Random perturbations of critical equilibria application to hysteresis and conduction

Gioia Carinci

Università degli studi dell'Aquila

Fourth Workshop on Random Dynamical Systems Bielefeld, 3 - 5 November 2010

Gioia Carinci (Università degli studi dell'Aquila)

Random perturbations of critical equilibria

November 2010 1 / 22

Image: A math a math

Dynamical hysteresis appears when a time dependent magnetic field h is applied to a ferromagnet whose temperature is kept fixed below the critical value

Dynamical hysteresis appears when a time dependent magnetic field h is applied to a ferromagnet whose temperature is kept fixed below the critical value

• Berglund & Gentz, 2002 [Langevin equation $dm = f(m, h)dt + \sigma dw(t)$]

$$h(t) = -A\cos(\omega t)$$

(D) (A) (A) (A)

Dynamical hysteresis appears when a time dependent magnetic field h is applied to a ferromagnet whose temperature is kept fixed below the critical value

• Berglund & Gentz, 2002 [Langevin equation $dm = f(m, h)dt + \sigma dw(t)$]

- $h(t) = -A\cos(\omega t)$
 - large ω [B. & G.]
 - small $A \rightarrow$ no transition

Dynamical hysteresis appears when a time dependent magnetic field h is applied to a ferromagnet whose temperature is kept fixed below the critical value

• Berglund & Gentz, 2002 [Langevin equation $dm = f(m, h)dt + \sigma dw(t)$]

$$h(t) = -A\cos(\omega t)$$

- large ω [B. & G.]
 - small $A \rightarrow$ no transition
 - large $A \rightarrow$ hysteresis cycle of area $\mathcal{A}_0 + \mathcal{O}(\omega^{2/3})$

Dynamical hysteresis appears when a time dependent magnetic field h is applied to a ferromagnet whose temperature is kept fixed below the critical value

• Berglund & Gentz, 2002 [Langevin equation $dm = f(m, h)dt + \sigma dw(t)$]

- $h(t) = -A\cos(\omega t)$
 - large ω [B. & G.]
 - $\bullet \ {\rm small} \ A \ \ \rightarrow \ \ {\rm no} \ {\rm transition}$
 - large $A \rightarrow$ hysteresis cycle of area $\mathcal{A}_0 + \mathcal{O}(\omega^{2/3})$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

• small ω [B. & G.] hysteresis cycle of area $\mathcal{A}_0 - \mathcal{O}(\sigma^{4/3})$

Dynamical hysteresis appears when a time dependent magnetic field h is applied to a ferromagnet whose temperature is kept fixed below the critical value

• Berglund & Gentz, 2002 [Langevin equation $dm = f(m, h)dt + \sigma dw(t)$]

- $h(t) = -A\cos(\omega t)$
 - large ω [B. & G.]
 - small $A \rightarrow$ no transition
 - large $A \rightarrow$ hysteresis cycle of area $\mathcal{A}_0 + \mathcal{O}(\omega^{2/3})$

A D A A B A A B A A B A

- small ω [B. & G.] hysteresis cycle of area $\mathcal{A}_0 - \mathcal{O}(\sigma^{4/3})$
- [mean field Ising model with Glauber dynamics]
 - critical ω and critical $A \rightarrow$ random hysteresis cycles

The Model

The Mean Field Ising Model

Let Λ be a bounded region of \mathbb{Z}^d , we denote by σ an Ising spin configuration in Λ .

$$\sigma = \{\sigma(i), i \in \Lambda\}, \quad \sigma : \Lambda \to \{-1, +1\}$$

and by $\mathcal{X} = \{-1, +1\}^N$ the phase space.

Let $N = |\Lambda|$, the magnetization density of the configuration σ is

$$m_N = m_N(\sigma) := \frac{1}{N} \sum_{i \in \Lambda} \sigma(i)$$

 m_N takes values in $\mathcal{M}_N := \frac{1}{N} \left\{ -N, -N+2, ..., N-2, N \right\}.$

Let h be the external magnetic field, the mean field hamiltonian is

$$H_{h,N}(\sigma) := N\left(-\frac{m_N(\sigma)^2}{2} - hm_N(\sigma)\right)$$

Let $\beta > 0$ be the inverse temperature, at the equilibrium the system is described by the mean field Gibbs measure

$$G_{\beta,h,N}(\sigma) := \frac{e^{-\beta H_{h,N}(\sigma)}}{Z_{\beta,h,N}}, \qquad Z_{\beta,h,N} := \sum_{\sigma \in \mathcal{X}_{m,N}} e^{-\beta H_{h,N}(\sigma)}$$

 $\mathcal{X}_{m,N}$ the canonical ensemble of magnetization *m*.

The canonical free energy density is

$$\mathcal{F}_{\beta,h,m,N} = -\frac{1}{\beta N} \log Z_{\beta,h,N}$$

For any $m \in (-1, 1)$,

$$\lim_{N \to \infty} \mathcal{F}_{\beta,h,m,N} = \phi_{\beta,h}(m),$$

$$\phi_{\beta,h}(m) = \left\{ -\frac{m^2}{2} - hm \right\} - \frac{1}{\beta}I(m)$$
$$I(m) = -\frac{1-m}{2}\log\frac{1-m}{2} - \frac{1+m}{2}\log\frac{1+m}{2}$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

h = 0

The critical points of $\phi_{\beta,h}(m), m_{\pm}(h)$ and $m_0(h)$ satisfy the

mean field equation $F(m,h) := -m + \tanh\{\beta(m+h)\} = 0$

Gioia Carinci (Università degli studi dell'Aquila)

Random perturbations of critical equilibria

November 2010 5 / 22

 $h_c > h > 0$

The critical points of $\phi_{\beta,h}(m)$, $m_{\pm}(h)$ and $m_0(h)$ satisfy the

mean field equation $F(m,h) := -m + \tanh\{\beta(m+h)\} = 0$

Gioia Carinci (Università degli studi dell'Aquila)

 $h = h_c$

The critical points of $\phi_{\beta,h}(m)$, $m_{\pm}(h)$ and $m_0(h)$ satisfy the

mean field equation $F(m,h) := -m + \tanh\{\beta(m+h)\} = 0$

Gioia Carinci (Università degli studi dell'Aquila)

 $h > h_c$

The critical points of $\phi_{\beta,h}(m)$, $m_{\pm}(h)$ and $m_0(h)$ satisfy the

mean field equation $F(m,h) := -m + \tanh\{\beta(m+h)\} = 0$

Gioia Carinci (Università degli studi dell'Aquila)

Glauber Dynamics

This is the Markov process $\sigma(t)$ on $\{-1,1\}^N$ with generator

$$Lf(\sigma) := \sum_{i=1}^{N} c(i,\sigma;h) \left(f(\sigma_i) - f(\sigma) \right)$$

with $\sigma^{(i)}$ the configuration obtained from σ by flipping the spin at i and

$$c(i,\sigma;h) = \frac{e^{-\beta[H_{h,N}(\sigma^{(i)}) - H_{h,N}(\sigma)]}}{e^{-\beta H_{h,N}(\sigma^{(i)})} + e^{-\beta H_{h,N}(\sigma)}}$$

the Glauber spin flip intensity at *i* when the state is σ .

 $c(i,\sigma;h) dt$ is the probability that the spin at *i* flips in the time interval [t, t + dt] knowing that at time *t* the configuration is σ .

• the Gibbs measure is invariant for the Glauber dynamics

A D A A B A A B A A B A

The macroscopic Mean Field dynamics

The infinite volume dynamics is governed by the ODE

$$\frac{dm}{dt} = F(m,h), \qquad F(m,h) = -m + \tanh\{\beta(m+h)\}$$
(1)

Let h(t) be a smooth function of t, $m_N(t) = m_N(\sigma(t))$ the markov process induced by $\sigma(t)$ which starts from $m_N \in \mathcal{M}_N$, $m_N \to m \in [-1, 1]$ as $N \to \infty$.

Theorem

For any $\delta > 0$ and any T > 0,

$$\lim_{N \to \infty} \mathbf{P}_N \left\{ \sup_{t \le T} \left| m_N(t) - \bar{m}(t) \right| \ge \delta \right\} = 0$$

where $\bar{m}(t)$ is the unique solution of (1) with $\bar{m}(0) = m$.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

The adiabatic limit

Let the magnetic field oscillate with frequency ω and width A

$$h(t) := -A\cos t, \qquad h_{\omega}(t) = h(\omega t),$$

let $\bar{m}_{\omega}(t)$ be the solution of $\dot{m} = F(m, h_{\omega})$ with $\bar{m}_{\omega}(0) = m_{+}(h_{\omega}(0))$.

In the adiabatic regime $\omega \simeq 0$

• $A < h_c + \mathcal{O}(\omega)$ $\bar{m}_{\omega}(t)$ tracks $m_+(h_{\omega}(t))$ at a distance $\mathcal{O}(\omega)$

The adiabatic limit

Let the magnetic field oscillate with frequency ω and width A

$$h(t) := -A\cos t, \qquad h_{\omega}(t) = h(\omega t),$$

let $\bar{m}_{\omega}(t)$ be the solution of $\dot{m} = F(m, h_{\omega})$ with $\bar{m}_{\omega}(0) = m_{+}(h_{\omega}(0))$.

In the adiabatic regime $\omega \simeq 0$

- $A < h_c + \mathcal{O}(\omega)$ $\bar{m}_{\omega}(t)$ tracks $m_+(h_{\omega}(t))$ at a distance $\mathcal{O}(\omega)$
- $A > h_c + \mathcal{O}(\omega)$

 $\bar{m}_{\omega}(t)$ tracks an hysteresis loop of area $\mathcal{A}_0 + \mathcal{O}(\omega^{2/3})$

The adiabatic limit

If $A = h_c$ there is not hysteresis. Solutions stay $\sqrt{\omega}$ above the bifurcation point.

Theorem

$$et A = h_c, \quad then \text{ for any } \quad \tau > 0, \qquad \lim_{\omega \to 0} \sup_{t \le \omega^{-1}\tau} \left| \bar{m}_{\omega}(t) - m_+(h_{\omega}(t)) \right| = 0$$

Slower oscillations

What happens for $A = h_c$ when the frequency ω depends on N?

- the relevant order of times is ω^{-1}
- for large but finite N stochastic fluctuations of intensity $N^{-1/2}$ appear

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Slower oscillations

What happens for $A = h_c$ when the frequency ω depends on N?

- the relevant order of times is ω^{-1}
- for large but finite N stochastic fluctuations of intensity $N^{-1/2}$ appear
- let $\mathcal{L}_{h_{\omega}}$ be the generator of $m_N(t)$, the dynamics is governed by

$$m_N(t) = m_N(0) + \int_0^t \mathcal{L}_{h\omega} m_N(s) ds + M_N(t)$$

where $M_N(t)$ is a martingale

Previous results

The issue has been modeled in

- Berglund N., Gentz B. 2002, Ann. Appl. Prob. 4 12
- Berglund N., Gentz B. 2002, Nonlinearity 15

by the stochastic ODE

$$dm = f(m, h_{\omega})dt + \sigma dw(t)$$

where f derives from a periodically forced double well, e.g. $f(m,h) = m - m^3 + h$.

If
$$A = h_c$$
 and $\sigma = N^{-\frac{1}{2}}$ then

- ullet for $\omega >> N^{-rac{2}{3}} ext{ } o$ no transition during one cycle
- for $N^{-\frac{2}{3}} >> \omega >> e^{-N^{-\frac{2}{3}}} \rightarrow$ hysteresis cycle
- ullet for $\ \omega << e^{-N^{-rac{2}{3}}} \ o$ poorly localized paths

in the infinite volume limit.

The result

 $A = h_c$ and $\omega_N = \mathcal{O}(N^{-\frac{2}{3}}) \rightarrow$ the dynamics remains stochastic in the hydrodynamic limit hysteresis loops become random

There exists $p \in (0, 1)$ such that, at each cycle

- with probability p there is transition
- with probability 1-p there is no transition

in the hydrodynamic limit.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

The result

 $A = h_c$ and $\omega_N = O(N^{-\frac{2}{3}}) \rightarrow$ the dynamics remains stochastic in the hydrodynamic limit hysteresis loops become random

There exists $p \in (0, 1)$ such that, at each cycle

- with probability p there is transition
- with probability 1-p there is no transition

in the hydrodynamic limit.

Moreover $p = \mathbf{P} \{ \text{there is } t : Y(t) = -\infty \}$

with Y(t) solution of the problem

$$dY = (t^2 - Y^2)dt + \xi_\beta dw_t, \qquad \lim_{t \to -\infty} (Y(t) + t) = 0$$

for a suitable $\xi_{\beta} > 0$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Langevin equation in an oscillating potential

We deal with a particle moving in a periodic potential in the presence of viscosity subject to a stochastic noise and to an additional constant external force.

The equation of motion for the coordinate $x(t) \in \mathbb{R}$ of the particle is the Langevin equation:

$$\ddot{x} + \gamma \, \dot{x} + V_0'(x) = \alpha + \epsilon \, \dot{w}(t)$$

- $V_0(x)$ is a periodic potential
- $\gamma > 0$ is the viscosity coefficient
- $\alpha > 0$ is the external force
- ϵ is the noise intensity

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

The total potential is $V(x) = V_0(x) - \alpha x$

The equation of motion is $\ddot{x} + \gamma \dot{x} + V'(x) = \epsilon \dot{w}(t)$

equivalent to the first order equations system

$$\left\{ \begin{array}{l} \dot{x} = p \\ \dot{p} = -\gamma p - V'(x) + \epsilon \dot{w} \end{array} \right.$$

Consider the deterministic system ($\epsilon = 0$)

$$\begin{cases} \dot{X} = P\\ \dot{P} = -\gamma P - V'(X) \end{cases}$$
(2)

イロン イヨン イヨン イヨン

Consider the deterministic system ($\epsilon = 0$)

$$\begin{cases} \dot{X} = P\\ \dot{P} = -\gamma P - V'(X) \end{cases}$$
(2)

for $\gamma = \alpha = 0$ solutions are periodic

• for $\alpha > 1$ there are only running solutions

Р

- for $\alpha > 1$ there are only running solutions
- $\bullet \ \text{for} \ \alpha \leq 1$
 - $\bullet~{\rm for}~\gamma$ large enough there are only locked solutions

- for $\alpha > 1$ there are only running solutions
- for $\alpha \leq 1$
 - for γ large enough there are only locked solutions
 - for γ small enough both solutions coexit

イロン イヨン イヨン イヨ

- for $\alpha > 1$ there are only running solutions
- $\bullet \ \text{ for } \alpha \leq 1$
 - for γ large enough there are only locked solutions
 - for γ small enough both solutions coexit

For $\alpha \leq \alpha_{\gamma}$

for any k there exists a critical solution $(X_k^*(t), P_k^*(t))$ such that

 $\lim_{t\to\infty} X_k^*(t) = 2k\pi \qquad \text{and} \qquad \lim_{t\to\infty} P_k^*(t) = 0$

Gioia Carinci (Università degli studi dell'Aquila)

For $\alpha = \alpha_{\gamma}$

the critical solution is heteroclinic, i.e.

$$\lim_{t \to \infty} X_k^*(t) = 2k\pi, \qquad \qquad \lim_{t \to \infty} P_k^*(t) = 0$$

$$\lim_{t \to 0} X_k^*(t) = 2(k-1)\pi \quad \text{and} \quad \lim_{t \to 0} P_k^*(t) = 0$$

<ロ> <同> <同> < 同> < 同>

The problem

Let γ small enough and $\alpha = \alpha_{\gamma}$, and denote by $\wp_k^*(x)$ the k-th heteroclinic orbit in the phase space, $\wp_k^*(X_k^*(t)) = P_k(t)$.

Consider the problem

$$\begin{cases} \dot{x} = p & x(0) = -\pi\\ \dot{p} = -\gamma p - V'(x) + \epsilon \dot{w} & p(0) = p_0 \end{cases}$$
(3)

with
$$|p_0 - \wp_0^*(-\pi)| \le \epsilon^{1+\delta}$$
 for some $\delta > 0$

イロン イヨン イヨン イヨン

The problem

Let γ small enough and $\alpha = \alpha_{\gamma}$, and denote by $\varphi_{k}^{*}(x)$ the k-th heteroclinic orbit in the phase space, $\wp_k^*(X_k^*(t)) = P_k(t)$.

Consider the problem

$$\begin{cases} \dot{x} = p & x(0) = -\pi \\ \dot{p} = -\gamma p - V'(x) + \epsilon \dot{w} & p(0) = p_0 \end{cases}$$
(3)

 $|p_0 - \wp_0^*(-\pi)| < \epsilon^{1+\delta}$ with for some $\delta > 0$

then, in the limit as $\epsilon \to 0$,

- at each time the probability for the particle to get across the next well is 1/2
- the random variable associated to the number of wells crossed by the particle has a geometric distribution of parameter 1/2
- the particle will finally be trapped in one of the wells

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

Dynamics around the criticalities

A convenient choice of variables in a neighborhood of criticalities is given by

 $z_k(t) := p(t) - \lambda^-(x(t) - 2k\pi) \qquad v_k(t) := p(t) - \lambda^+(x(t) - 2k\pi)$

with

$$\lambda^- := \frac{d}{dx} \wp_k^*(2k\pi^-) \qquad \text{and} \qquad \lambda^+ := \frac{d}{dx} \wp_{k+1}^*(2k\pi^+)$$

- at the beginning of the *k*-th critical interval $z_k(t)$ approximates the deviation in the phase plane from the *k*-th heteroclinic orbit $\wp_k^*(x)$
- at the end of the *k*-th critical interval $v_k(t)$ approximates the deviation in the phase plane from the k + 1-th heteroclinic orbit $\wp_{k+1}^*(x)$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Dynamics around the criticalities

A convenient choice of variables in a neighborhood of criticalities is given by

 $z_k(t) := p(t) - \lambda^-(x(t) - 2k\pi)$ $v_k(t) := p(t) - \lambda^+(x(t) - 2k\pi)$

with

$$\lambda^- := \frac{d}{dx} \wp_k^*(2k\pi^-) \qquad \text{and} \qquad \lambda^+ := \frac{d}{dx} \wp_{k+1}^*(2k\pi^+)$$

- at the beginning of the *k*-th critical interval $z_k(t)$ approximates the deviation in the phase plane from the *k*-th heteroclinic orbit $\wp_k^*(x)$
- at the end of the *k*-th critical interval $v_k(t)$ approximates the deviation in the phase plane from the k + 1-th heteroclinic orbit $\wp_{k+1}^*(x)$

The events "the k-th criticality has been/not been crossed" can be expressed by

$$\{z_k(T_k) \ge 0\}$$

 T_k the first exit time from the k-th critical interval

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

The dynamics in a neighborhood of criticalities is approximated by the linear system

$$\begin{cases} \dot{z} = \lambda^+ z + \epsilon \dot{w} \\ \dot{v} = \lambda^- v + \epsilon \dot{w} \end{cases}$$
(4)

let S_k be the first hitting time in the k-th critical interval, then

$$z_k(t) \simeq z_k(S_k) e^{\lambda^+(t-S_k)} + \epsilon e^{\lambda^+ t} \int_{S_k}^t e^{-\lambda^+ s} dw_s$$

and

$$v_k(t) \simeq v_k(S_k) e^{\lambda^-(t-S_k)} + \epsilon e^{\lambda^- t} \int_{S_k}^t e^{-\lambda^- s} dw_s$$

where

$$\lambda^{\pm} = \frac{-\gamma \pm \sqrt{\gamma^2 + 4\sqrt{1 - \alpha_{\gamma}^2}}}{2}, \qquad \qquad \lambda^{\pm} = \pm 1 + \mathcal{O}(\gamma) \qquad \text{as} \qquad \gamma \to 0$$

The main result

Theorem

There exists c > 0 such that, for any $\epsilon > 0$ small enough,

$$\left|\mathbf{P}_{\epsilon}\left\{z_{k}(T_{k}) \gtrless 0 \mid z_{k-1}(T_{k-1}) > 0\right\} - \frac{1}{2}\right| \le c\epsilon^{\theta_{\gamma}}$$

with

$$\theta_{\gamma} = \frac{|\lambda^{-}|}{\lambda^{+}} - 1 = \mathcal{O}(\gamma) \quad as \quad \gamma \to 0$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

The Result

The main result

Theorem

There exists c > 0 such that, for any $\epsilon > 0$ small enough,

$$\left|\mathbf{P}_{\epsilon}\left\{z_{k}(T_{k}) \geq 0 \mid z_{k-1}(T_{k-1}) > 0\right\} - \frac{1}{2}\right| \leq c\epsilon^{\theta_{\gamma}}$$

with

$$\theta_{\gamma} = \frac{|\lambda^{-}|}{\lambda^{+}} - 1 = \mathcal{O}(\gamma) \quad \text{as} \quad \gamma \to 0$$

Let \mathcal{N} be the r.v. associated to the number of wells crossed by (x(t), p(t))

$$\mathcal{N} := \inf\{k \ge 0 : z_k(T_k) < 0\} \in \mathbb{N} \cup \{0\}$$

Theorem

For any fixed $k \in \mathbb{N} \cup \{0\}$

$$\lim_{\epsilon \to 0} \mathbf{P}_{\epsilon} \left\{ \mathcal{N} = k \right\} = \frac{1}{2^{k+1}}$$

(5)

A B >
A B >
A