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Limit Theorems in Dynamical Systems

Dynamical system: (M , F , µ0)

• State space M (smooth compact manifold)

• Discrete-time (smooth) dynamics F : M →M .

• Reference measure µ0 (≡ Lebesgue measure)

SRB measures: µ+ is a SRB measure for (M , F , µ0) if

• µ+ is ergodic, i.e., for all g ∈ C(M),

1

n

n−1∑
k=0

g ◦ F k(x)→ µ+(g) µ+ a.s.

• µ+ describe the statistics of µ0 almost every point x ∈M

1

n

n−1∑
k=0

g ◦ F k(x)→ µ+(g) µ0 a.s.



For a given g and if x has initial distribution µ+ then

Xn ≡ g ◦ F n , n = 0,1,2 · · ·

generates an ergodic sequence of identically distributed but, in
general, not independent random variables.

Under which conditions can we prove limit theorems such as
central limit theorems, large deviations, etc.... for the sum

Sn(g) = X0 + · · ·+Xn−1 =

n−1∑
j=0

g ◦ F j ?

If the system is chaotic then one expects that the random vari-
ables Xn = g ◦ F n are weakly dependent random variables

Chaos ⇒ Loss of memory ⇒ Limit Theorems



Asymptotic Variance

Assume wlog that µ+(g) = 0

Suppose that the system is mixing, i.e. decay of correlations

lim
n→∞

µ+ ((g ◦ F n)g) = µ+(g)µ+(g) = 0 .

The asymptotic variance is

σ2 ≡ lim
n→∞

var
(
Sn(g)
√
n

)
= lim

n→∞
µ+

(
Sn(g)2

n

)
= µ+(g2) + 2

∞∑
n=1

µ+ (g (g ◦ F n)) .(1)

The asymptotic variance σ2 is finite if the time correlations
µ+ (g (g ◦ F n)) decay fast enough to be summable (= fast mix-
ing).



Limit theorems

Central Limit Theorem: Suppose 0 < σ2 <∞
Sn(g)
√
n
→ N(0, σ2) (in distribution) .

Large deviations: There exists a nonnegative convex function
I(z) with I(0) = 0 (rate function) such that for a ∈ (min g,max g)

lim
ε→0

lim
n→∞

1

n
logµ+

{
Sn(g)

n
∈ (a− ε, a+ ε)

}
= −I(a)

In short

µ+

{
Sn(g)

n
≈ a
}
∼ exp [−nI(a)] .

Moderate deviations: Choose 1/2 < β < 1, i.e. intermediate
scale between CLT and LDP

µ+

{
Sn(g)

nβ
≈ a
}
∼ exp

[
−n2β−1 a2

2σ2

]



Nonstationary large deviations

In applications to nonequilibrium statistical mechanics the SRB
measure µ+ is singular with respect to the reference (Lebesgue
measure) µ0

µ+ ⊥ µ0

One can also ask for non-stationary version of limit theorems,
e.g.

µ0

{
Sn(g)

n
≈ a
}
∼ exp [−nJ(a)] ?

Are the rate functions I(a) and J(a) the same?

Some interest for physics, fluctuation Theorem.

Natural question for SRB measures.



Level-II large deviations

If x is distributed according to µ+ (or µ0) the empirical measure
is defined by

Ln(x) ≡
1

n

n−1∑
j=0

δF j(x)

and is a random measure and for µ+ (or µ0) a.e. x

lim
n→∞

Ln(x) = µ+ weakly

Level-II large deviations: Is there a rate function I(ν) such that

µ+ {x ; Ln(x) ≈ ν} ∼ e−nI(ν)



Large deviations in uniformly hyperbolic dynamical
systems

Thermodynamic formalism ⇒ large deviations estimates

(Lanford, Ruelle, Sinai, Bowen, Varadhan, Olla, Follmer, Orey,
Pfister, .....) → Large deviations for Gibbs states

Anosov systems (or uniformly expanding maps) satisfy

• Large deviations for the empirical measure (Level-II)

• Nonstationary large deviations (L.S. Young, Kiefer....) with
the same rate function (I(a) = J(a)).

Transfer operators for general weights⇒ large deviations (Kiefer,
Baladi, Keller, Broise, etc....) works for piecewise expanding
maps.



Physical motivation and examples

Hyperbolic billiards I: Equilibrium

Single particle moving freely and colliding elastically on a peri-
odic array of strictly convex smooth obstacles in R2. Periodicity
reduces to a system on with phase space (T2 \ ∪iΓi)×R2.

Assume finite horizon: every trajectory meets an obstacle after
a uniformly bounded time.

Equations of motions

q̇ = p

ṗ = 0 + elastic reflections

The energy H =
p2

2
is conserved → the phase space reduces to

(T2 \ ∪iΓi)× S1

Theorem: The Lebesgue measure ν0 on each energy surface is
invariant, ergodic, and mixing (Sinai, Bunimovich, Chernov).



Hyperbolic billiards II: non-equilibrium.

Add an constant external electric field E and Gaussian thermo-
stat.

q̇ = p

ṗ = E −
E · p
p · p

p + elastic reflections

• Gaussian thermostat ⇒ ensures that the energy H =
p2

2
is

conserved.

• The system is time reversible, under t → −t and (p, q) →
(−p, q).

Theorem: If E is small enough there exists a unique SRB mea-

sure ν(E)
+ on each energy surface which is invariant, ergodic, and

mixing (Chernov, Eyink, Lebowitz, Sinai; Chernov; Wojtkowski).



Our results will be for the collision map

FE : (θ, x) 7→ (θ′, x′)

where x is the position of a collision on the boundary of the
obstacles and θ is the angle of the incoming velocity with respect
to the normal.

Discrete time dynamical system on the 2-dimensional phase
space

M =
⋃
i

∂Γi ×
(
−
π

2
,
π

2

)
If E = 0 (equilibrium) F0 preserves the smooth measure

µ0 = const cos(θ) dθ dr

If E 6= 0 (non-equilibrium) small enough FE has a SRB measure

µ(E)
+ with µ(E)

+ ⊥ µ0

.



Entropy production rate

• Continuous-time: Let µt = µ0 ◦ Φt and let H(µ, ν) be the
relative entropy. Then we have

H(µt, µ0) =

∫ t

0

µs(Σ) ds .

where the entropy production Σ is

Σ =
E · P
p2

≡
E · P
T

=
Work done by the force

”Temperature”

In this context (since µ0 is Lebesgue) we also have

Σ = Phase space contraction rate

• Discrete-time: For the collision map one finds

Σ =
E ·∆
T

, ∆ = q ◦ FE − q

i.e., ∆ is total vector displacement of the particle between two
collisions.



Fluctuation Theorem

The large deviations of the entropy production σ has a universal
symmetry.

µ+

{
1

n
Sn(Σ) ≈ a

}
∼ e−nI(a)

with

I(z)− I(−z) = −z

the odd part of I is linear with slope −1/2

or

µ+

{
1
n
Sn(Σ) ≈ a

}
µ+

{
1
n
SN(Σ) ≈ −a

} ∼ eta
⇒ One needs to prove a large deviation principle for billiard!

Goal: Prove the fluctuation theorem for ”realistic” models:

→ Anosov (Gallavotti-Cohen)
→ ”General” stochastic dynamics (Kurchan, Lebowtiz, Spohn,
Maes)
→ some special open classical systems (L.E. Thomas, L. R.-B.)



Limit Theorems for billiards

Assume g is Hölder continuous on M (or piecewise Hölder con-
tinuous; singularities). WLOG assume µ+(g) = 0.

Sn(g) =

n−1∑
k=0

g ◦ F n

The asymptotic variance

σ2(g) = lim
n→∞

1

n
Var(Sn(g)) = µ+(g2) + 2

∞∑
n=1

µ+(g(g ◦ F n))

satisfies

0 < σ2 <∞ , σ2(g) = 0 iff g = C + h ◦ FE − h



Theorem (L.-S. Young, L. R.-B. 2007) Assume σ2(g) > 0.

• Large deviations: There exists an interval (z−, z+) which con-
tains µ+(g) = 0 such that for a ∈ (z−, z+) we have

µ+

{
Sn(g)

n
≈ a
}
∼ exp [−nI(a)] .

Moreover I(z) strictly convex and real-analytic with I ′′(0) =
1

σ2

• Moderate deviations: Let 1/2 < β < 1. Then

ν

{
Sn(g)

nβ
≈ a
}
∼ exp

[
−n2β−1 a2

2σ2

]
.

• Central Limit Theorem: Already known: Sinai & al, Liverani,
Young...

ν

{
a ≤

Sn(g)

n1/2
≤ b
}
→

1
√

2πσ

∫ b

a

exp

[
−
z2

2σ2

]
dz .



Remark I: We obtain large deviations estimates only in a neigh-
borhood of the mean (z−, z+), and not a full large deviation
principle.

The size of the neighborhood (z−, z+) is related to the size of
g, i.e., max g −min g and dynamical quantities ≈ rate of return.

I do not know whether Level-II large deviations hold for the Sinai
billiard.

Remark II: Analyticity allows to obtain various refinements of
the limit theorems (prefactors), e.g. for non-lattice g

lim
n→∞

Jnν

(
Sn(g)

n
≥ z
)

= 1

with

Jn = θ
√
e′′(θ)2πnenI(z)

where I(z) and e(θ) are related by Legendre transform.

The same holds for the central limit theorem... sharp estimates.

All the refinement are obtained by applying standard probabilis-
tic techniques.



Remark III: Many other limits theorems for billiards and nonuni-
formly hyperbolic dynamical systems have been proved recently
(Chernov, Dolgopyat, Szasz, Varju, Melbourne, Nicol, ....).

Remark IV: We do not know whether nonstationary large devi-
ation hold.



Young towers

Our theorem is proved using Young towers introduced by Lai-
Sang Young in 1995. The towers are a symbolic representation
of non-uniformly hyperbolic dynamical systems.

Special type of Markov partition with countably many states,
based on ideas of renewal theory: choose a set Λ ⊂ M and
construct a partition of Λ ≈ ∪iΛi where Λi is a stable subset
which ”returns” (≡ full intersection) after time Ri. This gives a
Markov extension. Finally quotient out the stable manifolds.

Consequence: our large deviation results apply to

• Billiards

• Quadratic maps

• Piecewise hyperbolic maps

• Hénon-type maps

• Rank-one chaos (Qiudong Wang and L.S. Young) Some peri-
odically kicked limit cycles and certain periodically forced non-
linear oscillators with friction.



Tower Ingredients

•Measure space (∆0,m) and a map f : ∆0 →∆0 (noninvertible)

• Return time R : ∆0 → N.

Assume exponential tail: m{R ≥ n} ≤ De−γn (need for large
deviations)

Assume aperiodicity: g.c.d.{R(x)} = 1 (need for mixing)

• Tower = suspension of f under the return time R

∆l ≡ {x ∈∆0 ; R(x) ≥ l + 1}︸ ︷︷ ︸ and ∆ ≡ tl≥0∆l︸ ︷︷ ︸ (disjoint union)

l-th floor tower

Dynamics F : ∆→∆ F (x, l) =
{

(x, l + 1) R(x) > l + 1
(f(x),0) R(x) = l + 1



• Markov partition ∆l = ∆l,1 ∪ · · ·∆l,jl with jl <∞.

F maps ∆lj onto a collection of ∆l+1,k’s plus possibly ∆0.

The Markov partition is generating (i.e. each point has a
unique coding).

• Dynamical distance:

s(x, y) = inf{n, F i(x) andF i(y) belong to the same ∆l,k ,0 ≤ i ≤ n}

For β < 1 let dβ(x, y) = βs(x,y)

• Distortion estimates: Let JF the Jacobian of F with respect
to m.

∣∣∣JF (x)

JF (y)
− 1

∣∣∣ ≤ Cdβ(x, y)

Remark: If JF = const on each ∆lj then we have a Markov
chain on a countable state space.



Transfer operators and large deviations

Think of m as the (image of) Lebesgue measure on unstable
manifolds. The (image of the) SRB measure has then the form

ν = hdm , h ∈ L1(m) .

The transfer operator L0 is the adjoint of Uψ = ψ ◦ F∫
ϕψ ◦ F dm =

∫
L0(ϕ)ψ dm

L0ϕ(x) =
∑

y :F (y)=x

1

JF (y)
ϕ(y)

ν = hdm F -invariant iff L0h = h



Moment generating function and large deviations

Consider the moment generating function

µ+ (exp [θSn(g)])

for the random variable Sn(g) = g + g ◦ F + · · ·+ g ◦ F n−1.

If

e(θ) ≡ lim
n→∞

1

n
logµ+ (exp [θSn(g)])

exists and is smooth (at least C1) then we have large deviations
with

I(z) = sup
θ

(θz − e(θ)) , Legendre Transform .

(Gartner-Ellis Theorem)



Moment generating functions and transfer operators

To study the large deviations for Sn(g) consider the generalized
transfer operator

Lgϕ(x) =
∑

y :F (y)=x

eg(y)

JF (y)
ϕ(y)

Then we have

µ+ (exp [θSn(g)]) = m (exp [θSn(g)]h)

= m (Ln0 [exp [θSn(g)]h]))

= m
(
Lnθg(h)

)
⇒ Large deviations follow from spectral properties of Lθg



Spectral properties of transfer operators

Suppose Lθg is quasi-compact on some Banach space X 3 h, i.e.
the essential spectral radius strictly smaller than the spectral
radius.

By a Perron-Frobenius argument Lθg a maximal eigenvalue exp[e(θ)]
and a spectral gap (aperiodicity) and thus

e(θ) = lim
n→∞

1

n
log ν (exp [θSn(g)])

By analytic perturbation theory e(θ) is real-analytic and then
standard probabilistic techniques implies

µ+

{
x ;

Sn(g)

n
≈ z
}
∼ e−nI(z)

I(z) = Legendre transform of e(θ)

as well as moderate deviations, central limit theorem, and so
on...



Choice of Banach space

Recall m{R ≥ n} ≤ De−γn. Choose γ1 < γ and set

v(x) = eγ1l x ∈∆l

Banach space

X = {ϕ : X → C ; ‖ϕ‖v ≡ ‖ϕ‖v,sup + ‖ϕ‖v,Lip <∞}

with

ϕv,sup = sup
l,j

sup
x∈∆l,j

|ϕ(x)|eγ1l

ϕv,Lip = sup
l,j

sup
x,y∈∆lj

|ϕ(x)− ϕ(y)|
dβ(x, y)

eγ1l

Banach space of weigthed Lipschitz functions



Spectral analysis

Lasota York estimate: For g bounded Lipschitz

‖Lng(ϕ)‖v ≤ ‖Lng(1)‖v,sup (βn‖ϕ‖v + C‖ϕ‖v,sup)

Pressure

P (g) = lim
n→∞

1

n
log ‖Lng(1)‖v,sup .

Pressure at infinity: Control on the high floors of the towers!

P∗(g) = lim
n→∞

1

n
log ‖ inf

k≥0
Lng(1)>k‖v,sup .

( ϕ>k = ϕ for x ∈∆l with l > k and 0 otherwise)



Theorem:

The spectral radius of Lg is eP (g).

The essential spectral radius of Lg is max{eP∗(g), βeP (g)}

⇒ Lg is quasicompact if P∗(g) < P (g).

Theorem: P∗(g) < P (g) if (max g −min g) < γ.

Theorem: If P∗(g) < P (g) then exp(P (g)) is a (simple) eigen-
value and no other eigenvalue on the circle {|z| = exp(P (g))}.

Conclusion: The moment generating function

e(θ) = lim
n→∞

1

n
log ν (exp [θSn(g)])

exists and is analytic if |θ| ≤ γ/(max g −min g).

�



Fluctuation theorem

Combine

• Time-reversal i, i(p, q) = (−p, q)

• Entropy production =phase space contraction

Σ = − log JF s − log JF u

• The SRB measure is ”the equilibrium state” for the potential
− log JF u (use the Markov extension).

• The large deviation principle.


