hat{u}_x, u^{n+1} - \hat{u} \rangle$$

where $\Delta W_n = (W(t_{n+1}) - W(t_n))$ is our Brownian increment Stratonovich : semi-implicit Euler-Heun

$$z = u^{n} + g(u^{n})\Delta W_{n}$$
$$u^{n+1} = u^{n} + \Delta t \left[Au^{n+1} + \lambda^{n}D_{\lambda^{n}}u^{n} + f(u^{n})\right] + \frac{1}{2}\left(g(z) + g(u^{n})\right)\Delta W_{n}$$
$$0 = \langle \hat{u}_{x}, u^{n+1} - \hat{u} \rangle$$

Other time discretizations possible - eg [Moro,'08]: adapt g for numerical instabilities at $u \equiv 0$ and $u \equiv 1$.

Frozen Nagumo Multiplicative Noise, $\alpha = 0.25$

Wavespeeds for SPDAE are computed from random variable $\lambda(t)$

$$E\lambda(t), \quad \Lambda(t) = rac{1}{t}\int_0^t \lambda(s)ds, \quad E\Lambda(t), \quad \Lambda = rac{1}{T_2 - T_1}\int_{T_1}^{T_2} E\Lambda(t)dt.$$

Ex : Ito space-time white noise 1000 realizations , $T_1=100,\ T_2=200$

Let us validate results with

► Ito Noise

- ▶ Reference function: $\hat{u} = u_{det}$
- ▶ Initial data : $u^0 = u_{det}$

Frozen Nagumo Multiplicative, $\mu = 0.5$

And means over 1000 and 10000 realizations:

Comparison with SPDE

For SPDE wavespeeds compute a(t)/t, b(t)/t, c(t)/t

$$\begin{aligned} a(t) &:= \sup\{z : u(x,t) = u_{-}, x \le z\} \\ b(t) &:= \sup\{z : u(x,t) = u_{+}, x \ge z\} \\ c(t) &:= \sup\{z : u(x,t) = (u_{-} + u_{+})/2, x \le z\}. \end{aligned}$$

	$\mu = 0$	$\mu=$ 0.5
Λ (SPDAE)	0.3534	0.3587
Λ (SPDE)	0.3531	0.3544
Analytic	0.3536	

Extrapolation of a, b, c gives under estimate of Λ . See increase in wavespeed with noise.

Spatial correlation

$$W(x,t) = \sum_{n \in \mathbb{Z}} b_n \phi_n(x) \beta_n(t) , \qquad eta_n ext{ iid Brownian motions.}$$

Exponential decay in b_n . White in time.

Correlated (smoother) noise - reduces wave speed.

Stratonvich vs Ito noise

 Λ vs Noise intensity for different nonlinearities.

Ito noise wavespeed not strictly increasing with noise intensity.

Additive noise

Can not use *a*, *b*, *c* to readily determine position of the wave. (In general travelling wave may only exist for a finite time) $\alpha = 0.25, \nu = 0.05$

1 realization

 $\Lambda(t)$

 $E\Lambda(t)$ for different intensities.

With additive noise - new waves will nucleate

Additive noise $\alpha = 0.1$, $\nu = 0.05$

Nucleation of new waves :

Weaker notion

SPDAE for Tarvelling wave :

$$du = [u_{xx} + \lambda(t)u_x + f(u)] dt + g(u)dW, \quad u(0) = u^0$$

$$0 = \langle \hat{u}_x, u - \hat{u} \rangle$$

An example of a weaker version :

$$du = [u_{xx} + \Lambda(t)u_x + f(u)] dt + g(u)dW, \quad u(0) = u^0$$

$$0 = \langle \hat{u}_x, u - \hat{u} \rangle$$

Summary

- > Can define stochastic travelling wrt reference \hat{u} .
- Results agree with those by direct simulation of SPDE
 Some adavantages of method
 - Efficient : smaller domain
 - ▶ Faster convergence than via level sets a, b, c.
- Disadvantage of method
 - Maybe the need for a reference solution uref
 - Need careful implementation numerical instability large convection

Summary

- > Can define stochastic travelling wrt reference \hat{u} .
- Results agree with those by direct simulation of SPDE
 Some adavantages of method
 - Efficient : smaller domain
 - ▶ Faster convergence than via level sets a, b, c.
- Disadvantage of method
 - Maybe the need for a reference solution uref
 - Need careful implementation numerical instability large convection
- apply in another neural model

Many forms of Neurons

www.dendrite.org

Dendrites and spines

(synapses.mcg.edu)

► Spines provide surface area for synapses from other neurons

- \blacktriangleright \approx 80% excitable synapses at dendritic spines in cortex
- Evidence for plasticity in spines

► Involved in : learning, memory, logic computation, pattern matching, temporal filtering

Baer-Rinzel Model

[J Neurophys, 65, 1991]

► Couples continuum of active spines to a passive (diffusive dendrite).

 Spine-head dynamics modelled by Hodgkin-Huxley (HH) equations.

Can be extended to include branching, tapering etc

Baer-Rinzel Model:

[J Neurophys, 65, 1991] ► Cable Equation :

$$\pi a C_m V_t = \frac{\pi a^2}{4R_a} V_{xx} - \frac{\pi a}{R_m} V + \rho \frac{\hat{V} - V}{r}$$

Baer-Rinzel Model:

[J Neurophys, 65, 1991] ► Cable Equation :

$$\pi a C_m V_t = \frac{\pi a^2}{4R_a} V_{xx} - \frac{\pi a}{R_m} V + \rho \frac{\hat{V} - V}{r}$$

► Spine Dynamics :

$$\hat{V}_t = -I(\hat{V}, m, n, h) - \frac{\hat{V} - V}{r}$$

$$\tau_X X_t = X_\infty - X, \qquad X \in \{m, n, h\}$$

 $I(\hat{v}, m, n, h) = g_{K}n^{4}(\hat{V} - V_{K}) + g_{Na}hm^{3}(\hat{V} - V_{Na}) + g_{L}(\hat{V} - V_{L})$

L Leakage, K potassium, Na Sodium Conductance variables m, n, h take values between 0 and 1.

Baer-Rinzel

Deterministic BR supports travelling wave solutions

Baer-Rinzel

Deterministic BR supports travelling wave solutions

Baer-Rinzel

Deterministic BR supports travelling wave solutions

PDE : $u_t = u_{xx} + f(u)$ Can put into a travelling frame: $\xi = x - \lambda t$ for wavespeed λ

$$u_t = u_{\xi\xi} + \lambda u_{\xi} + f(u), \quad x \in \mathbb{R}, \quad t \ge 0$$

For a travelling wave with constant wspeed λ : $u_t = 0$

$$0 = u_{\xi\xi} + \lambda u_{\xi} + f(u), \quad x \in \mathbb{R}, \quad t \geq 0.$$

Travelling wave I

Transform Baer-Rinzel to TW frame: $\xi = ct - x$ with speed c: 6D system

$$V' = W$$

$$W' = cW + g_L(V - V_L) - \rho(\hat{V} - V)/r$$

$$c\hat{V}' = g_L(V_L - \hat{V}) - (\hat{V} + V)/r - g_K n^4 (\hat{V} - V_k)$$

$$-g_{Na}hm^3(\hat{V} - V_{Na})$$

$$c\tau_X X' = X_{\infty} - X, \qquad X \in \{m, n, h\}$$

(ugly) Unique Fixed point : 5D stable manifold 1D unstable manifold

Travelling wave I

Resistence r = 0.05 H1: Fast and slow wave below.

Travelling wave I

Resistence r = 0.05 H1: Fast and slow wave below.

Baer-Rinzel and noise

We can consider effects of noise on wave propagation

- Synaptic noise
- Cable noise

Modify the PDE to include space-time noise

Baer-Rinzel and noise

We can consider effects of noise on wave propagation

- Synaptic noise
- Cable noise

Modify the PDE to include space-time noise

▶ Eg: Voltage fluctuation in cable membrames

$$\mathrm{d}V = \left[DV_{xx} - \frac{V}{\tau} + Dr_a\rho(x)\frac{\widehat{V} - V}{r}\right]\mathrm{d}t + \mu_V\mathrm{d}W(t, x),$$

▶ Interpret noise in the Ito/Stratonovich sense.

Baer-Rinzel and noise

We can consider effects of noise on wave propagation

- Synaptic noise
- Cable noise

Modify the PDE to include space-time noise

▶ Eg: Voltage fluctuation in cable membrames

$$\mathrm{d}V = \left[DV_{xx} - \frac{V}{\tau} + Dr_a\rho(x)\frac{\widehat{V} - V}{r}\right]\mathrm{d}t + \mu_V\mathrm{d}W(t, x),$$

▶ Interpret noise in the Ito/Stratonovich sense.

▶ Assume Wiener process *W* are of the form

$$W(t,x) = \sum_{n \in \mathbb{Z}} b_n \phi_n eta_n(t) , \qquad eta_n$$
iid Brownian motions. $\sum_{n \in \mathbb{Z}} e^{2lpha |n|} |b_n|^2 < \infty .$

Parameter α : correlation length scale and smoothness.

Baer-Rinzel Travelling wave - FROZEN

Mult. Strat. noise in HH spine dynamics

Stratonovich-Ito correction

Start with Statonovich noise - exponential correlation

$$du = (f(u)) dt + g(u) \circ dW$$

Take out 'systematic' contribution of noise : changes nonlinear term.

$$du = \left(f(u) + \frac{C}{2}g'(V)g(V)\right)dt + g(u)dW$$

Now assume noise small to get deterministic system [Garca-Ojalvo & Sancho].

Baer-Rinzel :

- Can see range of parameters for existence of wave
- Small noise
 - wave exists for wider parameter set
 - speeds increases

Baer-Rinzel Discrete Model

► Cable Equation :

$$\pi a C_m V_t = \frac{\pi a^2}{4R_a} V_{xx} - \frac{\pi a}{R_m} V + \rho(x) \frac{\hat{V} - V}{r}$$

Spine Dynamics :

$$\hat{V}_t = -I(\hat{V}, m, n, h) - \frac{\hat{V} - V}{r}$$

$$\tau_X X_t = X_\infty - X, \qquad X \in \{m, n, h\}$$

• Discrete set of spines at $x = x_n$: $\rho(x) = \sum_n \delta(x - x_n)$ d := distance between spines

Example solutions

(Found : by solving coupled ODEs and cable equation)

Vary parameters : eg spine distance

(L. of LP) d = 0.6, , Propagation failure (R. of LP) d = 0.95

Periodic travelling waves

Reduce refractory time : eg $\tau_R = 5$

SDS and Noise

- Stochastic gating of ion channels
- ► Voltage fluctuation in cable membrames

$$dV = \left[D\Delta V - \frac{V}{\tau} + Dr_a \rho(x) \frac{\widehat{V} - V}{r} \right] dt + \mu_V dW(t, x),$$

$$dU_n = \left[\frac{V_n}{\widehat{C}r} - \varepsilon_0 U_n - h \sum_m \delta(t - T_n^m) \right] dt + \mu_U dW(t, x).$$

Noise induced propagation: d = 1, $\mu_U = 0$

Increasing μ_V : $\mu_V = 0.4, 0.8, 0.81$.

Noise induced propagation: d = 1, $\mu_V = 0$

Increasing $\mu_U = 0.17, \mu_U = 0.4$.

More sensitive to noise in the spine heads.

'Freezing' the SDS Small ($\mu = 0.6$) and large ($\mu = 80$) noise. Deterministic propagates.

Speed of Propagation as function of Strength of Multiplicative Space-Time White noise, d-d,

SDS speeds

Computed by freezing:

Summary

Noise in Baer-Rinzel and SDS

- speeds wave propagation in cable
- induces wave propagation
- compared level set approach
- compared to 'small noise'

Filtering

Rose and Fortune : looked at weakly electric fish [1996,1997,1999]

Looked at response to temporal stimuli in neurons Show that spiny neurons with a broad dendritic tree act as low pass filter. Filtering

Rose and Fortune : looked at weakly electric fish [1996,1997,1999]

Looked at response to temporal stimuli in neurons Show that spiny neurons with a broad dendritic tree act as low pass filter.

► Observed in SDS model ? — note we have no soma or branches here.

Dendrite potential

E.Fortune, G.Rose, J Neuroscience, 1997

s

SDS model under the stimulus with constant frequency

Frequency, d = 0.4 and d = 0.8

Amplitude

Summary

Freezing wave :

Compute wave and wavespeed

Noise in Baer-Rinzel and SDS :

- speeds wave propagation in cable
- induces wave propagation
- compared level set approach
- compared to 'small noise'

Filtering:

- ► Filtering robust to noise
- Identify an 'operating regime' for filter