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A problem from dynamic force spectroscopy

» |dea: stretch a molecular bond until it breaks, measure the
force needed.

» Gives information about bond strength.
» Noise enters via thermal fluctuations, measurement errors etc

» Model: (U = potential with minimum a, = loading rate):

dys = ( —U'(ys) + TS)ds + odWs, Yo =a

» Exit problem from a time dependent domain.
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Adiabatic approximation: Kramer's rate theory

dys = (= U'lys) + 7s)ds + odW,,  yo=a

Assume U has a local maximum at b.
For time-independent potential, and small noise, the rate of escape
from a potential barrier of height Ey = U(b) — U(a) is
Ey
k= Apex ( — —)
0 €Xp 20_2
EXpOnential rate: [Arrhenius 1889]. Pl’efactor: [Eyring 1935, Kramers 1940].
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Adiabatic approximation: Kramer's rate theory

dys = ( —U'(ys) + rs)ds + odWs, Yo = a

Assume U has a local maximum at b.
For time-independent potential, and small noise, the rate of escape
from a potential barrier of height Ey = U(b) — U(a) is
Ey
k= Apex ( — —)
0 €Xp 20_2
EXpOnential rate: [Arrhenius 1889]. Pl’efactor: [Eyring 1935, Kramers 1940].

Now assume that the loading rate is also small, and use the
instantaneous rate at all times. Put (with F' = rt)

P(t) = P(bond survived until time t),
P(F) = P(bond survived until force reaches F).

Then
d d 1
&P(t) = —k(t)P(1), EP(F) = *;k(F)P(F)-
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Adiabatic approximation: rate constant

%P(F) — —%k(F)P(F), H(y, F)=U(y) — Fy

Then,
1 E / /
P(F) = exp ( — = | k(F)dF )
™ Jo
Question: how to approximate the time-dependent rate k(F’)?
Recall:
k(F) ~ ¢ P2 B(F) = Hyax(F) — Huin(F).
[Bell '78] First order expansion around F-independent min and max:
1
H(y, ') = U(yx) + 5U" (y=)(y = y+)? — Fy, E(F)~ Ey+ FA,
[Garg '95] Second order expansion around inflection point: F. = U'(y.),
H(y,F) ~ (U(Z/C) - FcyC) —(F — Fe)g+ %UW(ZJC)(Q - yc)3
E(F) ~ const(1 — F/F,)3/?

[Lin et. al., PRL 98 (2007)], [Fridddle, PRL 100 (2008)].
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Adiabatic approximation: consclusions

» Adiabatic approximation means use of large deviation
estimates.

» The Garg model is a mixture of LD and small energy barrier
assumption.

» The details of the potentials do not matter, only certain
characterstics do.

» All models are overdamped.
Surely, the honest way to treat the problem is to investigate a SDE
and consider the distribution of the first exit time from a domain.

This has not been done as far as we know. We do it for a different
model and a different question...
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The basic model

Consider a chain of three particles. One is fixed at z = 0, and one
is pulled at speed €. Their ideal position is at mutual distance a.

x(s) = (0,75,2a(1 +es)) € R? are the positions of the particles.

The middle particle satisfies

H
deg = —%x(xs, es)ds + odW

with initial condition £y = a and time-dependent potential energy
given by
H(z,es) =U(x) + U(2a(1 +€s) — z).

U is a pair potential.

V. Betz (Warwick) Breaking a chain of particles



The basic model

Consider a chain of three particles. One is fixed at z = 0, and one
is pulled at speed €. Their ideal position is at mutual distance a.

x(s) = (0,75,2a(1 +es)) € R? are the positions of the particles.
The middle particle satisfies

H
dz, = —%x(xs, es)ds + odW

with initial condition £y = a and time-dependent potential energy
given by
H(z,es) =U(x) + U(2a(1 +€s) — z).

U is a pair potential.

Question 1: On which side does the chain break first? Note that
the answer is obvious in the deterministic case.

Question 2: To what extent does the potential (modelling
assumption) matter?
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Potentials and breaking criteria
First possibility: Convex,
compact support, e.g.: o

_ Jyl-a?P = -a)® o<y of
U(y) - {0 otherwise

ol
Second possibility: Smooth, ‘ ‘ ‘
compact support, e.g.: Wl : e
—y2e /By g<y<3 B /
U(y) = {0 ! otheri/vise o8 /
-08F /
—10F /
-12p J/
~14F
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Potentials and breaking criteria

First possibility: Convex,
compact support, e.g.:

_Jyl—a)?=@-a)? 0<y<b
U(y) - {0 otherwise

Break when particle hits
support boundary
( = exit time)

Second possibility: Smooth,
compact support, e.g.:

0 otherwise

U) = ;7 e

Break determined by the long
time behaviour of the particle.
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Potentials and breaking criteria
First possibility: Convex,

compact support, e.g.: g‘:
\
Uly) = {(vl-a? —(-a)? 0<y<s z,\\
(y) B otherwise
Break when particle hits \
support boundary i 2 /é
( = exit time) af —
Second possibility: Smooth, ‘ ‘ ‘
compact support, e.g.: b N 2 [
—04l ,f
o 2 e 1/(B=y) 0<y<3 b /
U(y) - {Oy otherz\fvise o /
—o08f /
-10f /
Break determined by the long ol \ /
time behaviour of the particle. aaf \_/

Important difference: In second case, the particle is almost free

just before the chain breaks!
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Convex potentials: results

H
dzg = —%x(fcs, es)ds + odW

Stopping time 7 =inf{t > 0:2; ¢ (2a+t—0,0)}.
Break condition sets:

L={zeC(0,00): 2 =b}, R=Ca(l0,00))\ L.
Theorem (Allmann, B. '09)

1. (Fast pulling):
oy/lhol<egl = lir%]P’(R) =1.
ag—
2. (Slow pulling):

exp(—0 23 < e < 0v/] lno\_l = lin})P(R) =1/2.
ag—r

Note: the threshold is (roughly) ¢ = o.
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Smooth potentials: Breaking criteria

oOH
dzs = —%(xs, es)ds + odW,

Problem: How to characterize breaking?

Idea: Look at long time behaviour. But in the original model this
does not make sense. Our solution: Local version of the evolution
(relative to the midpoint).

dzy = — (22 — eszy — €)ds + odW,
Start the equation at s = —co. Put

L:{:r::tlggoxt:—oo}, R:{:I::tlgglcxt:oo}.
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Smooth potentials: Results

dzy = — (23 — esxy — €)ds 4+ odW,
Start the equation at s = —oo. Put

L:{x:tlgéloxt:foo}, R:{x:tlggomt:oo}.

Theorem (Allmann, B., Hairer '10)

1. (Fast pulling):
oo <xe<xl = lir%IP(R) =1.
ag—r
2. (Slow pulling):
ol < e < a?3y/] lna|_13/6
—  lim,_0P(R) = lim,_,o P(L) = 1/2.

Conclusion: more noise needed to randomize the break location
when pulling at speed «.

V. Betz (Warwick) Breaking a chain of particles



Convex case: Rescaling, centering, localizing

OH
dzg = —%(a:s, es)ds + odW

Rescale time t = ¢s to get

1 o
do; = —E(U'(mt) +U' (2a+t —q))dt + %dWs



Convex case: Rescaling, centering, localizing

OH
dzg = —%(xs, es)ds + odW

Rescale time ¢ = €5 to get

1 o
dzy = —=(U’ U'(2a+t— q))dt + —=dW,
T s( (@) +U' (20 + 1 — q¢))dt + N
Now center around the deterministic solution: v; = x; — z{**, and

write
o

%%
\/g ty

1
dy = E(A(t)yt + b(ye, t))dt +
with
At) = =U"({") = U"(2a+t —af®),  |b(y,t)] < My,

—A(t) is bounded above and away from zero, and so we can
compare with an Ornstein-Uhlenbeck process!
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Convex case: Proof idea
The exit boundary forms a space-time triangle, where the tip is
offset from zero by order . The variance of the process ; is of
order

2 2

t t
“k( / e(s*t)/deS)ng— / 26=0/e 4 n 02,
€ 0 € Jo

This gives the threshold o = ¢.
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Convex case: Proof idea

The exit boundary forms a space-time triangle, where the tip is
offset from zero by order . The variance of the process ; is of
order

2 2
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The actual proof is more involved and uses techniques by Nils
Berglund and Barbara Gentz.
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Smooth case: deterministic solution versus diffusion

1
da = = (= (af —tar) =1)ds + \%th

det we have

det e/lt] fort< — /e
et <
! Ve o for —\e<t< /e

For the deterministic solution x
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Smooth case: deterministic solution versus diffusion

1
dII}t = *(g(l’? — tl’t) - 1>d8 + %th

For the deterministic solution m?ot, we have

w [elll fort< — B
et =
! Ve o for — e <t< /e

The process is approximately free Brownian motion during
—/e € t < /e, and very constrained before that.
So, at t = /&, we have

S2) = S

So the standard deviation is o~ /4. For this to be greater than
V£ we need o > e3/%,
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Smooth case: deterministic solution versus diffusion

1
dII}t = *(g(l‘? — t[lit) — 1>d8 + %th
?ct

For the deterministic solution %", we have

det E/|t| for ¢ < - \E
T -

! A{\@ for — e <t< e

The process is approximately free Brownian motion during
—/e € t < /e, and very constrained before that.
So, at t = /&, we have

S2) = S

So the standard deviation is oe—1/4

VE we need o > £3/4,
The actual proof is unfortunately much more involved, and heavily
uses (and modifies) the machinery of Berglund and Gentz.

. For this to be greater than
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Massive particles: model

dg: = prdt

1
Pdpr = —pydt + —(tr — g} +¢) dt +dW;

Describes the deviation from the midpoint of the massive
particle, approximates the potential to fourth order.

The mass of the particle is 7.

When compared to the previous diffusion constant oe~1/2

have assumed the form o = £2+1/2,

., we

Initial conditions are such that lim; .~ ¢ = limy_,_ pr = 0.
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Massive particles: model

dg: = prdt

1
Pdpr = —pydt + —(tr — g} +¢) dt +dW;

Describes the deviation from the midpoint of the massive
particle, approximates the potential to fourth order.

The mass of the particle is 7.

When compared to the previous diffusion constant oe~1/2

have assumed the form o = £2+1/2,

., we

Initial conditions are such that lim; .~ ¢ = limy_,_ pr = 0.
Question: Does the mass influence the break probability?

Recall: for 5 = oo we have a change of behaviour at o = 1/4.
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Massive particles: small mass
dgr = pdt
1
ePdpy = —pydt + g(tQt — @} +¢)dt + ¥ dW,

Theorem (ABH '10)

Assume [3 > 2. There exist c1,~ > 0 such that for

t1 = c1\/e|Ino| and any to > ty,

1. (Fast Pulling) if & > 1/4 then

lim lim inf P*

: qt
f —> =1
e—0 s——00 {t1 glrtlg to \/Z ’Y} ’

2. (Slow Pulling) if 0 < a < 1/4 then

limlimsup]P’S{ inf 2> ify} =1/2

£0 o0 t1 <t<ta\/t
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Small mass: proof idea

dgr = pr dt
1 .
eldpy = —pydt + g(t @ — g +e)dt + AW,

The idea is a comparison with two overdamped dynamics: For a
set of paths approaching measure one as € — 0, we show

4 <q+e’P<q
with
1
dg = ~(tgF — ()" + (1 £ O(e))) dt + £ W,

with W, the same Brownian motion that drives the massive
equation, and

t
P = e“‘_ﬂ/ o= (t=9)e™? dW;
-7
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Small mass: proof idea

dgr = pr dt
1 .
eldpy = —pydt + g(t @ — g +e)dt + AW,

The idea is a comparison with two overdamped dynamics: For a
set of paths approaching measure one as € — 0, we show

4 <q+e’P<q
with
1
dg = ~(tgF — ()" + (1 £ O(e))) dt + £ W,

with W, the same Brownian motion that drives the massive
equation, and

t
P = e“‘_ﬂ/ o= (t=9)=7" dW,
-T

But what about larger mass?
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Large mass: a linear model

dg; = pydt

1
Pdpy = —pydt + g(t qt +e)dt + e dW;



Large mass: a linear model

dg; = pydt

1
fdp = —prdt+ _(tq  +e)dt+c* AW,

» Note the drastically changed behaviour for ¢ — co.

» The breaking condition is now (intuitively) trivial.
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Large mass: a linear model

dg; = pydt

1
Pdpy = —pydt + g(t qt +e)dt +e*dW;

» Note the drastically changed behaviour for ¢ — co.
» The breaking condition is now (intuitively) trivial.

» There is an explicit solution:
t

q(t) =me1=20)/3 < — Ai(t(e, B)) / e 297" Bi(s(e, B))(ds + e“dW,)

—0o0
t

+ Bi(t(e, B))/

— 0o

e 27977 Ai(s(e, B))(ds + gadW3)>

with s(g, B) = e~ (P35 4 18 /4).
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Large mass: a linear model

dg; = pydt

1
Pdpy = —pydt + g(t qt +e)dt +e*dW;

» Note the drastically changed behaviour for ¢ — co.
» The breaking condition is now (intuitively) trivial.

» There is an explicit solution:

°t ;
q(t) =me(1720)/3 < — Ai(t(e, B)) / e 297" Bi(s(e, 8))(ds + *dW)
t -

+ Bi(t(e, B))/

— 0o

e 27977 Ai(s(e, B))(ds + gadW3)>
with s(g, B) = e~ (P35 4 18 /4).

» The second term is asymptotically dominant.
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Linear model: convergence for large times

't

q(t) =me1=20)/3 <Ai(f(5, B)) / 297" Bi(s(e, 8))(ds + e*dW,)

J —00

t

+ Bi(t(e, B)) / e 27977 Aj(s(e, B))(ds+5°‘dWs)>

— 00

Lemma (ABH '10)

Put
1 eita B

qt) = 7e(0—28)/3 Bi(t(s, B)) * att).

Then lim;_, ¢(t) exists almost surely, and is a Gaussian random

. . _1_1-28 .
variable with mean m = ¢(11P)/3 ¢—13¢ and variance

= g20H(1+B)/3 — L' =28 / P LT R
—0o0
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Asymptotics of Airy integrals

_1.1-2p
m = eHA)B ¢ 13¢
[e.e]
_1.1-28 (1-28)/3 , .
v = g20+(148)/3 o —1¢ / o5 A1(8)2 ds .
—00

Put -
J(p) = / e?Ps Ai%(s) ds .
Lemma
There exist constants ¢; and co such that
(i) limpeo pl/2 e—20°/3 J(p) = ci,

(ii) limy_o p'/? e™20°/3 J(p) = cs.
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Asymptotics of Airy integrals

_1.1-2p
m = eHA)B ¢ 13¢
[e.e]
_1.1-28 (1-28)/3 , .
v = g20+(148)/3 o —1¢ / o5 A1(8)2 ds .
—00

Put -
J(p) = / e?Ps Ai%(s) ds .

— 00

Lemma

There exist constants ¢; and co such that
(i) limpeo pl/2 e—20°/3 J(p) = ci,

(ii) limy_o p'/? e™20°/3 J(p) = cs.

_1.1-28 _ 1 .1-283 28 1 _1.1-28
v(e) = Ce20H1H8)/3 =1 727 L(1-26)/6 (56! _ 20+ F g o~ e
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Asymptotics of Airy integrals

_1.1-2p
m = eHA)B ¢ 13¢
[e.e]
_1.1-28 (1-28)/3 , .
v = g20+(148)/3 o —1¢ / o5 A1(8)2 ds .
—00

Put -
J(p) = / e?Ps Ai%(s) ds .
Lemma
There exist constants ¢; and co such that
(i) limpeo pl/2 e—20°/3 J(p) = ci,

(ii) limy_o p'/? e™20°/3 J(p) = cs.

_1.1-28 _ 1 .1-283 28 1 _1.1-28
v(e) = Ce20H1H8)/3 =1 727 L(1-26)/6 (56! _ 20+ F g o~ e

So, m(e)/+/v(e) = const e~*+1/4 independent of j!
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Linear model: result and discussion

dg; = pydt

1
ePdpy = —pydt + “(tg + o) dt 4" W,

Theorem (ABH '10)

If « > 1/4 then lim._,oliminfs_, o P {limy 00 gt = 400} = 1.

If « < 1/4 then lim._,¢liminfs_, oo P° {lim; o ¢t = o0} =1/2.
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Linear model: result and discussion

dg; = pydt

1
Pdp, = —py dt + g(t @ +¢)dt + e~ dW;

Theorem (ABH '10)

If a > 1/4 then lim._oliminfs_,_ o P* {lim;_,0o ¢t = +o0} = 1.

If « < 1/4 then lim._,¢liminfs_, oo P° {lim; o ¢t = o0} =1/2.

> This seems to be too strong to be expected in general.

» For example, when starting at finite negative time with zero
initial condition, [ starts to play a role: the threshold is
a = (14 min{3,0})/4, works up to § = —1.

» Not clear how much of this survives the addition of a fourth
order term in the potential.
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