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Motivation

Dendrites
A real-life dendrite lab picture: A phase-field simulation:
: ¥ e~
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Dendrites

Computed dendrites without ther- A computed dendrite with thermal
mal noise [Nestler et al., 2005] noise [Nestler et al., 2005]

Uus

University of Sussex
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Phase transition in solidification process

aedyu — eAu + (u® — u) /e = ow
where

cow — Aw = —0wu

u

(“interface” motion)

w

(diffusion in bulk),

~1
order parameter/phase field ¢ € (=1 + d.,1 — 4.),
~ —1

solid phase,
temperature in liquid/solid bulk

interface (region)
liquid phase.
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is the following semilinear parabolic stochastic PDE with additive white
noise

ou(z,t) — Au(w,t) + fo(u(z,t)) = €0, W (x,t), x€(0,1),t€RT.
u(z,0) = ug(z), xz € (0,1)
9,u(0,t) = Opu(1,t) =0, t € RT.

fe(6) = ;2(53 —¢&): first
derivative of double well
potential

e € RT: ‘“diffuse inter-
face” parameter

v € R: noise intensity pa-

rameter
O0ntW . space-time Figorsusex
noise: » & : =» = 9ac
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1
Btu—Au+6—2(u3—u) =0

Phase-separation models in metallurgy [Allen and Cahn, 1979].
Simplest model of more complicated class [Cahn and Hilliard, 1958].

.
.
e Cubic nonlinearity approximation of “harder” (logarithmic) potential.
.

Double obstacle can replace cubic by other.
e Phase-field models of phase separation and geometric motions

[Rubinstein et al., 1989], [Evans et al., 1992], [Chen, 1994],
[de Mottoni and Schatzman, 1995], .. .;

e Metastability, exponentially slow motion in d =1,
[Carr and Pego, 1989], [Fusco and Hale, 1989], us
[Bronsard and Kohn, 1990]; e e

=] F = E = 9DaA¢
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Ou — Au —l— L (u — u) =0, W

e Noise = stabilizing/destabilizing mechanism [Brassesco et al., 1995],
[Funaki, 1995].

e Stochastic 1d: Basic existence theory [Faris and Jona-Lasinio, 1982].

o Stochastic MCF of interfaces colored space-time/time-only noises
possible [Souganidis and Yip, 2004], [Funaki, 1999],
[Dirr et al., 2001].

e Rigorous mathematical setting to noise-induced dendrites.

University of Sussex
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Stochastic Allen—Cahn (aka Ginzburg—Landau) with noise in materials
science:

Modeling in phenomenological/lattice approximation, noise = unknown
meso/micro-scopic fluctuation with known statistics effect in
macroscopic scale [Halperin and Hoffman, 1977],
[Katsoulakis and Szepessy, 2006, cf.];

Simulation noise as ad-hoc nucleation/instability inducing mechanism
[Warren and Boettinger, 1995, Nestler et al., 2005, e.g.,];

Numerics for d = 1 SDE approach [Shardlow, 2000], spectral methods
[Liu, 2003], interface nucleation/annihilation [Lythe, 1998,
Fatkullin and Vanden-Eijnden, 2004].

Numerics for d > 2 ?
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unstable eq

Y
PDE: 8tu—Au+612f(u) =0, 0<ex1, y=f(u)
. 1

potential: f(g) —2( — {) , .
ODE (no diffusion): & = —— (u) 1 0 u
equilibriums: f(£1) =0, f(O) =0,
.. Hlstable — f/(£+1) <0,
linearize: ,

0 unstable — f'(0) > 0.

us
Sta ble eqs University of Sussex
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1
PDE: atu—Au-l—e—zf(u) =0, 0<exl, resolved profile

1
_2

(€ -¢),

ODE (no diffusion): @ = ——f(u) 2 % ’\x
equilibriums: f(+1) =0, f(0) =0, M nonresolved profile

+1 stable — f/(£1) <0,
0 unstable — f(0) > 0.

potential: 2f(f) =

linearize:

University of Sussex
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diffuse interface
O(e) thick
profile’s center &
X
profile
{(z,u): uxtanh((z—E)/e/2)
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a mean curvature flow:

Level set [ = {u = 0}, moves, as ¢ — 0

—eA u|r +% (ud — u)|r =0
i i !
—v -H
normal —mean

=10

University of Sussex
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velocity curvature
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is the following semilinear parabolic stochastic PDE with additive white
noise

ou(z,t) — Au(w,t) + fo(u(z,t)) = €0, W (x,t), x€(0,1),t€RT.
u(z,0) = ug(z), xz € (0,1)
9,u(0,t) = Opu(1,t) =0, t € RT.

fe(6) = ;2(53 —¢&): first
derivative of double well
potential

e € RT: ‘“diffuse inter-
face” parameter

v € R: noise intensity pa-

rameter
O0ntW . space-time Figorsusex
noise: » & : =» = 9ac
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o Informally: white noise is mixed derivative of (2 dimensional)
Brownian sheet W = W, ;.

o Brownian sheet W: extension of 1-dim Brownian motion to
multi-dim, built on 2.

e Solutions of PDE understood as mild solution
. Notatlon for O W

oo prl
/ / Fla £) dW (2, ) = / / (@, £)0W (z, £) dz o,
stochastic integral [Walsh, 1986].

University of Sussex
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e VA € Borel(R2) / dW (2, 1) = W(A) € N(0, |A]), L.e, W(A) is a
A
0-mean Gaussian random variable with variance = |A|.

e ANB=0= W(A),W(B) independent and
W (AU B) = W(A) + W(B).

t rx
e Brownian sheet: W, ; = W([0,t] x [0, z]) :/ / dW (z,t).
o Jo

e Basic yet crucial property:

E[(/I/Df(x,t)dW(m,t))zl :E[/I/Df(x,t)zdxdt],VfELz.

(Aka dW = V/dz dt.)

University of Sussex

O (G " computational stochastic phaseield  (EEEEEEET



dw — Aw = 9 W, in D x R§
w(0) =0, on D
0,w(1,t) = 0,w(0,t) =0, Vt € [0, 00).

Solution is defined as Gaussian process produced by the stochastic integral

Zu(@) = Z(, 1) : / / Gr- o) AW (2,1).

where GG is the heat kernel:

Gy(x,y) =2 cos(mka) cos(mky) exp(—m2k>t).
k=0

(An “explicit semigroup” approach.) };}gqomﬂ
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Owu(z,t) — Au(z, t) + fe(u(z,t)) = €0uW(x,t), for x € D =0,1],t € [0,
u(z,0) = ugp(z), Yo € D
0zu(0,t) = dpu(l,t) =0, Vt € R™.

Defined as the continuous solution of integral equation
¢
wet) == [ [ Gro)iifuly.s)) dyds
0 JD

+ /D Gi(x,y)uo(y) dy + €7 Zy(z).

Unique continuous integral solution exists in 1d provided the initial
condition ug fulfills boundary conditions.

University of Sussex
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e The solution u of Stochastic Allen-Cahn, is adapted continuous
Gaussian process (it is Holder of exponents 1/2,1/4).

e The process u has continuous, but nowhere differentiable sample
paths.

e This approach works only in 1d+time, for higher dimensions; when
defined solutions are extremely singular distributions (let alone
continuous).

o If white noise (uncorrelated) is replaced by colored noise (correlated),
then “regular” u can be sought in higher dimensions.

e Direct numerical discretization of this problem not obvious.

University of Sussex

O (G  computational stochastic phaseield (SIS



In two main steps:

1. Replace white noise 9,:WW by a smoother object: the approximate

white noise 9, V.

2. Discretize the approximate problem with 9., via a finite element
scheme for the Allen-Cahn equation.

Inspired by [Allen et al., 1998], [Yan, 2005].

University of Sussex
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[0,1], Dy, = (Trm—1,Tm), Tm
I= [OaT]7 I, = [tn 1,

Fix a final time T" > 0 and consider uniform space and time partitions
in space: D =]0,1],
in time:

—Tm-1=
tn), th —t
Regularization of the white noise is projection on piecewise constants

o, me[l:M],
1=p,ne[l:N].
= o [ / X (@)n(t) AW (1)

a:tW € t) - Z Z nm nXm Qon(t)
n=1m=1
Xm = 1p,,, ¢n = 11, (characteristic functions)
O Lakkis (Sussex)
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_ N N
8xtW(x,t) = Z Z ﬁm,nXm('T)‘Pn(t)'

n=1m=1

Tlm,n are independent N (0,1/(op)) variables and

E[(/I/Df(x,t)dv‘[/(x,t))zl SE[(/I/Df(w,t)dW(a:,t)>2].
E[(/I/D dVT/(:c,t))2

: [/I/D [0 (2, ) da:dt] < a—lp

O «Fr <> «Er I DAX
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Ot — AT + fo(i1) = OOV,
0,u(t,0) = dyu(t,1) =0,
a(0) = wo,
Admits a ‘_‘classical” solution. Yw € {2 = corresponding realization of the
AWN 0,4 W (w) € Lo([0,T] x D) (parabolic regularity) =
dri(w) € L2([0, T; L2(D)).
= variational formulation and thus FEM (or other standard methods) now

possible.
Error estimate schedule:

1. Compare @ with u.
2. Approximate @ by U in a finite element space and compare.

University of Sussex
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e Parameters (numerical mesh) 7,2 > 0 (approximation mesh) p, o
o Not necessary, but “natural” coupling: 7 =p=h?>=0¢
e Linearized Semi-Implicit Euler

n _ yn—1
<U U b

2
.

>+«@U%@¢y+gyw1hUm¢>
= (FUUUT H f(U"), @) + (€10 W, ),

V" is a finite element space of piecewise linear
[Kessler et al., 2004, Feng and Wu, 2005].

Vo eV
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1 1 1 1
[—M + A+ —2N(u"_1)] u" = Sgu" )+ = Mu" + w.
p € € P

e M, A usual mass and stiffness matrices,

e N and g nonlinear mass matrix and load vector

e w = (w;) a random load vector generated at each time-step: for
each node 7 we have

6’7

h
w; = E\/;(m_l +m) m € N(0,1) pseudo-random.

e Simple Monte Carlo method on w.

University of Sussex
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Theorem (quasi-strong (least squares) convergence)

Let v > —1/2,T > 0. For some c1,cp (¥ €), and for each € € (0,1) there
correspond (i) an event 2°°, (ii) constants C,,C1,C5 s.t.

P(02°°) > 1 — 2¢1 exp(—cp /e T27)
/ / / @ — u|? dzdtdP < C. <01p1/2 +C 1/2) , Yo,p > 0.

RENELS

® Event 2% = {|u, @| < 3} (measured by maximum principle &
exponential decay of “chi-squared” distribution).

® C. grows exponentially with 1/e.
® Constant improves for 7 > 1 (exploiting spectral gap).

= = = E = 9DaA¢
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Lemma

Suppose v > —1/2. Given T, there exist c1, c,00 > 0 such that if
||u0|||—oo(D) < 1 +(5O then

t ,T oS} +2

® The constant 3 is for convenience, can be replaced by 1 + d;, if
needed, by adjusting c1, c2 and dg.

® This result is used to determine the event 2°° for convergence to
hold.

® Because, nonlinearity is not globally Lipschitz.

= = = = = 9DaA¢
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Theorem (small noise)
Let q solution of deterministic the Allen—Cahn problem

Orq — Aq + fe(q) =0,

q(0) = ug, on D.
ThenV'T >0:3K1(T) > 0,e(T) >0
P<
[

sup [|u — | <é
0.1] Lo(D)

T/(op)—1
>1-— (1 + @66—27) exp (
for all € € (0,¢€0), v > 3 and p,o > 0.

_ K (T) 027

)
= = = = = 9DaA¢
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Theorem ([Chen, 1994], [de Mottoni and Schatzman, 1995])
Let q be the (classical) solution of the problem

O0rq — Aq+ fe(q) =0, q(0) = ug, on D

Key to argument in convergence for weak noise is the use of spectral
estimate for q: There exists a constant A\g > 0 independent of ¢ such that
for any € € (0,1] we have

106117y + (fL(@)8, 8) > = lI6]1Z, () » Yoo HY(D).
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Lemma
VK >0
P{

te[0,7]

sup [|0uW ()|, p) < K

}

2
p

1/(20)—1 ) +
dP & 0. W t 2 ) K2
an i 102t W ()| Ly ) <

>

O Lakkis (Sussex)
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K2
2 exp (_T)
=] F B . 28
' computational stochastic phase-field | Bielefeld, 18 November 2009 29 / 62 |



Taking 7 = p = h? = o2 to simplify, we have

/ / li(tn) — U dzdP < C(T, &)h.
2°° JD

Remark

® compare w.r.t. deterministic case,

® impossible to take E, but only fQoo, due to rare events.

University of Sussex
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Theorem (Regularity of @)

/ / / 18, dzdt < c1p Y% 4 oot
% JI, JD

/ / |AGP dz < e3p™32 + cqotp7L
2% JD
Remark

For £2°° an event of high probability.

Expected loss of regularity, as o, p — 0.

University of Sussex
o <& = =, = wace
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® Computations for e = 0.04,0.02,0.01 and v = 1.0,0.5,0.2,0.0, —0.2
(v < 0 though not discussed in theory can be interesting in practice).

® Run a Monte-Carlo simulation for each set of parameters (2500
samples).

® Meshsize h < e.
® Timestep 7 = coh? ~ €2.

University of Sussex
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Sample path with e =0.01, v =0

Ty

il

”- W‘
,ﬁll“avﬁ"
e

h l ' f"""' )
avpnil Tk
! ‘," } ," ”’ E',” i
,l
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Sample path with e =0.01, v = —0.2

University of Sussex
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Sample path with e =0.01, v =1.0

us

University of Sussex

O Lakkis (Sussex) computational stochastic phase-field Bielefeld, 18 November 2009 35/ 62



Benchmarking = “comparing with known solutions” Very few known
“exact result”.
Theorem ( [Funaki, 1995, Brassesco et al., 1995])

The interface motion is asymptotically, as e — 0, a (1d) Brownian motion,
limP{ su Hu— o — & >5% =0,
lim {tge_lgw (G| }

for 6 > 0.

® ¢ is an instanton for the deterministic Allen-Cahn equation
. §~§ solves a SODE representing the motion of the interface

RENEILS

O Lakkis (Sussex)

e d;(x) is an appropriate rescaling of u(z,t).



asymptotically (as e — 0) like

éeﬁ

® In our scaling, the interface position & performs a process that looks

2\/_6’Y+1/2Bt,
where B; is the 1d Brownian Motion
nucleation/coalescence)

We use statistics on the interface (discarding all cases of

University of Sussex
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Numerically computed average and variance

v =0.5and ¢ = 0.08

computed interface position vs. time fory = 0.5and ¢ = 0.08

T lev=6; smp=450)
lev=7; smp=451
lev=8; smp=55

Average of Monte Carlo
samples against time for
various levels of refine-
ment lev = 6,7,8,9,
and meshsize h = 1/2'*".
Sample number smp
differs with lev. Samples

lev=6; smp=450]|

: lev=7; smp=451

- lev=8; smp=55 - . e
m-ssmpo | are rejected if annihila-

tion/nucleation occurs.
Variance against time
for the various levels. As

time grows, variance ac-
curacy deteriorates.
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Numerically computed average and variance

v=0.5and ¢ = 0.04

computed interface position vs. time fory = 0.5and ¢ = 0.04

T lev=6; smp=920)
lev=7; smp=924

ev-osmp-0ef  Average of Monte Carlo

samples against time for
various levels of refine-
ment lev = 6,7,8,9,
and meshsize h = 1/2'*".
computed variance/20¢'*2 vs. time fory = 0.5and € = 0.04 Sample number smp
' pw=siome=22l  differs with lev. Samples

lev=7; smp=924|
lev=8; smp=918|

eeosmoos]  are rejected if annihila-

tion/nucleation occurs.
Variance against time
for the various levels. As

time grows, variance ac-
curacy deteriorates.
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Numerically computed average and variance

v=0.5and € = 0.02

computed interface position vs. time fory = 0.5and ¢ = 0.02

T lev=6; smp=949
lev=7; smp=949
lev=8; smp=949

— o omp-0sf  Average of Monte Carlo

samples against time for
various levels of refine-
ment lev = 6,7,8,9,
and meshsize h = 1/2'*".

computed variance/20e'*? vs. time fory = 0.5and e = 0.02 Sample number sm p

pe=siomo=2l  differs with lev. Samples

lev=7; smp=949|
lev=8; smp=949|

ev-osmp-se]  are rejected if annihila-

tion/nucleation occurs.
Variance against time
for the various levels. As

time grows, variance ac-
curacy deteriorates.
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Numerically computed average and variance

v=0.5and ¢ = 0.01

computed interface position vs. time fory = 0.5and e = 0.01

T lev=6; smp=948|
lev=7; smp=949
lev=8; smp=949

— o omp-0s)  Average of Monte Carlo

samples against time for
various levels of refine-
ment lev = 6,7,8,9,
and meshsize h = 1/2'*".
computed variance/20¢'*% vs. time for = 0.5and e = 0.01 Sam ple number sm p
pw=siomo=2®  differs with lev. Samples

lev=7; smp=949|
lev=8; smp=949|

ev-osmp-oso]  are rejected if annihila-

tion/nucleation occurs.
Variance against time
for the various levels. As

time grows, variance ac-
curacy deteriorates.
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Simulations vs. theory

log(var[U}] /t;) vs. loge plot for v = 0.5 at various times ¢; = to 10’

log(9)-log(o() and log(e)*(1+2") for 1=0.5

ref. slope=1+2%
—©— time 0.00152587
—8— time 0.0152587
—6— time 0.152587
—— time 1.52587
—9— time 15.2587

Theoretical slope
(predicted by
[Funaki, 1995] and
[Brassesco et al., 1995])
is 1+ 2.

Plotted in orange refer-
ence line

As ¢ — 0 slope im-

proves.
Meshsize h = 1/512.
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Numerically computed average and variance

v=0.2 and ¢ = 0.08

computed interface position vs. time fory = 0.2and ¢ = 0.08

lev=6; smp=19)
lev=7; smp=0
lev=8; smp=0

om0 | Average of Monte Carlo

samples against time for
various levels of refine-
ment lev = 6,7,8,9,
and meshsize h = 1/2'*".

computed variance/20e'* vs, time foy = 0.2and e = 0.08 Sample number sm p

lev=6; smp=19)|
lev=7; smp=0
lev=8; smp=0

differs with lev. Samples
are rejected if annihila-

tion/nucleation occurs.
Variance against time

for the various levels. As

time grows, variance ac-
curacy deteriorates.
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Numerically computed average and variance

v=0.2and € = 0.04

computed interface position vs. time fory = 0.2and ¢ = 0.04

T lev=6; smp=351
lev=7; smp=303|
lev=8; smp=163|

— om0 | Average of Monte Carlo

samples against time for
various levels of refine-
ment lev = 6,7,8,9,
and meshsize h = 1/2'*".

Sample number smp

lev=6; smp=351
- lev=7; smp=303|
N lev=8; smp=163| - . e

: e-osmpo | are rejected if annihila-

differs with lev. Samples

tion/nucleation occurs.
Variance against time
for the various levels. As

time grows, variance ac-
curacy deteriorates.
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Numerically computed average and variance

v =0.2 and € = 0.02

computed interface position vs. time fory = 0.2and ¢ = 0.02

T lev=6; smp=907
lev=7; smp=755
lev=8; smp=727]

Average of Monte Carlo
samples against time for
various levels of refine-
ment lev = 6,7,8,9,
and meshsize h = 1/2'*".
Sample number smp
differs with lev. Samples
are rejected if annihila-

lev=6; smp=907|
lev=7; smp=755|
lev=8; smp=727|

tion/nucleation occurs.
Variance against time
for the various levels. As

time grows, variance ac-
curacy deteriorates.
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Numerically computed average and variance

v =0.2and e =0.01

computed interface position vs. time fory = 0.2and e = 0.01

T lev=6; smp=949
lev=7; smp=949
lev=8; smp=944

— o omp-22f Average of Monte Carlo

samples against time for

various levels of refine-
ment lev = 6,7,8,9,
and meshsize h = 1/2'*".

computed variance/20e'*? vs. time fory=0.2and e = 0.01 Sample number sm p

pe=siomo=2l  differs with lev. Samples

lev=7; smp=949|
lev=8; smp=944|

: ev-osmp2o|  are rejected if annihila-

tion/nucleation occurs.
Variance against time
for the various levels. As

time grows, variance ac-
curacy deteriorates.
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Simulations vs. theory

log(var[U}] /t;) vs. loge plot for v = 0.2 at various times ¢; = to 10’

log(9)-log(o() and log(e)*(1+2") for 1=0.2

ref. slope=1+2%
—©— time 0.00152587
—8— time 0.0152587
[| —©— time 0.152587
—— time 1.52587
—9— time 15.2587

Theoretical slope
(predicted by
[Funaki, 1995] and
[Brassesco et al., 1995])
is 1+ 2.

Plotted in orange refer-
ence line

As ¢ — 0 slope im-

proves.
Meshsize h = 1/512.
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Numerically computed average and variance

v =10.0 and ¢ = 0.08

computed interface position vs. time fory = 0Oand ¢ = 0.08

T lev=6; smp=0
lev=7; smp=0
lev=8; smp=0

ev-ssmp0|  Average of Monte Carlo

samples against time for
various levels of refine-
o ment lev = 6,7,8,9,
06 -04 -02 0 02 04 06 08 and meshsize b = 1/2Iev.

computed variance/20e'*? vs. time fory = Oand e = 0.08 Sample number sm p

lev=6; smp=0
lev=7; smp=0
lev=8; smp=0

differs with lev. Samples
are rejected if annihila-

tion/nucleation occurs.
Variance against time
for the various levels. As

time grows, variance ac-
curacy deteriorates.
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Numerically computed average and variance

v=0.0 and ¢ = 0.04

computed interface position vs. time fory = 0Oand ¢ = 0.04

T lev=6; smp=120]
lev=7; smp=0
lev=8; smp=0

Average of Monte Carlo
samples against time for
various levels of refine-
ment lev = 6,7,8,9,
and meshsize h = 1/2'*".

computed variance/20e'* vs, time fory = Oand e = 0.04 Sample number sm p

lev=6; smp=120|
lev=7; smp=0
lev=8; smp=0

differs with lev. Samples
are rejected if annihila-

tion/nucleation occurs.
Variance against time
for the various levels. As

time grows, variance ac-
curacy deteriorates.

O Lakkis (Sussex) computational stochastic phase-field Bielefeld, 18 November 2009 49 / 62



Numerically computed average and variance

v =0.0 and € = 0.02

computed interface position vs. time fory = 0and ¢ = 0.02

T lev=6; smp=792]
lev=7; smp=481
lev=8; smp=307]

lev=6; smp=792)
lev=7; smp=481
lev=8; smp=307|

O Lakkis (Sussex) computational stochastic phase-field

Average of Monte Carlo
samples against time for
various levels of refine-
ment lev = 6,7,8,9,
and meshsize h = 1/2'*".
Sample number smp
differs with lev. Samples
are rejected if annihila-
tion/nucleation occurs.
Variance against time
for the various levels. As
time grows, variance ac-
curacy deteriorates.
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Numerically computed average and variance

v =0.0 and ¢ = 0.01

computed interface position vs. time for = 0and ¢ = 0.01
lev=6; smp=2497

lev=8; smp=1148
o smp-1116]  Average of Monte Carlo

samples against time for

various levels of refine-
ment lev = 6,7,8,9,
and meshsize h = 1/2'*".

Sample number smp

lev=6; sSmp=2497
lev=7; smp=1646
lev=8; smp=1148

e-osmp1116]  are rejected if annihila-

differs with lev. Samples

tion/nucleation occurs.
Variance against time
for the various levels. As

time grows, variance ac-
curacy deteriorates.
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Simulations vs. theory

log(var[U}] /t;) vs. loge plot for v = 0.0 at various times ¢; = to 10’

log(g)-log(o(t)%) and log(e)*(1+2"y) for =0

ref. slope=1+2%
—©— time 0.00152587
—8— time 0.0152587
—6— time 0.152587
—— time 1.52587
—9— time 15.2587

Theoretical slope
(predicted by
[Funaki, 1995] and
[Brassesco et al., 1995])
is 1+ 2.

Plotted in orange refer-
ence line

As ¢ — 0 slope im-

proves.
Meshsize h = 1/512.
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e Stability and convergence numerical method for the stochastic
Allen-Cahn in 1d.

e Monte-Carlo type simulations.
e Benchmarking via statistical comparison.

e Adaptivity mandatory (but different from “standard” phase-field
approach) for higher dimensional study.

University of Sussex
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Current investigation [Kossioris et al., 2009]

finite € “exact” solutions

multiple interface convergence
structure of the stochastic solution
colored noise in d > 1

adaptivity

University of Sussex
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Extension to Cahn-Hilliard type equations, Phase-Field, Dendrites.
Other stochastic applications

L]

L]

e Chaos Expansion

* Kolmogorov (Fokker-Plank) equations
L]

Sparse methods

University of Sussex
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