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A problem from dynamic force spectroscopy

I Idea: stretch a molecular bond until it breaks, measure the
force needed.

I Gives information about bond strength.

I Noise enters via thermal fluctuations, measurement errors etc.

I Model: (U = potential with minimum a, r = loading rate):

dys =
(
− U ′(ys) + rs

)
ds+ σdWs, y0 = a

I Exit problem from a time dependent domain.
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Adiabatic approximation: Kramer’s rate theory

dys =
(
− U ′(ys) + rs

)
ds+ σdWs, y0 = a

Assume U has a local maximum at b.
For time-independent potential, and small noise, the rate of escape
from a potential barrier of height E0 = U(b)− U(a) is

k = A0 exp
(
− E0

2σ2

)
.

Exponential rate: [Arrhenius 1889]. Prefactor: [Eyring 1935, Kramers 1940].

Now assume that the loading rate is also small, and use the
instantaneous rate at all times. Put (with F = rt)

P (t) = P(bond survived until time t),

P (F ) = P(bond survived until force reaches F).

Then
d

dt
P (t) = −k(t)P (t),

d

dF
P (F ) = −1

r
k(F )P (F ).
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Adiabatic approximation: rate constant

d

dF
P (F ) = −1

r
k(F )P (F ), H(y, F ) = U(y)− Fy

Then,

P (F ) = exp
(
− 1

r

∫ F

0
k(F ′)dF ′

)
.

Question: how to approximate the time-dependent rate k(F ′)?
Recall:

k(F ) ∼ e−E(F )/2σ2
, E(F ) = Hmax(F )−Hmin(F ).

[Bell ’78] First order expansion around F -independent min and max:

H(y, F ) ≈ U(y±) +
1

2
U ′′(y±)(y − y±)2 − Fy, E(F ) ≈ E0 + F∆.

[Garg ’95] Second order expansion around inflection point: Fc = U ′(yc),

H(y, F ) ≈
(
U(yc)− Fcyc

)
− (F − Fc)q + 1

6U
′′′(yc)(y − yc)3

E(F ) ≈ const(1− F/Fc)
3/2

[Lin et. al., PRL 98 (2007)], [Fridddle, PRL 100 (2008)].
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Adiabatic approximation: consclusions

I Adiabatic approximation means use of large deviation
estimates.

I The Garg model is a mixture of LD and small energy barrier
assumption.

I The details of the potentials do not matter, only certain
characterstics do.

I All models are overdamped.

Surely, the honest way to treat the problem is to investigate a SDE
and consider the distribution of the first exit time from a domain.
This has not been done as far as we know. We do it for a different
model and a different question...
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The basic model

Consider a chain of three particles. One is fixed at x = 0, and one
is pulled at speed ε. Their ideal position is at mutual distance a.

x(s) = (0, xs, 2a(1 + εs)) ∈ R3 are the positions of the particles.

The middle particle satisfies

dxs = −∂H
∂x

(xs, εs)ds+ σdWs

with initial condition x0 = a and time-dependent potential energy
given by

H(x, εs) = U(x) + U(2a(1 + εs)− x).

U is a pair potential.

Question 1: On which side does the chain break first? Note that
the answer is obvious in the deterministic case.
Question 2: To what extent does the potential (modelling
assumption) matter?
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Potentials and breaking criteria
First possibility: Convex,
compact support, e.g.:

U(y) =
{

(|y| − a)2 − (b− a)2 0 6 y 6 b

0 otherwise

Break when particle hits
support boundary
( ⇒ exit time)

1 2 3 4
x

-1

1

2

3

UHxL

Second possibility: Smooth,
compact support, e.g.:

U(y) =
{
−y2 e−1/(3−y) 0 6 y 6 3

0 otherwise

Break determined by the long
time behaviour of the particle.

1 2 3 4

-1.4

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

Important difference: In second case, the particle is almost free
just before the chain breaks!
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Convex potentials: results

dxs = −∂H
∂x

(xs, εs)ds+ σdWs

Stopping time τ = inf{t > 0 : xt /∈ (2a+ t− b, b)}.
Break condition sets:

L = {x ∈ Ca([0,∞)) : xτ = b}, R = Ca([0,∞)) \ L.

Theorem (Allmann, B. ’09)

1. (Fast pulling):

σ
√
| lnσ| � ε� 1 =⇒ lim

σ→0
P(R) = 1.

2. (Slow pulling):

exp(−σ−2/3)� ε� σ
√
| lnσ|

−1
=⇒ lim

σ→0
P(R) = 1/2.

Note: the threshold is (roughly) ε = σ.
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Smooth potentials: Breaking criteria

dxs = −∂H
∂x

(xs, εs)ds+ σdWs

Problem: How to characterize breaking?
Idea: Look at long time behaviour. But in the original model this
does not make sense. Our solution: Local version of the evolution
(relative to the midpoint).

dxs = −(x3s − εsxs − ε)ds+ σdWs

Start the equation at s = −∞. Put

L = {x : lim
t→∞

xt = −∞}, R = {x : lim
t→∞

xt =∞}.
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Smooth potentials: Results

dxs = −(x3s − εsxs − ε)ds+ σdWs

Start the equation at s = −∞. Put

L = {x : lim
t→∞

xt = −∞}, R = {x : lim
t→∞

xt =∞}.

Theorem (Allmann, B., Hairer ’10)

1. (Fast pulling):

σ4/3| lnσ|2/3 � ε� 1 =⇒ lim
σ→0

P(R) = 1.

2. (Slow pulling):

σ2| lnσ|3 � ε� σ4/3
√
| lnσ|

−13/6

=⇒ limσ→0 P(R) = limσ→0 P(L) = 1/2.

Conclusion: more noise needed to randomize the break location
when pulling at speed ε.
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Convex case: Rescaling, centering, localizing

dxs = −∂H
∂x

(xs, εs)ds+ σdWs

Rescale time t = εs to get

dxt = −1

ε
(U ′(xt) + U ′(2a+ t− qt))dt+

σ√
ε

dWs

Now center around the deterministic solution: yt = xt − xdett , and
write

dyt =
1

ε
(A(t)yt + b(yt, t))dt+

σ√
ε
Wt,

with

A(t) = −U ′′(xdett )− U ′′(2a+ t− xdett ), |b(y, t)| 6My2.

−A(t) is bounded above and away from zero, and so we can
compare with an Ornstein-Uhlenbeck process!
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Convex case: Proof idea
The exit boundary forms a space-time triangle, where the tip is
offset from zero by order ε. The variance of the process yt is of
order

σ2

ε
E
(∫ t

0
e(s−t)/ε dWs

)2
=
σ2

ε

∫ t

0
e2(s−t)/ε ds ≈ σ2.

This gives the threshold σ = ε.

d+HtL

d-HtL

D

-D
0.1 0.2 0.3 0.4 0.5

t

-1.0

-0.5

0.5

1.0

y

T

d+HtL + D2

d-HtL + D2

-d-HtL - D2

0.1 0.2 0.3 0.4 0.5

-1.0

-0.5

0.5

1.0

The actual proof is more involved and uses techniques by Nils
Berglund and Barbara Gentz.
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Smooth case: deterministic solution versus diffusion

dxt = −
(1

ε
(x3t − txt)− 1

)
ds+

σ√
ε

dWt

For the deterministic solution xdett , we have

xdett �

{
ε/|t| for t 6 −

√
ε

√
ε for −

√
ε 6 t 6

√
ε

The process is approximately free Brownian motion during
−
√
ε� t�

√
ε, and very constrained before that.

So, at t =
√
ε, we have

E(x2√ε) ≈
σ2

ε
E(W 2

ε1/2
) =

σ2

ε1/2

So the standard deviation is σε−1/4. For this to be greater than√
ε we need σ � ε3/4.

The actual proof is unfortunately much more involved, and heavily
uses (and modifies) the machinery of Berglund and Gentz.
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Massive particles: model

dqt = pt dt

εβdpt = −pt dt+
1

ε
(t qt − q3t + ε) dt+ εα dWt

I Describes the deviation from the midpoint of the massive
particle, approximates the potential to fourth order.

I The mass of the particle is εβ.

I When compared to the previous diffusion constant σε−1/2, we
have assumed the form σ = εα+1/2.

I Initial conditions are such that limt→−∞ qt = limt→−∞ pt = 0.

I Question: Does the mass influence the break probability?

I Recall: for β =∞ we have a change of behaviour at α = 1/4.
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Massive particles: small mass

dqt = pt dt

εβdpt = −pt dt+
1

ε
(t qt − q3t + ε) dt+ εα dWt

Theorem (ABH ’10)

Assume β > 2. There exist c1, γ > 0 such that for
t1 = c1

√
ε| lnσ| and any t2 > t1,

1. (Fast Pulling) if α > 1/4 then

lim
ε→0

lim inf
s→−∞

Ps
{

inf
t1 6 t 6 t2

qt√
t
> γ

}
= 1 ,

2. (Slow Pulling) if 0 < α < 1/4 then

lim
ε→0

lim sup
s→−∞

Ps
{

inf
t1 6 t 6 t2

qt√
t
> ±γ

}
= 1/2
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Small mass: proof idea

dqt = pt dt

εβdpt = −pt dt+
1

ε
(t qt − q3t + ε) dt+ εα dWt

The idea is a comparison with two overdamped dynamics: For a
set of paths approaching measure one as ε→ 0, we show

q−t 6 qt + εβPt 6 q+t

with

dq±t =
1

ε
(tq±t − (q±t )3 + ε(1±O(ε))) dt+ εα dWt

with Wt the same Brownian motion that drives the massive
equation, and

Pt = εα−β
∫ t

−T
e−(t−s)ε

−β
dWs

But what about larger mass?
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Large mass: a linear model

dqt = pt dt

εβdpt = −pt dt+
1

ε
(t qt−q3t + ε) dt+ εα dWt

I Note the drastically changed behaviour for t→∞.

I The breaking condition is now (intuitively) trivial.

I There is an explicit solution:

q(t) =πε(1−2β)/3
(
−Ai(t(ε, β))

∫ t

−∞
e−

1
2
(t−s)ε−β Bi(s(ε, β))(ds+ εαdWs)

+ Bi(t(ε, β))

∫ t

−∞
e−

1
2
(t−s)ε−β Ai(s(ε, β))(ds+ εαdWs)

)
with s(ε, β) = ε−(1+β)/3(s+ ε1−β/4).

I The second term is asymptotically dominant.
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Linear model: convergence for large times

q(t) =πε(1−2β)/3
(
−Ai(t(ε, β))

∫ t

−∞
e−

1
2
(t−s)ε−β Bi(s(ε, β))(ds+ εαdWs)

+ Bi(t(ε, β))

∫ t

−∞
e−

1
2
(t−s)ε−β Ai(s(ε, β))(ds+ εαdWs)

)
Lemma (ABH ’10)

Put

q̃(t) =
1

πε(1−2β)/3
e

1
2
tε−β

Bi(t(ε, β))
q(t) .

Then limt→∞ q̃(t) exists almost surely, and is a Gaussian random

variable with mean m = ε(1+β)/3 e−
1
12
ε1−2β

and variance

v = ε2α+(1+β)/3 e−
1
4
ε1−2β

∫ ∞
−∞

esε
(1−2β)/3

Ai(s)2 ds .
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Asymptotics of Airy integrals

m = ε(1+β)/3 e−
1
12
ε1−2β

v = ε2α+(1+β)/3 e−
1
4
ε1−2β

∫ ∞
−∞

esε
(1−2β)/3

Ai(s)2 ds .

Put

J(p) =

∫ ∞
−∞

e2ps Ai2(s) ds .

Lemma

There exist constants c1 and c2 such that

(i) limp→∞ p
1/2 e−2p

3/3 J(p) = c1,

(ii) limp→0 p
1/2 e−2p

3/3 J(p) = c2.

v(ε) = Cε2α+(1+β)/3 e−
1
4
ε1−2β

ε(1−2β)/6 e
1
12
ε1−2β

= Cε2α+
2β
3
+ 1

6 e−
1
6
ε1−2β

So, m(ε)/
√
v(ε) = const ε−α+1/4, independent of β!
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ε1−2β

ε(1−2β)/6 e
1
12
ε1−2β

= Cε2α+
2β
3
+ 1

6 e−
1
6
ε1−2β

So, m(ε)/
√
v(ε) = const ε−α+1/4, independent of β!
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Asymptotics of Airy integrals
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Linear model: result and discussion

dqt = pt dt

εβdpt = −pt dt+
1

ε
(t qt + ε) dt+ εα dWt

Theorem (ABH ’10)

If α > 1/4 then limε→0 lim infs→−∞ Ps {limt→∞ qt = +∞} = 1 .

If α < 1/4 then limε→0 lim infs→∞ Ps {limt→∞ qt = ±∞} = 1/2 .

I This seems to be too strong to be expected in general.

I For example, when starting at finite negative time with zero
initial condition, β starts to play a role: the threshold is
α = (1 + min{β, 0})/4, works up to β = −1.

I Not clear how much of this survives the addition of a fourth
order term in the potential.
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