Noise-induced collective behavior in globally coupled excitable systems:

L. Schimansky-Geier, X. Sailer, T. Prager, H. Leonhardt, M. Zaks

Nonlinear Dynamics & Statistical Physics,Stochastic Processes,Institute of Physics,Humboldt University of Berlin

Second Workshop on Random Dynamical Systems

Bielefeld, 19.11.2008

Outline

- Excitability in simplistic models of neurons
- Direct simulation for large ensembles
 - onset of irregular small-scale oscillations of the mean field
 - different spiking regimes
- Gaussian approximation: low-dimensional dynamics for cumulants
 - slow and fast motions
 - onset of chaotic subthreshold oscillations
 - transition to chaos: "canard" explosion in the chaotic attractor ?
- Finite-state model: non-Markovian description

Preamble: excitability in models of neurons

Ingredients:

sharp peaks of potential (spikes) nearly quiescent intervals (refractory time) subthreshold oscillations

Theoretical models

Hodgkin-Huxley equations (~ 1950): 4 variables FitzHugh-Nagumo equations (~ 1960): 2 variables

Separation of timescales:

fast variable x: (action potential, "activator") slow variable y: (gating variable, "inhibitor")

$$\varepsilon \frac{dx}{dt} = x - \frac{x^3}{3} - y$$
$$\frac{dy}{dt} = x + a$$

- $\varepsilon \, \ll \, 1$: timescale separation
- *a* : "excitability parameter"

$\varepsilon \rightarrow 0$: Slow manifold and stability of the equilibrium state

$$y = f(x) = x - \frac{x^3}{3}$$

Equilibrium: x = -a y = f(x)

$\varepsilon \rightarrow 0$: Slow manifold and stability of the equilibrium state

$$y = f(x) = x - \frac{x^3}{3}$$

 $\varepsilon \rightarrow 0$: Slow manifold and size of the limit cycle

"canard explosion"

Part 1: Globally coupled FitzHugh-Nagumo systems

$$\epsilon \dot{x}_{i} = x_{i} - \frac{x_{i}^{3}}{3} - y_{i} + \gamma (\bar{x} - x_{i}),$$

$$\dot{y}_{i} = x_{i} + a + \sqrt{2T} \xi_{i}(t), \quad i = 1, \dots, N$$

 γ : coupling strength

 $\xi_i(t)$: white Gaussian noise

 $\epsilon \ll 1$: separation of timescales ($\epsilon = 0.01$)

T = 0: equilibrium $(x_i = -a, y_i = a^3/3 - a)$ is stable for $a^2 > \max(1, 1 - \gamma)$.

Direct numerical simulation

$$a = 1.05, \ \gamma = 0.1, \ \epsilon = 0.01, \ N = 10^5$$

Phase portraits for subthreshold states

< />>

Onset of spiking

Part 2: dynamics of cumulants

$$\epsilon \dot{x}_i = x_i - \frac{x_i^3}{3} - y_i + \gamma (\bar{x} - x_i),$$

 $\dot{y}_i = x_i + a + \sqrt{2T} \xi_i(t), \quad i = 1, ..., N$

Description in terms of probability distributions for $N \to \infty$. Hypothesis of "molecular chaos" \Rightarrow decoupling of correlations

$$P_N(x_1, y_1, x_2, y_2, \dots, x_N, y_N, t) = P(x_1, y_1, t) P(x_2, y_2, t) \dots P(x_N, y_N, t)$$

Fokker-Planck equation for one-particle density P(x, y, t)

$$\frac{\partial P}{\partial t} = -\frac{1}{\epsilon} \frac{\partial}{\partial x} \left(x(1-\gamma) - \frac{x^3}{3} - y + \gamma \int x' P(x', y', t) dx' dy' \right) P - (x+a) \frac{\partial P}{\partial y} + T \frac{\partial^2 P}{\partial y^2}$$

Description in terms of probability distributions: infinite hierarchy of moments

Approximation (closure): instantaneous Gaussian distribution of both x and y.

$$P(x, y, t) = \frac{1}{2\pi\sqrt{D_x D_y - D_{xy}^2}} \exp\left[-\frac{D_x D_y}{2(D_x D_y - D_{xy}^2)} \left(\frac{(x - m_x)^2}{D_x} + \frac{(y - m_y)^2}{D_y} - \frac{2D_{xy}}{\sqrt{D_x D_Y}}(x - m_x)(y - m_y)\right)\right]$$

Cumulants:

mean fields $m_x(t) = \langle x_i(t) \rangle$ and $m_y(t) = \langle y_i(t) \rangle$, variances $D_x(t) = \langle x_i^2(t) \rangle - \langle x_i(t) \rangle^2$ and $D_y(t) = \langle y_i^2(t) \rangle - \langle y_i(t) \rangle^2$, covariance $D_{xy}(t) = \langle x_i(t)y_i(t) \rangle - \langle x_i(t) \rangle \langle y_i(t) \rangle$.

 $D_x \ge 0, \quad D_y \ge 0, \quad D_x D_y \ge D_{xy}^2.$

Deterministic equations for cumulants:

$$\epsilon \frac{d}{dt}m_x = m_x - \frac{m_x^3}{3} - m_y - m_x D_x$$

$$\frac{d}{dt}m_y = m_x + a$$

$$\epsilon \frac{d}{dt}D_x = 2D_x(1 - D_x - m_x^2 - \gamma) - 2D_{xy}$$

$$\frac{d}{dt}D_y = 2(D_{xy} + T)$$

$$\epsilon \frac{d}{dt}D_{xy} = D_{xy}(1 - D_x - m_x^2 - \gamma) - D_y + \epsilon D_x$$

Three "fast" equations and two "slow" ones.

Slow surface in the phase space at $\epsilon \to 0$

Parameterization in terms of m_x and D_x :

$$m_y = m_x - m_x^3/3 - m_x D_x D_{xy} = D_x (1 - D_x - m_x^2 - \gamma) D_y = D_x (1 - D_x - m_x^2 - \gamma)^2$$

Slow surface in the phase space at $\epsilon \to 0$

Parameterization in terms of m_x and D_x :

$$m_y = m_x - m_x^3/3 - m_x D_x D_{xy} = D_x (1 - D_x - m_x^2 - \gamma) D_y = D_x (1 - D_x - m_x^2 - \gamma)^2$$

Repelling region:

$$(m_x^2 - 1)^2 + D_x (3D_x - 4) < \gamma (1 - m_x^2 - D_x)$$
(position depends only on γ)

 D_x is a monotonically growing function of T.

 $D_x \left(T = 0 \right) = 0.$

 D_x is a monotonically growing function of T.

 $D_x \left(T = 0 \right) = 0.$

 D_x is a monotonically growing function of T.

 $D_x \left(T = 0 \right) = 0.$

 \Rightarrow With growth of T the equilibrium enters the repelling region and leaves it again. ... loses stability and regains it.

Destabilization of equilibrium:

Stability crisis (Andronov-Hopf bifurcation) at

$$9T^{2} + T(16b^{2} - 16 - 12b - 4\gamma + 9b\gamma + 2\gamma^{2}) + 2b(b + \gamma)^{2}(2 + 2b + \gamma) = 0$$
$$(b \equiv a^{2} - 1)$$

Necessary condition for the bifurcation: $\gamma \leq \gamma_0 = 2 \left(3a^2 - 1 - 2a\sqrt{3a^2 - 3} \right).$ For $\gamma > \gamma_0$ coupling prevails over noise irrespective of T.

For $a > a_0 = \sqrt{1 + \sqrt{4/3}} \approx 1.467$ the steady state is stable irrespective of γ and T.

Subthreshold oscillations at a = 1.05, $\gamma = 0.1$, $\epsilon = 0.01$

T = 0.00157 T = 0.00158

T = 0.0015826 T = 0.001585

Onset of spiking regime

T = 0.001586

Attractor and the slow surface

 \Rightarrow canard explosion for the whole chaotic attractor ?

Canards in flows with 2 slow variables: Szmolyan, Guckenheimer, Wechselberger, Krupa... mixed-mode oscillations (MMO)

No transitions from the small-scale chaotic attractor have been reported.

From chaotic to regular spiking:

inverse period-adding sequence

From chaotic to regular spiking:

inverse period-adding sequence

Part 3: Three-state description

Part 3: Three-state description

Residence (waiting) times:

Part 3: Three-state description

Residence (waiting) times:

 $w_1(\tau)$: Markovian escape from state of rest with rate γ ; $w_2(\tau), w_3(\tau)$: Γ-densities

$$w_{2}(\tau)) = \frac{\alpha_{2}}{\tau_{2} \Gamma(\alpha_{2})} \left(\frac{\alpha_{2}\tau}{\tau_{2}}\right)^{\alpha_{2}-1} \exp\left(-\frac{\alpha_{2}\tau}{\tau_{2}}\right)$$
$$w_{3}(\tau)) = \frac{\alpha_{3}}{\tau_{3} \Gamma(\alpha_{3})} \left(\frac{\alpha_{3}\tau}{\tau_{3}}\right)^{\alpha_{3}-1} \exp\left(-\frac{\alpha_{3}\tau}{\tau_{3}}\right)$$

 $au_{2,3}$ – mean values of waiting times.

 $\frac{\tau_{2,3}^2}{\alpha_{2,3}}$ – variances of waiting times.

Shapes of Γ -density function

 $\alpha_{2,3}$ characterize sharpness of transitions. $\alpha = 1$: exponential distribution of waiting times. $\alpha \to \infty$: δ -distributed waiting times.

(Integer values of α : Erlang distributions)

Balance equations for probabilities

$$\begin{aligned} &\frac{d}{dt}P_1(t) \ = \ -J_{1\to 2}(t) + J_{3\to 1}(t) \\ &\frac{d}{dt}P_2(t) \ = \ -J_{2\to 3}(t) + J_{1\to 2}(t) \\ &\frac{d}{dt}P_3(t) \ = \ -J_{3\to 1}(t) + J_{2\to 3}(t) \end{aligned}$$

Integral equations:

$$P_{2}(t) = \int_{0}^{\infty} d\tau \gamma P_{1}(t-\tau) z_{2}(\tau)$$

$$P_{3}(t) = \int_{0}^{\infty} d\tau \int_{0}^{\infty} d\tau' \gamma P_{1}(t-\tau-\tau') w_{2}(\tau) z_{3}(\tau')$$

$$P_{1}(t) = 1 - P_{2}(t) - P_{3}(t)$$

 $z_2(\tau) = \int_{\tau}^{\infty} d\tau' w_2(\tau')$ and $z_3(\tau) = \int_{\tau}^{\infty} d\tau' w_3(\tau')$:

probabilities to survive longer than τ in the states 2 and 3.

Ensembles of coupled elements

 $n_1(t)/N$, $n_2(t)/N$, $n_3(t)/N$ – relative occupation numbers in respective states.

Transition rate γ depends on the number of units in the firing state:

$$\gamma(t) = \gamma\left(\frac{n_2(t)}{N}\right)$$

In the limit $N \to \infty$ the values $n_i(t)/N$ converge to $P_i(t)$ in the sense of $\lim_{N \to \infty} \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} p(n_1, n_2, N - n_1 - n_2, t) f(\frac{n_1}{N}, \frac{n_2}{N}, \frac{N - n_1 - n_2}{N}) = f(P_1(t), P_2(t), P_3(t)).$

Mean-field integral equations

$$P_{1}(t) = 1 - P_{2}(t) - P_{3}(t)$$

$$P_{2}(t) = \int_{0}^{\infty} d\tau \gamma \left(P_{2}(t-\tau)\right) P_{1}(t-\tau) z_{2}(\tau)$$

$$P_{3}(t) = \int_{0}^{\infty} d\tau \int_{0}^{\infty} d\tau' \gamma \left(P_{2}(t-\tau-\tau')\right) P_{1}(t-\tau-\tau') z_{3}(\tau) w_{2}(\tau')$$

Ensembles of coupled elements

 $n_1(t)/N$, $n_2(t)/N$, $n_3(t)/N$ – relative occupation numbers in respective states.

Transition rate γ depends on the number of units in the firing state:

$$\gamma(t) = \gamma\left(\frac{n_2(t)}{N}\right)$$

In the limit $N \to \infty$ the values $n_i(t)/N$ converge to $P_i(t)$ in the sense of $\lim_{N \to \infty} \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} p(n_1, n_2, N - n_1 - n_2, t) f(\frac{n_1}{N}, \frac{n_2}{N}, \frac{N - n_1 - n_2}{N}) = f(P_1(t), P_2(t), P_3(t)).$

Mean-field integral equations

$$P_{1}(t) = 1 - P_{2}(t) - P_{3}(t)$$

$$P_{2}(t) = \int_{0}^{\infty} d\tau \gamma \left(P_{2}(t-\tau)\right) P_{1}(t-\tau) z_{2}(\tau)$$

$$P_{3}(t) = \int_{0}^{\infty} d\tau \int_{0}^{\infty} d\tau' \gamma \left(P_{2}(t-\tau-\tau')\right) P_{1}(t-\tau-\tau') z_{3}(\tau) w_{2}(\tau')$$

For integer α_2 and α_3 : set of $(\alpha_2 + \alpha_3)$ ODEs.

Stationary states

$$P_2^* = \frac{\tau_2}{\tau_2 + \tau_3 + 1/\gamma(P_2^*)}$$
$$P_3^* = \frac{\tau_3}{\tau_2} P_2^*,$$
$$P_1^* = 1 - P_2^* - P_3^*$$

Equations are $\alpha_{2,3}$ -independent, \Rightarrow number of solutions depends only on $\tau_{2,3}$ and function $\gamma(P)$. Artificial "parameters": $r = \gamma(P_2^*)$ and $s = P_1^* \gamma'(P_2^*)$.

Characteristic equation:

$$\lambda + \left[s\left(1 + \frac{\tau_2\lambda}{\alpha_2}\right)^{-\alpha_2} - s + r - r\left(1 + \frac{\tau_2\lambda}{\alpha_2}\right)^{-\alpha_2} \left(1 + \frac{\tau_3\lambda}{\alpha_3}\right)^{-\alpha_3}\right] = 0$$

Bifurcations of stationary states

Characteristic equation:

$$\lambda + \left[s \left(1 + \frac{\tau_2 \lambda}{\alpha_2} \right)^{-\alpha_2} - s + r - r \left(1 + \frac{\tau_2 \lambda}{\alpha_2} \right)^{-\alpha_2} \left(1 + \frac{\tau_3 \lambda}{\alpha_3} \right)^{-\alpha_3} \right] = 0$$

Saddle-node bifurcation: $s = \frac{r \left(\tau_2 + \tau_3 \right) + 1}{\tau_2}$

Hopf bifurcation (in parametric form):

$$\begin{aligned} r_{\text{Hopf}}(\omega) &= \omega \frac{I_{23}(I_3 - I_{23}) + R_{23}(R_3 - R_{23})}{I_{23} - I_{23}R_3 - I_3 + I_3R_{23}} \\ s_{\text{Hopf}}(\omega) &= -\omega \frac{I_{23}^2 + R_{23}(R_{23} - 1)}{I_{23} - I_{23}R_3 - I_3 + I_3R_{23}} \\ R_2 &= \text{Re}\Big((1 + i\omega\tau_2/\alpha_2)^{\alpha_2}\Big), \quad I_2 = \text{Im}\Big((1 + i\omega\tau_2/\alpha_2)^{\alpha_2}\Big), \quad \text{etc.} \end{aligned}$$

At $\omega = 0$ Takens-Bogdanov point (double zero eigenvalue):

$$r_{\rm TB} = \frac{\tau_2 \alpha_3 (\alpha_2 + 1)}{\tau_2 \tau_3 \alpha_3 (\alpha_2 - 1) + \alpha_2 (\alpha_3 + 1) \tau_3^2}$$

Example 1: bifurcation diagram for $\alpha_2 \to \infty$, $\alpha_3 \to \infty$ (fixed waiting times: $\tau_2 = 65$, $\tau_3 = 220$)

Dashed line: saddle-node bifurcation. Solid lines: Hopf bifurcation

Codimension-2 points.

Example 2: Hopf bifurcation for $\tau_2 = 65$, $\tau_3 = 220$

$$\alpha_2 = \alpha_3 = 10$$

Example 2: Hopf bifurcation for $\tau_2 = 65$, $\tau_3 = 220$

$$\alpha_2 = \alpha_3 = 12$$

Example 2: Hopf bifurcation for $\tau_2 = 65$, $\tau_3 = 220$

$$\alpha_2 = \alpha_3 = 14.5$$

Example 2: Hopf bifurcation for $\tau_2 = 65$, $\tau_3 = 220$

$$\alpha_2 = \alpha_3 = 15$$

Example 2: Hopf bifurcation for $\tau_2 = 65$, $\tau_3 = 220$

 $\alpha_2 = \alpha_3 = 20$

Formation of the loop upon the bifurcation curve. Jump of the critical frequency.

Application: Arrhenius-type excitatory coupling

Firing rate:
$$\gamma(P_2) = \gamma_0 \exp\left(-\frac{\Delta U(P_2)}{D}\right)$$

Simplistic dependence: $\Delta U(P_2) = \Delta U_0(1 - \sigma P_2)$

 ΔU_0 : barrier of an individual unit, σ : coupling strength

Prescription:

1. For each pair $(\gamma(P_2^*), \gamma'(P_2^*))$ calculate the pair (σ, D) through

$$\sigma = \frac{\gamma'(P_2^*)T}{\gamma'(P_2^*)\tau_2 + \gamma(P_2^*)T\log(\frac{\gamma_0}{\gamma(P_2^*)})},$$
$$D = \frac{T\Delta U_0\gamma(P_2^*)}{\gamma'(P_2^*)\tau_2 + \gamma(P_2^*)T\log(\frac{\gamma_0}{\gamma(P_2^*)})}$$

 $T = \tau_2 + \tau_3 + 1/\gamma(P_2^*)$: mean duration of a cycle

2. Solve for P_2^* :

$$P_2^* = \frac{\tau_2}{\tau_2 + \tau_3 + \frac{1}{\gamma_0} \exp\left(\frac{\Delta U_0(1 - \sigma P_2^*)}{D}\right)}$$

3. Replot bifurcation curves in new coordinates

Arrhenius-type rate

$$\gamma(P_2) = \gamma_0 \exp\left(-\frac{\Delta U(P_2)}{D}\right)$$
$$\Delta U(P_2) = \Delta U_0(1 - \sigma P_2), \quad \Delta U_0 = 0.0002, \ \gamma_0 = 0.05$$

Bifurcation diagram

Hopf bifurcation: supercritical or subcritical

Arrhenius-type rate

$$\gamma(P_2) = \gamma_0 \exp\left(-\frac{\Delta U(P_2)}{D}\right)$$

 $\Delta U(P_2) = \Delta U_0(1 - \sigma P_2), \quad \Delta U_0 = 0.0002, \ \gamma_0 = 0.05, \ D = 0.0002, \ \sigma = 3$

Temporal evolution for 10^5 coupled three-state units

Red dots: transitions from state 1 to state 2

Conclusions

- Additive noise can play an ordering role: drive the ensemble to regime of synchronized spiking.
- Stochastic behavior is reasonably well captured by deterministic description
- Subthreshold oscillations become chaotic *before* transition to spiking
- In the phase space, transition to spiking is a canard explosion of the chaotic attractor
- ensemble of non-Markovian three-state units provides a good qualitative description for an ensemble of globally coupled excitable elements