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semimartingale models for the membrane potential in a neuron

between successive spikes

huge litterature modelling the membrane potential between successive spikes as
a time homogeneous diffusion, e.g. mean-reverting OU
(overviews in Tuckwell 89 and Lansky-Sato 99, see also Lansky-Sacerdote 01, Ditlevsen-Lansky 05, ...)

or mean reverting CIR
(Lansky-Lanska 87, Giorno-Lansky-Nobile-Ricciardi 88, Lansky-Sacerdote-Tomassetti 95, Ditlevsen-Lansky 06, Brodda-Höpfner 06, ...)

in many data sets, evidence that input terms in the drift are strongly varying
with time, and some indication that there might be jumps ...

look to Ito semimartingale models for the membrane potential between
successive spikes, and ask questions :

CIR, OU, ... models, continuous or with jumps, time-homogeneous or not

model validation relative to shape of diffusion coefficient and drift

model validation relative to the semimartingale hypothesis
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our data

example 1 : the membrane potential in a pyramidal neuron emitting spikes
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data : Kilb and Luhmann, Institute of Physiology, University of Mainz
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example 2 : one pyramidal neuron under different experimental conditions,
network activity stimulated by potassium (K) bath, increasing concentration
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’Zelle_3’: one pyramidal neuron, cortical slice, potassium (K) bath of increasing concentration

data : Luhmann and Kilb, Institute of Physiology, University of Mainz
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CIR type model

CIR type model (Vt)t≥0 for the membrane potential between successive spikes :

dVt = (f (t)− Vt) τdt +

∫
y µ(dt, dy) + σ

√
(Vt − K0)+

√
τdWt

with constants σ, τ > 0, reference levels K0 < KR < KE

KE : excitation threshold

KR : resting level ( := mean value for m.p. in absence of external stimulus)

K0 : lower bound for possible values of the membrane potential

deterministic functions of time

f : [0,∞)→ [KR ,KE ] , f̃ : [0,∞)→ [0,C ]

modelling external stimulus or degree of activity in the network, and

PRM µ(dt, dy) on [0,∞)×(0, c] with intensity f̃ (t) τdt ν(dy)

with measure ν(dy) σ-finite on (0, c] such that
∫

(0,c]
y ν(dy) <∞

(Poisson random measure µ independent of Brownian motion W ;
rate of decay τ ←→ ’membrane time constant’ 1

τ
for biologists)
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time inhomogeneous jump diffusion (Vt)t as defined above :

proposition 1 : pathwise uniqueness holds, and the m.p. shifted by K0

(Vt − K0)t≥0

allows for explicit Laplace transforms

λ −→ E
(

e−λ(Vt−K0) | (Vs − K0) = x
)

=

∫
e−λyPs,t(x , dy)

for the transition probabilities, given for fixed x , s < t by

λ −→ exp

(
−xΨs,t(λ) −

∫ t

s

{
[f (v)−K0] Ψv,t(λ) + f̃ (v) Ψ̃v,t(λ)

}
τdv

)
Ψv,t(λ) =

e−τ(t−v) λ

1 + λσ
2

2
(1−e−τ(t−v))

, Ψ̃v,t(λ) =

∫
[1−e−yΨv,t (λ)] ν(dy)

in analogy to results of Kawazu-Watanabe TPA 71 for time-homogeneous case
(Kawazu-Watanabe 71, Dawson-Li 06, Fu-Li 08, Höpfner 09)
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remark 1 : i) special case f (·) ≡ f , f̃ (·) ≡ f̃ constant : then jump diffusion
(Vt − K0)t≥0 has invariant law with LT

λ −→ exp

(
−
∫ t

−∞

{
[f−K0] Ψv,t(λ) + f̃ Ψ̃v,t(λ)

}
τdv

)
independent of t and τ : first term is LT of the Gamma law Γ

(
2
σ2 [f−K0] , 2

σ2

)
,

second term corresponds to a space-time Poisson mixture of decay processes

(’classical’ mean reverting CIR models : f (·) ≡ f , no jumps f̃ (·) ≡ 0)

ii) special case where f (·), f̃ (·) are T -periodic functions :
have a T -periodic semigroup, an invariant probability on the canonical space
C [0,T ] for T -segments in the path of the process, and Harris-recurrence of the
Markov chain of T -segments : thus we can obtain limit theorems for a large
class of functionals of the process (Vt − K0)t≥0 (Höpfner-Kutoyants 10)
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time homogeneous CIR gives quite good fit for the membrane potential data of
example 1 (17Sept08 023) and for the spiking levels 8+9+10 in example 2
(Zelle 3 K 10, K 12 , K 15)

among the non-spiking levels 1–7 in example 2, some show good fit to OU type
and P type (’bowl shaped diffusion coefficient’) diffusions, often with marked
time dependence for the input term in the drift
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short remarks on nonparametric statistical inference

restriction to time homogenous model without jumps : assume that a diffusion

dXt := b(Xt) dt + σ(Xt) dWt , t ∈ [T0,T1]

is observed on a discrete time grid with suitably small step size ∆̃

Xi∆̃ , i0 ≤ i ≤ i1 , i0 := dT0

∆̃
e , i1 := bT1

∆̃
c

in real data sets : ∆̃ = M∆, ∆ the time resolution in the data

we view a→ σ2(a) , a→ b(a) as unknown C1 functions and use kernel
estimators with kernel K(·) and bandwidth h > 0 to plot clouds of points

( a , σ̂2(a) )a∈G , ( a , b̂(a) )a∈G , for suitable grids G

in order to make appear a typical shape

kernel K(·) : rectangular, triangular, normal ...
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using M-step ∆-increments in the trajectory for suitable M from H. 07

σ̂2(a) := σ̂2
(∆,M,h)(a) =

∑i1−M
i=i0

K
(

Xi∆−a
h

)(
X(i+M)∆−Xi∆√

∆·M

)2

∑i1−M
i=i0

K
(

Xi∆−a
h

)
b̂(a) := b̂(∆,M,h)(a) =

∑i1−M
i=i0

K
(

Xi∆−a
h

)(
X(i+M)∆−Xi∆

∆·M

)
∑i1−M

i=i0
K
(

Xi∆−a
h

)
our choices : bandwith h = 0.01, step multiple M = 20 (check stability under
moderate variation of M and h) ; ∆ imposed by structure of data

guideline for estimation of σ2(·) : asymptotics ∆̃ ↓ 0 as in Florens-Zmirou 93, Hoffmann 99+01, Jacod 10, .... , for T1 fixed ;

for estimation of b(·) : assuming ergodicity as in Kutoyants 04 ...., continuous observation up to time T1, for T1 → ∞

have tightness results in terms of an observable random rate involving

i1−M∑
i=i0

K

(
Xi∆ − a

h

)
’number of visits near a’

thus ’estimation is reliable at points a where the number of visits is high’
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asymptotics

remark on asymptotics (notation : T0 = 0, T1 = T , i0 = 0, i1 = bT
∆
c) :

if we were free to vary ∆ and T , keeping M fixed, then

proposition : a) under the asymptotics

(AS1) T ≡ cst , and ∆ ↓ 0 , h ↓ 0 , h = o
(

∆1/3
)

we have tightness of rescaled estimation errors at observable random rate√√√√i1−M∑
i=i0

K

(
Xi∆ − a

h

) (
σ̂2

(∆,M,h)(a)− σ2(a)
)

b) under ergodicity/stationarity of (Xt)t≥0 and under asymptotics

(AS2) ∆ small , and T ↑ ∞ , h ↓ 0 , h = o
(

T−1/3
)

we have tightness of rescaled estimation errors√√√√ ∆ ·
i1−M∑
i=i0

K

(
Xi∆ − a

h

) (
b̂(∆,M,h)(a)− b(a)

)
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example

out of the 10 levels in ’Zelle 3’ (potassium bath of varying concentration),
we pick the level 8 which has one isolated spike over 60 seconds of observation
time (’Zelle 3 K 10’), and apply the above estimators to inter-spike-segments
in the membrane potential from H. 07
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this example : good fit with a CIR type diffusion
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drift estimation :
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estimated ’b(.)’ in Zelle_3_K_10.asc

 based on whole trajectory, M = 20, LT > 100, excluding neighbourhoods (−0.12,0.18) around spikes

correlation coefficient = −0.877, negative slope = −2.036
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diffusion coefficient estimation :
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estimating ’sigma^2(.)’ in Zelle_3_K_10.asc

 based on whole trajectory, M = 20, LT > 100, excluding neighbourhoods (−0.12,0.18) around spikes

correlation coefficient = 0.588, positive slope = 0.238
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problems

similiarly, we can see OU type or P type drift and diffusion cofficient in the
non-spiking levels 1–7 in example 2

simulated diffusion equivalent : any simulated diffusion path using estimated
drift and estimated diffusion coefficient ;
for our data ’17Sept08 023’ and for most levels of ’Zelle 3’,
pictures as seen above can be reproduced from simulated diffusion equivalents

but we do have a number of problems with ’Zelle 3’ :

some levels might have jumps, in which case we estimate not drift and
diffusion coefficient itself, but (drift + associated jump terms) and
(diffusion coefficient + associated jump terms)

strong time inhomogeneities do exist in some levels (e.g. obviously in 1, 2,
4), ’recent past variants’ of kernel estimators as above make them appear

in the spiking level 10 (15 mM of K, 8 spikes) of ’Zelle 3’, changing
M = 10, 20, 40 sensibly affects estimation of the diffusion cofficient
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to which extent is the membrane potential between successive spikes

adequately modelled as a (continous) semimartingale ?

model assumption : i) the membrane potential between successive spikes
(i.e. on suitable intervals [T0,T1] sufficiently away from the spike times)
is an Ito semimartingale as in Ait-Sahalia and Jacod AS 2009

dXt = bt dt + σt dWt +

∫
κ ◦ δ(t, y) (µ− ν)(dt, dy) +

∫
κ′ ◦ δ(t, y)µ(dt, dy)

(processes b, σ, δ, truncation functions κ(y) = y1{|y|≤1}, κ
′(y) = y1{|y|>1})

ii) data : discrete observation of X at time resolution ∆

Xi∆ , i0 ≤ i ≤ i1 , i0 := dT0

∆
e , i1 := bT1

∆
c

aim : apply ’test for jumps’ in Ait-Sahalia and Jacod AS 2009 to data and ask

can the data be viewed as a continuous semimartingale ?

can the data be viewed as a semimartingale having jumps ?

and finally –the test by Ait-Sahalia and Jacod establishing a dichotomy– ask

can we assume a semimartingale model for our membrane potential data ?

there will be a surprising answer ...
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consider T0 = 0, T1 = T , and also 0 ≤ S < T ; on ]]S ,T ]] :

if we were free to work with arbitrary ∆̃ ↓ 0, we would use usual p-variations

B̂S,T (p, ∆̃) :=

b(T−S)/∆̃c∑
i=1

∣∣∣XS+i∆̃ − XS+(i−1)∆̃

∣∣∣p as ∆̃ ↓ 0

defined w.r.t. non-intersecting intervals (work of Jacod, Barndorff-Nielsen, ...) ;

in order to isolate Gaussian parts as ∆̃ ↓ 0, we would use truncated p-variations

B̌ε
S,T (p, ∆̃) :=

b(T−S)/∆̃c∑
i=1

1{ ∣∣∣X
S+i∆̃
−X

S+(i−1)∆̃

∣∣∣< [∆̃]
1−ε

2

} ∣∣∣XS+i∆̃ − XS+(i−1)∆̃

∣∣∣p
motivated by LIL (Mancini SJS ’09, SPA ’10, Podolskii and Ziggel SISP ’10)

in our data, it is impossible to make work convergence results of this type ...
can only mimick ∆̃ ↓ 0 in a very poor way by considering

∆̃ := M∆ , M = . . . , 5, 4, 3, 2, 1

decreasing multiples of the step size ∆ prescribed by the data



mp between successive spikes statistical inference power variations varying M varying p conclusion references appendix

for T0 = 0, T1 = T and step size ∆ in the data, write i0 = 0, i1 = bT
∆
c

for varying M and p, we will use M-step ∆-increments in the trajectory, and
will mix p-variations as above

V0,T ,∞(p,∆,M) :=
1

M

M−1∑
`=0

B̂`∆,T (p,M∆) =
1

M

i1−M∑
i=i0

∣∣X(i+M)∆ − Xi∆

∣∣p
and work with overlapping intervals ; the M summands in the second term
being ’almost identical’, we identify (heuristics !)

V0,T ,∞(p,∆,M) ≈ B̂0,T (p,M∆)

then transfer established convergence results for B̂0,T (p, ∆̃) as ∆̃ ↓ 0
to V0,T ,∞(p,∆,M) for decreasing M = . . . , 3, 2, 1

our truncated p-variations will be (Höpfner 10)

V0,T ,Z (p,∆,M) :=
1

M

i1−M∑
i=i0

1{
|X(i+M)∆−Xi∆|< 3·[M∆]

1
2 ·Z

} ∣∣X(i+M)∆ − Xi∆

∣∣p
where we play around with the deterministic truncation factor Z , Z ↑ ∞

in spiking neurons : several disjoint diffusion-like segments : we add up the
corresponding terms coming from the segments
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varying multiples M of ∆ when p = 2, 4 is fixed

on the basis of the above heuristics consider 2- and 4-variations :

4-variations : the test for jumps in Ait-Sahalia and Jacod AS 2009 X with jumps : B̂0,T (4, ∆̃)
∆̃↓0−→

∑
0<s≤T |Xs−Xs− |4 (str. pos. limit)

X continous : B̂0,T (4, ∆̃)
∆̃↓0∼ ∆̃ ·

[
m4

∫ T

0
σ4
s ds
]

(linearity in ∆̃)

should be rephrased in our setting as follows : while decreasing M = . . . , 3, 2, 1,{
X with jumps : V0,T ,∞(4,∆,M) stabilizes at a strictly positive ’limit’

X continous : V0,T ,∞(4,∆,M) is approx. linear in M, and null at 0

2-variations : the well known convergence

B̂0,T (2, ∆̃)
∆̃↓0−→ [X ,X ]T =

∫ T

0

σ2
s ds +

∑
0<s≤T

|Xs−Xs− |
2

should translate as follows : for decreasing and sufficiently small values of M,

V0,T ,∞(2,∆,M) is strictly positive and flat in M
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non-spiking neurons

non- or very rarely spiking neurons : 4-variations as a function of M

data ’Zelle 3 K 10’ (level 8), one isolated spike over 60 seconds :
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Zelle_3_K_10.asc, whole trajectory, 4−variations depending on M

good linearity for all Z ∈ {1, 2, 4, 8, 10, 16, 32, . . .}, no changes above Z ≥ 8
periodic deformations (circuits/loops in the neuronal slice ?)
no clear hint to presence of jumps : behaviour of a (continuous) semimartingale

similiar pictures for all non-spiking levels 1–7 of ’Zelle 3’
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non- or very rarely spiking neurons : 2-variations as a function of M
same data ’Zelle 3 K 10’, level 8 , one isolated spike :
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Zelle_3_K_10.asc, whole trajectory, 2−variations depending on M

essentially flat in M for M ≥ 15, for all values of truncation factor Z
same periodic deformations observable as above (circuits ?)
’microstructure noise’ visible for small M, probably due the recording electrode
(similiar in all levels of ’Zelle 3’, not present in ’17Sept08 023’)

behaviour of a semimartingale, up to noisy observation
similiar pictures for all non-spiking levels 1–7 of ’Zelle 3’
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spiking neurons

sufficiently frequently spiking neurons : 4-variations as a function of M

in a semimartingale, for p = 4 fixed and M = . . . , 3, 2, 1 decreasing,
4-variations should be either linear or converging to a strictly positive limit

inspecting the frequently spiking neuron ’17Sept08 023’ (≈ 50 spikes over 60
seconds, no ’noise’), we see none of both : semimartingale property violated
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17Sept08_023.asc, on [ 0, 60 ], 4−variations depending on M

(truncation factors Z ∈ {1, 2, 4, 8, 10, 16, 32, 64, . . .}, no changes for Z ≥ 32)
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sufficiently frequently spiking neurons : 2-variations as a function of M

in a semimartingale, for p = 2 fixed and M = . . . , 3, 2, 1 decreasing,
2-variations should be flat in M

for the spiking level 10 (’Zelle 3 K 15’, 8 spikes over 60 seconds), we see
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Zelle_3_K_15.asc, 60 sec, 2−variations depending on M

(truncation factors as above, noisy observation visible in small M-values)

semimartingale property violated : similiar pictures also for level 9 of ’Zelle 3’

(18 spikes), and for ’17Sept08 023’
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varying p when the multiple M of ∆ is fixed

the test for jumps in Ait-Sahalia and Jacod AS 09
for ξ with jumps : B̂0,T (p, 2∆̃) ≈

{
B̂0,T (p, ∆̃) for 2 ≤ p <∞
2

p
2
−1 B̂0,T (p, ∆̃) for 0 < p < 2

for ξ continuous : B̂0,T (p, 2∆̃) ≈ 2
p
2
−1 B̂0,T (p, ∆̃) for 0 < p <∞

(for ∆̃ small enough) translates in our setting as follows : empirical log-ratios

p −→ log
V0,T ,∞(p,∆, 2M)

V0,T ,∞(p,∆,M)
≈ log

B̂0,T (p, 2M∆)

B̂0,T (p,M∆)

(heuristics as above !) should be close to the deterministic function{
p → min

{
( p

2
− 1) log 2 , 0

}
on 0 < p <∞ if ξ has jumps

p → ( p
2
− 1) log 2 on 0 < p <∞ if ξ is continuous

in our data, we work again with M = 20
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non-spiking neurons

non- or very rarely spiking neurons : empirical log-ratios as a function of p

data ’Zelle 3 K 10’, level 8, one isolated spike :
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to be expected for continuous semimartingales, by theorem J−AS :

to be expected for semimartingales with jumps

trunc. factor = 1
trunc. factor = 4

trunc. factor = 16trunc. factor = 64trunc. factor = 256

Zelle_3_K_10.asc, 60 sec, test for jumps through p−variations functional in p

(truncation factors Z ∈ {1, 4, 16, 64, 256}, no changes above Z ≥ 16)

essentially linear in p : behaviour of a continuous semimartingale
up to two exceptions, the non-spiking levels 1–7 produce this type of picture
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among the non-spiking levels 1–7 of ’Zelle 3’, the present methods detects
jumps in some cases : here level 4 (’Zelle 3 K 6’), truncation fact. as above :

0 1 2 3 4 5

−
0.

5
0.

0
0.

5
1.

0

p ( using increments over 2M / M times the time resolution 6e−04 [sec] in the data set, M = 20 )

lo
g 

ra
tio

 p
−

va
ria

tio
ns

 2
M

 / 
M

, c
al

cu
la

te
d 

w
ith

 tr
un

ca
te

d 
in

cr
em

en
ts

to be expected for continuous semimartingales, by theorem J−AS :

to be expected for semimartingales with jumps

trunc. factor = 1

trunc. factor = 4

trunc. factor = 16trunc. factor = 64trunc. factor = 256

Zelle_3_K_6.asc, 60 sec, test for jumps through p−variations functional in p

behaviour of a semimartingale with jumps

so far : can conclude from our data : in non-spiking or very rarely spiking

regimes, the membrane potential is adequately modelled as a semimartingale,

in some cases with jumps
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spiking neurons

sufficiently frequently spiking neurons : empirical log-ratios as a function of p

in a semimartingale, for M fixed and varying p, empirical log-ratios should be
either linear in p (with known slope), or linear with truncation at 0 for p ≥ 2 ;
in ’Zelle 3 K 12’, level 9, 18 spikes, none of both :
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to be expected for continuous semimartingales, by theorem J−AS :

to be expected for semimartingales with jumps

trunc. factor = 1
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Zelle_3_K_12.asc, 60 sec, test for jumps through p−variations functional in p

(truncation factors Z ∈ {1, 4, 16, 64, 256}, no changes above Z ≥ 16)

semimartingale property violated ;
similiar pictures for level 10 of ’Zelle 3’ (8 spikes), and for ’17Sept08 023’
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the disturbing conclusion

frequently spiking neuron ’17Sept08 023’, spiking levels 9+10 of ’Zelle 3’ :
power variations calculated from data do not fit into the dichotomy
established by Jacod’s test for jumps for Ito semimartingales :

hence the membr. pot. between successive jumps in frequently spiking neurons

IS NOT ADEQUATELY MODELLED BY A SEMIMARTINGALE ...

this forbids any semimartingale based approach to ’information transmission’ in
neurons ... and destroys a large number of papers analyzing interspike times in
terms of level crossing times of diffusions

whereas in the non-spiking regimes of levels 1-7 of ’Zelle 3’, and even in
level 8 where one isolated spike occurs, our data (up to effects of ’noise’)

VALIDATE THE SEMIMARTINGALE HYPOTHESIS.

Hence there is a strong need for neuron models which allow to understand
non-spiking and spiking regimes simultaneously ...
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appendix

spikes are generated when the membran potential Vt in the soma is high enough
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heuristics : why should the membrane potential between successive spikes be
modelled as a (jump) diffusion process ?

one neuron has O(104) synapses, ≈ 90% excitatory, ≈ 10% inhibitory

contribution of incoming spikes to the membrane potential via : exciting
synapsis (L), inhibitory synapsis (M), exciting and inhibitory combined (R)

synapses ↪→ dendrites ↪→ soma : additivity and exponential decay
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