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Deterministic case The propagation of roundoff error in a numerical
scheme is often investigated for a class of complex-valued linear “test”
ODEs

dz

dt
= λz

where λ = α + ıβ ∈ C, z = x + ıy ∈ C and ı =
√
−1.

Its solution for the initial value z(0) = z0 is

z(t) = eλtz0 = eαt eıβtz0

Thus

|z(t)| = eαt|z0| → 0 for t → ∞ ∀z0

if and only if

α = Re(λ) < 0 .

in which case the zero solution z(t) ≡ 0 is called asymptotically stable.



A Runge-Kutta scheme with the Butcher Tableau

c A
b

for the test ODE function f(z) = λz and constant step size h simplifies
to

zn+1 = R(hλ)zn

where

R(z) = 1 + zb(I − zA)−11

i.e., a complex-valued mapping R : C → C.

⇒ |zn| = |R(hλ)|n |z0| → 0 for n → ∞ if and only if |R(hλ)| < 1.



Thus the zero solution zn ≡ 0+ı0 ∈ C of the Runge-Kutta scheme is also
asymptotically stable and approximates the behaviour of a test ODE if
and only if the step size h > 0 satisfies the inequality

|R(hλ)| < 1 .

Definition The set

SR := {z ∈ C : |R(z)| < 1}

is called the stability region of the Runge-Kutta scheme with the mapping

R.

Definition A Runge-Kutta scheme with mapping R is said to be A-stable

when

C
− := {z ∈ C : Re(z) < 0} ⊂ SR.
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The explicit Euler scheme
0 0

1
, R(z) = 1 + z.

|R(z)| = |1 + z| < 1 is the interior of the unit circle with centre −1 + ı0.

⇒ the explicit Euler scheme is not A-stable.
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The implicit Euler scheme
1 1

1
, R(z) =

1

1 − z

|R(z)| < 1 ⇔ |1− z| > 1 and SR is the exterior of the unit circle with
centre 1 + ı0.

C
− ⊂ SR ⇒ the implicit Euler scheme is A-stable.



Generalizations

A-stability is very strong (i.e. no restriction on the step size) and also
very restrictive.

To investigate the preservation of asymptotic stability under discretisa-
tion for nonlinear systems test ODES are considered of the form

dx

dt
= f(x),

where f : R
d → R

d satisfies a one-sided dissipative Lipschitz condition,
i.e. there exists a constant L > 0 such that

〈x − y, f(x) − f(y)〉 ≤ −L|x − y|2 ∀ x, y ∈ R
d.

⇒ the ODE has a globally asymptotically stable steady state solution.



Stochastic differential equations with additive noise

Consider a linear SDE with additive noise

dXt = λXt dt + σ dWt, (1)

where Wt is a standard two-sided Wiener process and constants λ, σ.

A 1-step numerical scheme with constant step size h for the linear SDE
(1) has the form

Yn+1 = R(hλ)Yn + Zn, (2)

where the Zn are random variables that do not depend on Y0, Y1, · · · or
λ, e.g. the Euler-Maruyama scheme

Yn+1 = (1 + hλ) Yn + ∆Wn, i.e. R(z) ≡ z



Results in the literature

(I) Milstein & Tretyakov (2004) propose the following line of thought:

• If for σ = 0 the trivial solution of (1) is asymptotically stable, then for any

σ 6= 0 a solution yn of a numerical scheme (2) applied to the SDE (1) with

E|X0|
2 < ∞ has second order moments that are uniformly bounded in n.

• Otherwise, if for σ = 0 the trivial solution of (1) is unstable, then the second

order moments of the numerical iterates tend to infinity.

They conclude that the stability properties of a numerical scheme (2)
applied to the SDE (1) can be deduced from the corresponding results
on the scheme applied to the ODE obtained from the SDE (1) with σ
= 0. Thus the stability concepts of deterministic numerical analysis can
be transferred without modifications to the stochastic case.

But they do not say what they mean by an equilibrium solution.



(II) Kloeden & Platen (1992) defined A-stability of the numerical
scheme (2) for a complex valued version of the test SDE (1) in terms
of |R(hλ)| < 1 for a complex λ.

What is the equilibrium solution of the SDE (1) ?

What is the equilibrium solution of the numerical scheme (2) ?



(III) Hernández & Spigler (1992) show for the SDE (1) with ℜλ < 0
that there is a unique stationary complex Gaussian random process Z
with zero mean and variance σ2/2|ℜλ| to which all other solutions decay
exponentially (but they did not state in which sense).

They showed that a similar situation holds for the numerical scheme (2).

Essentially they consider an invariant measure of the numerical station-
ary process since the mean and the covariance may not provide enough
information when the scheme does not have Gaussian solutions.

But they do not consider the question of convergence of the numerical
stationary solution to that of the continuous time system.



(IV) Artemiev & Averina (1997) say that a numerical scheme is asymp-

totically unbiased with step size h > 0 if when applied to the linear test
SDE (1) with λ < 0, the distribution of the numerical solution yn con-
verges as n → ∞ to the normal distribution with zero mean and variance
σ2/2|λ|.

They note that the solution of SDE (1) is a Gaussian process when-
ever X0 is Gaussian (or deterministic) and thus determined by its mean
and variance. The property of asymptotic unbiasedness of a numeri-
cal scheme (assuming that it produces Gaussian iterates) can then be
deduced from the mean and variance of the iterates:

lim
n→∞

Eyn = 0, lim
n→∞

Ey2
n =

σ2

2|λ| .

Thus the asymptotic behaviour of a scheme described by the definition of
asymptotically unbiasedness is consistent with the asymptotic behaviour
of the distribution of the exact solution.



(V) Saito & Mitsui (1996, 2007) say that a numerical scheme with step

size h is numerically stable in mean if the numerical solution y
(h)
n applied

to the SDE (1) satisfies Ey
(h)
n → 0 for n → ∞.

They show that the second moment of the Euler-Maruyama scheme
schemes satisfies

E|y(h)
n |2 → σ2

2|ℜλ| + |λ|2h for n → ∞

They note that the equilibrium value in mean square sense is different

from the true value
σ2

2|ℜλ| , but converges to this value for h → 0.



They proposes the following definition:

Definition: A numerical scheme asymptotically consistent in mean square

if the numerical solution y
(h)
n for the test SDE (1) satisfies

lim
h→0

(
lim

n→∞
E|y(h)

n |2
)

=
σ2

2|ℜλ| .

This is obviously true for the Euler-Maruyama scheme.

BUT note the double limit!



SHORTCOMING

None of the above references above provides

i) a rigorous justification that such a test equation that is appropriate
in the stochastic setting,

ii) an equilibrium solution, whose stability properties can be discussed,

iii) a precise stability notion.



Explanation through Random Dynamical Systems

The linear scalar test SDE (1) has the explicit solution

Xt = eλ(t−t0)Xt0 + σeλt

∫ t

t0

e−λs dWs (3)

for all t ≥ t0.

Henceforth let λ < 0.

The expression (3) has no forward limit, but the pathwise pullback limit
(i.e., as t0 → −∞ with t fixed) exists and is given by

Ôt := σeλt

∫ t

−∞

e−λs dWs = σe−|λ|t

∫ t

−∞

e|λ|s dWs. (4)



This is known as the scalar Ornstein-Uhlenbeck stochastic stationary
process. It is Gaussian with zero mean and variance σ2/2|λ|.

The Ornstein-Uhlenbeck process (4) is a stochastic stationary solution
of the linear test SDE (1).

Moreover, it also attracts all other solutions of the SDE forwards in time
in the pathwise sense. To see this simply subtract one solution of (1)
from another to obtain

X1
t − X2

t = e−λ(t−t0)
(
X1

t0
− X2

t0

)

and then replace X2
t by the Ornstein-Uhlenbeck process Ôt.

The Ornstein-Uhlenbeck process is thus the equilibrium solution alluded
to in the papers discussed above.



A numerical scheme applied to the linear test SDE (1) also has a discrete
time analog of the Ornstein-Uhlenbeck process, which pathwise attracts
all other numerical solutions.

This is easily illustrated with the explicit Euler-Maruyama scheme with
constant step size h,

Xn+1 = (1 − |λ|h) Xn + σ∆Wn ,

which has the explicit solution

Xn = (1 − |λ|h)
n−n0 Xn0

+ σ
n−1∑

j=n0

(1 − |λ|h)
n−1−j

∆Wj .



The pathwise pullback limit (taking n0 → −∞ with n held fixed and
Xn0

≡ X0 for all n0 and constant step size h) exists, provided that 0 <
h < 2/|λ|, and is given by

Ô(h)
n := σ

n−1∑

j=−∞

(1 − |λ|h)n−1−j ∆Wj . (5)

This is a stochastic stationary solution and attracts all other solutions
of the Euler-Maruyama scheme forwards in time in the pathwise sense,
since the difference of two solutions satisfies

X1
n − X2

n = (1 − λh)
n−n0

(
X1

n0
− X2

n0

)
.

Moreover, one can show that

Ô
(h)
0 → Ô0 as h → 0

in the pathwise sense, and hence for any other time instant.



The Ornstein-Uhlenbeck stationary process Ô(t) and its numer-

ical counterpart Ô
(h)
n provide the appropriate equilibrium solu-

tions for the test SDE (1) and the explicit Euler-Maruyama
scheme.

These Ornstein-Uhlenbeck solutions were, in fact, used implicitly in the
literature discussed above.

The above expressions for the differences of two solutions of the SDE
or the explicit Euler-Maruyama scheme show that the factor 1− |λ|h in
the drift alone determines the stability of the equilibrium solution under
discussion, as indicated by Milstein & Tretyakov.

A similar situation holds for other numerical schemes applied to the test
SDE (1).



Justification of the linear test equation

In deterministic numerical analysis the scalar linear test ODE

dx

dt
= λx

is derived via linearisation of a nonlinear ODE system around an equi-
librium solution, centering and diagonalising the resulting linear system.

Theorems of the first approximation and the Hartman-Grobman theo-
rem provide the background for relating the linear stability results back
to the nonlinear problem.



In the case of the nonlinear SDE with additive noise

dXt = f(Xt) dt + σ dWt,

which has a stochastic stationary solution X̄t as an equilibrium, then
linearisation about this equilibrium gives the random ODE

d

dt
Yt = ∇f(X̄t)Yt,

where Yt : = Xt − X̄t and ∇f is the Jacobian of f .

There is no rigorous justification that studying the stability
properties of numerical schemes applied to (1) allows one to
deduce properties of the schemes applied to nonlinear SDEs.

However, the investigation of stability properties of the linear test SDE
(1) is of interest in itself and in the context of SDEs arising as spatial
discretisations of linear SPDEs.



Nonlinear test equation

To investigate the preservation of asymptotic stability under discretiza-
tion for nonlinear SDEs with additive noise it is more appropriate to
consider nonlinear test SDEs of, e.g., the form

dXt = f(Xt) dt + σ dWt,

where f satisfies a one-sided dissipative Lipschitz condition, e.g.

f(x) = −x − x3.

These nonlinear test SDEs have a unique stochastic stationary solution
that attracts all other solutions in the pathwise sense.

The numerical scheme should preserve this property.



Nonlinear test equation for SPDEs

For SDEs coming from Galerkin approximations of SPDEs it is more
appropriate to use nonlinear test SDEs of the form

dXt = [AXt + f(Xt)] dt + σ dWt,

where

i) f satisfies a global Lipschitz condition with constant K,

ii) A is a stable matrix in the sense that µ[A] ≤ 0, where µ[A] is the
logarithmic norm of A defined by

µ[A] = lim
δ→0+

‖Id + δA‖ − 1

δ
.



Three numerical schemes

• the linear implicit Euler-Maruyama scheme

Xn+1 = Xn + hAXn+1 + hf(Xn) + σ∆Wn , (6)

• the explicit exponential Euler scheme (Lord & Rougemont)

Yn+1 = ehAYn + hehAf(Yn) + ehAσ∆Wn , (7)

• the explicit exponential Euler scheme (Jentzen & Kloeden)

Zn+1 = ehAZn +A−1(ehA − I)f(Zn)+σ

∫ tn+h

tn

e(tn+h−s)A dW (s) .

(8)

In the last of these the matrix A must obviously be invertible.



Theorem 1 Suppose that µ[A] ≤ 0 with respect to a suitable induced

matrix norm and that f satisfies a global Lipschitz condition with con-

stant K. Then each of the linear implicit Euler-Maruyama scheme and

the exponential Euler scheme (Lord & Rougemont) has a unique stochas-

tic stationary solution which is pathwise asymptotically stable for all step

sizes h > 0 if

K < −µ[A] ; (9)

and there exists a h∗ > 0 given by the positive solution of

1 + hK‖A−1‖ ‖A‖ eh‖A‖−hµ[A] = e−hµ[A]

such that the exponential Euler scheme (Jentzen & Kloeden) has a unique

stochastic stationary solution which is pathwise asymptotically stable for

all h ∈ (0, h∗) if

K‖A‖ ‖A−1‖ < −µ[A]. (10)



Proof idea.

Subtract an Ornstein-Uhlenbeck stochastic stationary solution Ôt of the
linear SDE

dXt = AXt dt + σ dWt

from the solution of the nonlinear SDE

dXt = [AXt + f(Xt)] dt + σ dWt

to get a random ODE in z(t) := Xt − Ôt

d

dt
z(t) = Az(t) + f

(
z(t) + Ôt)

)
.



Then use absorbing set estimates and the theory of random dynamical
systems to show that the random ODE (and hence the nonlinear SDE)
has a stochastic stationary solution ẑ(t), resp.

X̂t := ẑ(t) + Ôt.

Similar approach for the numerical schemes with linear and nonlinear
difference equations
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